
Webcam Clip Art: Appearance and Illuminant Transfer
from Time-lapse Sequences

Jean-François Lalonde, Alexei A. Efros, and Srinivasa G. Narasimhan
School of Computer Science, Carnegie Mellon University

Figure 1: We introduce a new, high-quality dataset of calibrated time-lapse sequences (a). Illumination conditions are estimated in a
physically-consistent way and HDR environment maps are generated for each image (b). This database can be used as a “clip art” library
for applications like inserting lighting-consistent 2D objects, such as the buildings in (c), or relighting 3D objects, such as the statue in (d).

Abstract

Webcams placed all over the world observe and record the visual
appearance of a variety of outdoor scenes over long periods of time.
The recorded time-lapse image sequences cover a wide range of il-
lumination and weather conditions – a vast untapped resource for
creating visual realism. In this work, we propose to use a large
repository of webcams as a “clip art” library from which users may
transfer scene appearance (objects, scene backdrops, outdoor illu-
mination) into their own time-lapse sequences or even single pho-
tographs. The goal is to combine the recent ideas from data-driven
appearance transfer techniques with a general and theoretically-
grounded physically-based illumination model. To accomplish this,
the paper presents three main research contributions: 1) a new,
high-quality outdoor webcam database that has been calibrated ra-
diometrically and geometrically; 2) a novel approach for match-
ing illuminations across different scenes based on the estimation of
the properties of natural illuminants (sun, sky, weather and clouds),
the camera geometry, and illumination-dependent scene features; 3)
a new algorithm for generating physically plausible high dynamic
range environment maps for each frame in a webcam sequence.

Keywords: image databases, object insertion, time-lapse video,
image-based lighting, HDR, computer vision

1 Motivation

Despite the recent advances, visual realism in complex, real-world
scenes remains largely elusive for traditional computer graphics.

The main culprit appears to be the sheer complexity of our visual
world – a realistic scene requires much more detailed geometry and
lighting than could possibly be provided by hand. Of course, if one
happens to have access to the physical site to be modelled (e.g. a
monument or a movie set), then image-based modeling and render-
ing techniques can be employed in situ, producing excellent results
(e.g. [Arnold et al. 2003]). However, often it is not possible to
travel “on location” in order to capture the needed geometric and
photometric data in person. Fortunately, over the last few years, the
Internet has developed into a gargantuan depository of visual data
(photos, videos, webcams, annotations, etc) captured by people all
over the globe. A pressing research question is how this data could
be useful in graphics as a way of “crowd-sourcing” visual realism.

Recently, the concept of appearance transfer has been proposed as
a way of employing large datasets for synthesizing novel imagery.
The basic idea is to: match various aspects of the given scene to
one or more previously seen examples from the dataset; and trans-
fer the appearance information associated with the examples onto
the scene. Compared to more traditional techniques, the main dif-
ference is that the algorithmic burden is shifted from a synthesis
task to a (hopefully easier) matching task. Some surprisingly suc-
cessful applications of this simple idea have been demonstrated for
several types of data including unordered photo collections [Hays
and Efros 2007; Bitouk et al. 2008], and community-labelled ob-
ject databases [Lalonde et al. 2007]. Closely related are efforts that
perform “appearance mining” of photo collections to recover visual
content like virtual walk-throughs [Snavely et al. 2008], skies [Tao
et al. 2009] and even 3D models [Goesele et al. 2007].

One intriguing source of visual data that has yet to be fully ex-
plored are Internet webcams. A webcam is a stationary camera
that continuously captures a time-lapse sequence, typically at one
frame every 5-10 minutes. There are tens of thousands of such
webcams all over the world, providing a rich round-the-clock vi-
sual record of some of the most interesting, as well as some of the
most mundane, places on the planet. The big advantage of web-
cam data is that, by observing the same scene under many differ-
ent lighting and weather conditions, it contains much more infor-
mation than can be extracted from either a single image or an un-
structured video. As a result, working with this kind of data allows
for the use of more principled physics-based methods to comple-



Figure 2: 180 images randomly selected from our dataset of 1.2 million images from 1350 webcams.

ment the mostly heuristic data-driven approaches. Several research
groups have explored this source of information, recovering vari-
ous scene properties including scene geometry, surface reflectance,
shadows, illumination, camera parameters, and even camera geo-
location [Koppal and Narasimhan 2006; Sunkavalli et al. 2007;
Weiss 2001; Sunkavalli et al. 2008; Kim et al. 2008; Lalonde et al.
2009; Jacobs et al. 2007b]. These efforts have prepared the ground
for the next step: actually using the wealth of webcam data as a
source of visual realism for computer graphics applications.

2 Overview

In this paper, we propose a combined data-driven / physics-based
approach for using a library of calibrated outdoor webcams as a
“Webcam clip art” – to inject varied, realistic appearance into the
user’s own scenes. These scenes could themselves be time-lapse
sequences, as well as 3D models, 2D Light Stage objects, or, in
some cases, even single photographs. Our aim is to transfer the
right data from the appropriate source images while avoiding, as
much as possible, synthesizing new appearance and illumination.
This broadly follows the philosophy of Photo Clip Art [Lalonde
et al. 2007], which proposes a complete system for outdoor object
insertion from an image library by matching geometry, scale, illu-
mination context, and local context of an object to be inserted with
the background image. However, in this work, we focus on a sin-
gle aspect of appearance – illumination – where time-lapse data can
provide much more information than a single image, allowing for a
more physics-based approach as well as a much richer set of appli-
cations. We divide these applications into two broad categories:

Illumination-consistent appearance transfer: Webcams see and
record the visual life of many interesting things – buildings, mon-
uments, mountains, beautiful skies, etc. We would like to be able
to insert an object from our Webcam Clip Art library directly into a
user’s own time-lapsed sequence in such a way that the lighting of
the object is consistent with the overall illumination of the scene at
each time instance. For instance, using a Paris webcam, one could
create a time-lapse Eiffel Tower clip art object which, when inserted
into a new scene, will automatically become correctly lit.

Illuminant transfer: A webcam library could also act as a rich
source of realistic, time-varying natural illumination for relighting
the user’s own virtual objects. By estimating the sun and sky light
from the webcam, we can create a library of sky probe sequences,
to be used for relighting scenes under many different illumination
and weather/cloud conditions. Moreover, by hypothesizing full en-
vironment maps for a given sequence, virtual objects can be seam-
lessly inserted into real scenes. For instance, an architect or a sculp-
tor wishing to see how their proposed creations will harmonize with
the existing surroundings could simply install a webcam at the site
(or several alternative sites), and visualize their model in situ, lit by
a wide range of real-world illumination conditions.

These are demanding goals. To succeed will require addressing
three major challenges: 1) Building a high-quality, calibrated
webcam database. Current webcam collections are either much
too small [Lalonde et al. 2009] or too low-resolution [Jacobs et al.
2007a] to be suitable for graphics applications. Building a truly
large dataset will require that Internet crawling and camera cali-
bration all be done completely automatically. 2) Matching illu-
mination conditions across different webcams. This is hard be-
cause the webcams can depict completely different scenes in terms
of geometric structure, color, and materials and weather, making a
purely data-driven approach unlikely to succeed. 3) Estimating sky
probes from a webcam. The small field of view of a typical cam-
era means that webcams show only a tiny part of the scene, from
which the algorithm must recreate its global lighting environment.

Our approach to addressing these challenges combines the use
of data-driven appearance transfer paradigm with a physics-based
model of outdoor illumination. We will assume that all our web-
cams have only natural (daylight) illumination, that they are filmed
by static cameras, and that their GPS locations are known.

While illumination has been analyzed extensively in laboratory
settings, little has been done on outdoor illumination in uncon-
strained scenes observed in the real world by off-the-shelf cameras.
[Lalonde et al. 2007] also model illumination within a data-driven
framework, but they do it in a purely heuristic way – via color his-
togram of the sky region. This coarse representation loses spatial
information and can only match the global “feel” of the scene (e.g.
sunny vs. overcast). A similar behavior is obtained by the sky
matching approach of [Tao et al. 2009]. A physics-based illumi-
nation model has been proposed by [Bitouk et al. 2008] but only
for the specific domain of faces (which are assumed to be Lamber-
tian) and does not generalize to arbitrary outdoor scenes. [Haber
et al. 2009] apply inverse rendering on several images of the same
object to estimate reflectance and illumination, but require a priori
knowledge of object shape. Most relevant to our work, [Lalonde
et al. 2009] focus on using the sky as “calibration target” to re-
cover the parameters of the camera. While we use their technique
to pre-process our webcams, we go much further. For instance, sky
alone cannot reliably estimate sun visibility. We demonstrate how
the scene can be used in conjunction with the sky to get a com-
plete representation of outdoor illumination. We also show how the
model can be used to extrapolate the sky appearance everywhere,
even the parts of the sky hemisphere the camera does not see. Fi-
nally, we show how we can effectively match frames by by consid-
ering all the illumination parameters: sky and weather coefficients,
cloud cover, sun position and visibility.

This paper is organized as follows. We first discuss how we col-
lected our webcam library (Sec. 3), then present our data-driven
model of natural illumination (Sec. 4). The remainder is devoted
to deriving algorithms for our two main applications, appearance
transfer (Sec. 5) and illuminant transfer (Sec. 6).
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Figure 3: World map showing the location of all 1350 webcams in
the dataset. The main concentration is in Europe and North Amer-
ica, but there are also several in Asia and Oceania.

3 Building the Webcam Clip Art database

Creating a webcam database suitable for our needs poses several
challenges. The database must be large enough to contain a wide
range of appearances and illumination conditions as to be useful for
graphics applications. The webcams must be of high resolution and
stationary (e.g. no excessive shaking due to wind). Furthermore, all
cameras within the database must be calibrated, both geometrically
and radiometrically. Geometric calibration is crucial for determin-
ing the illumination direction with respect to the camera. Radio-
metric calibration is needed to linearize camera responses in order
to fit the sky appearance model. In this section, we will briefly de-
scribe our approach for automatically collecting and calibrating our
webcam database, the first of its kind in computer graphics1.

3.1 Data collection

While the number of Internet webcams is vast, many are not suit-
able as sources of interesting appearance data (e.g. TrafficCams,
OfficeCams, SportsCams). Additionally, many (especially older)
webcams use cheap cameras and offer poor resolution and image
quality. For example, we initially experimented with Archive of
Many Outdoor Scenes (AMOS) [Jacobs et al. 2007a], the only ex-
isting dataset containing over 1,000 webcams, but rejected it due
to low image resolution (320 × 240 for most sequences). Luckily,
webcam quality and resolution have been steadily going up in re-
cent times. For our task, we have been able to identify a source of
high-quality webcams – the “webcams.travel” website [Opperman
et al. 2009], which contains a set of live links to 11,500 geo-tagged
webcams worldwide at the time of writing.

We have developed a system that crawls the entire website and auto-
matically finds webcam sequences where 1) the resolution is suffi-
cient, 2) the sky is visible, and 3) the camera is static. To determine
if the sky is visible, we use the geometric context algorithm [Hoiem
et al. 2005] and average the segmentations over several images to
yield a robust sky mask. To determine if the camera is static, we
first extract features (using SIFT [Lowe 2004]) from each image of
a webcam. We select only those webcams with no translation be-
tween the feature locations across frames, as in [Jacobs et al. 2008].

After the crawling, we ended up with 1350 suitable webcams, for
a total of over 1.2 million images (so far). The images were down-
loaded every 15 minutes from sunrise to sunset over at least two
months, and more than one year in some cases (we continue the
downloads, aiming to have at least 6 months of data from every
webcam). For all webcams the location information (GPS) is pro-

1See http://graphics.cs.cmu.edu/projects/webcamclipart

Figure 4: Our calibrated webcam dataset. It comprises 1350 web-
cams downloaded from the Internet, and calibrated using the tech-
nique of [Lalonde et al. 2009]. The display depicts their fields of
view and orientations.

vided, and every image is tagged with time-of-capture. All of our
sequences have at least 640×480 pixel spatial resolution, with 10%
of them with greater than 1024× 768 resolution.

Fig. 2 shows a random sample of 180 sequences from our dataset. It
illustrates the wide variety of scenes that are being captured: moun-
tains, cities, landmarks, buildings, public spaces, parks, beaches,
fields, airfields, streets, etc. The webcams are distributed through-
out a wide range of geographic locations, as illustrated in Fig. 3.
While the main concentrations are in Europe and North America,
all five continents (except Antarctica) are represented.

3.2 Radiometric and geometric calibration

In addition to the raw image data, we also calibrated the cameras
radiometrically and geometrically. For the radiometric calibration
step, we have evaluated several existing approaches. The method
of [Kuthirummal et al. 2008] cannot be used in our context since
they assume a random sampling of scenes. The technique proposed
by [Kim et al. 2008] also cannot be applied on all sequences since
it relies on lambertian surfaces. Instead, we use the method of [Lin
et al. 2004] which was designed to estimate the inverse camera re-
sponse function by using color edges gathered from a single image.
For robustness, we detect edges across several images, and run the
optimization on all of them.

Given the GPS and time-of-capture information, we employ the
method of [Lalonde et al. 2009] to geometrically calibrate the web-
cams; let us summarize it here for completeness. The method works
by fitting a physically-based model of sky appearance [Perez et al.
1993] to clear sky images. This model expresses the relative lumi-
nance lp of a sky element as a function of its zenith angle θp and
angle γp with respect to the sun:

lp = f(θp, γp) = [1 + a exp(b/ cos θp)]

×
ˆ
1 + c exp(dγp) + e cos2 γp

˜
.

(1)

Here, the weather coefficients a, b, c, d, e quantify the atmospheric
conditions, which can range from clear to overcast. The absolute lu-
minance is obtained by dividing by the predicted zenith luminance:

Lp = Lz
f(θp, γp)

f(0, θs)
, (2)

where Lz is the actual zenith luminance, and θs is the sun zenith
angle.



Figure 5: An example of similar sky appearance, but very different
scene illumination. We rely on scene-based features to determine
whether the sun is visible or not.

When the sky is clear, the weather coefficients take on known nu-
merical values, and thus (2) depends only on angles. The authors
then show how (2) can be reparameterized as a function of three
camera parameters: the focal length fc and its zenith and azimuth
angles θc and φc respectively. The exact expressions can be found
in [Lalonde et al. 2009].

By fitting this camera-dependent function to clear sky images and
optimizing over the camera parameters, they can effectively use the
sky as a calibration target. They demonstrate good accuracy of the
method on over 40 real, low-quality webcam sequences. As a pre-
processing step to this work, we estimated the camera orientation
(azimuth φc and zenith θc angles) and focal length fc for each web-
cam in our library.

4 A data-driven model of natural illumination

The appearance of an outdoor scene depends on a variety of factors
such as sun position, camera orientation, sky color, cloud cover and
weather conditions. Our approach relies on extracting illumination
information from both the sky and the scene present in the images
of a webcam.

4.1 Analysis of sky appearance

The visible portion of the sky is a rich source of information about
outdoor illumination, especially when observed over time. For in-
stance, we have seen in Sec. 3.2 how to recover the camera pa-
rameters from the sky only. Moreover, since GPS coordinates and
time-of-capture are known, it is easy to compute the relative posi-
tion of the sun with respect to the camera, even if the sun is never
directly observed.

The sun is, of course, the dominant illuminant, but the sky itself acts
as an area light source of spatially and temporally varying intensity
and can strongly affect the scene. For instance, it is responsible
for the global “feel” of the scene (sunny vs cloudy, red sky at sun-
sets, etc.). How can we capture its color variation when only such a
small portion is visible? To capture the sky appearance, we use the
same sky model (2) as suggested by [Lalonde et al. 2009]. Instead
of optimizing the model over camera parameters as in Sec. 3.2, they
optimize over the turbidity t (encoding the weather coefficients in
a single number [Preetham et al. 1999]). While this is only an ap-
proximation, it was found to work very well in practice. To add
robustness, they propose to use a data-driven prior model of the
clear sky, and force the optimization to remain close to it by adding
a regularization term. This enables the recovery of sky layers: one
for the sky, described by turbidity, and the other one for the clouds,
which are outliers for the sky model. For each frame of our 1350
webcams, we estimate the turbidity t of the atmosphere. Finally,
for each image, we also estimate the cloud layer.

4.2 Estimating sun visibility

While the approach of [Lalonde et al. 2009] gives robust estimates
of the sky and camera parameters, it is not enough to describe the
illumination conditions of the scene. This is because the visible por-
tion of the sky is typically a small fraction of the entire sky hemi-
sphere, and much of it remains unobserved within the field of view.
For instance, Fig. 5 shows two similarly-looking cloudy skies with
scenes illuminated differently: in the first, the sun shines from the
right of the camera on the scene, but not in the second. How can
we then determine whether the sun is occluded by clouds or other
objects when the full sky hemisphere is not observed? For this, we
must rely on cues provided by the visible scene itself.

Consider the mean image of a large webcam sequence: it shows
no preferred illumination direction and resembles a scene captured
under overcast skies (where sun is hidden behind clouds). Only
small deviations from this mean image are likely when the sun is
not visible to the scene. But larger deviations (bright or dark) from
the mean are more likely when the sun is visible. Based on this
observation, we compute scene features that can be used as a mea-
sure of sun visibility. In order to avoid the scene-dependent hue,
the features are computed in the saturation-value space. We first
compute the ratios of saturation and value of the current image w.r.t
the mean image, and then compute a 2-D joint histogram of these
ratio images. For an image where the sun is not visible, the joint
histogram will have a dominant peak near (1,1). On the other hand,
when the sun is visible, the shadow regions result in multiple peaks
or a wider spread in the joint histogram.

We validated the effectiveness of our representation by evaluating
it on a set of 400 randomly chosen images that cover a wide range
of scene and sky appearances. We manually labelled each image
as to whether or not the scene appears to be sunny. We compare
the performance of our features against three others, also computed
over the saturation-value space — (a) 2-D joint histogram of satu-
ration and value of a single image; (b) Histogram of gradients of
an image as a measure of local contrast, computed on the strong
edges only (determined by canny edge detector with high threshold
of 0.1); (c) first four moments of each of the marginal histograms of
the previous features. A k-NN classifier is used to test the perfor-
mance of the features, where the optimal k is determined by 10-fold
cross-validation. The k nearest neighbors are found by using the χ2

distance for the histogram-based features, and L2 for the moments.
The visibility classification accuracy for each of these features are
shown in Fig. 6. Our features are computed relative to the mean
image and outperform the others.

Together with the sky and camera parameters, the visibility of the
sun is crucial for matching illumination across scenes for appear-
ance transfer (Sec. 5). It is also required to estimate the sun bright-
ness for sky probe synthesis (Sec. 6). For that, we will need the
partial sun visibility, i.e. how much is the sun being occluded. We
estimate the sun visibility coefficient svis by taking the ratio of the
number of nearest neighbors with fully visible suns divided by k.
Note that we currently cannot evaluate our partial visibility esti-
mation method quantitatively since obtaining ground truth would
require knowing the thickness of occluding clouds even if they are
not visible. Qualitatively however, results are satisfying: the shad-
ows generated under a partially-occluded sun match those of the
scene (see Fig. 12(a) for example).

5 Appearance transfer across webcams

The world’s webcams record the visual appearance of cities, moun-
tains, beaches, forests and skies, under a variety of illumination and
weather conditions. But while the space of all possible scenes may
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Figure 6: Classification accuracy (in %) for each feature tested on
our training set, using a k nearest neighbor algorithm. Each feature
is evaluated by varying k and performing 10-fold cross validation
on the training set.

well be infinite, the space of illumination conditions they experi-
ence might not be that large. Indeed, given a large-enough database
of scenes it is extremely likely that many will share similar orienta-
tion with respect to the sun and, given long-enough recording time,
similar skies and weather. And if a similar scene can be found, then
appearance can simply be transferred from it to the target scene,
without having to explicitly model the complex physics and ma-
terial properties. Thus, the collection of webcams can be treated
as a “clip art” from which users can insert objects into their own
time-lapse photographs in an illumination-consistent way. As with
any data-driven approach, just growing the number of webcams in
the clip art library will further improve performance by increasing
the number of illumination matches for transfer. In this section, we
describe our techniques for matching illumination and transferring
objects from one webcam to another.

5.1 Matching illumination across scenes

Matching illuminations of completely different scenes is a chal-
lenging problem. One scene may be a natural landscape and the
other may consist of skyscrapers. In this case, simple image-based
heuristics will not suffice because they do not take into account ei-
ther the viewing and illumination geometry, the type of weather, or
the sun visibility. However, this is exactly the type of information
we can estimate from webcam sequences, as described in Sec. 4.

Consider two images captured by different webcams. In order to
test whether the appearance of an object in one can be transferred
to another, we must match (a) the camera azimuth angle relative to
the sun ∆φ = (φc − φs), which ensures, for example, whether the
sun is either to the left or right or behind the cameras; (b) the camera
zenith angles θc; (c) the sun zenith angle θs which effects sky color
especially during sunrise and sunset; (d) the visibility of the sun; (e)
turbidity t in the atmosphere; and (f) the cloud coverage denoted by
the norm ||C|| of the cloud layer. Since we do not expect different
webcams to exactly match all of these five quantities, we define an
aggregate matching function M between the skies of source and
destination images i and j, as the weighted linear combination:

M = w1 6 (∆φi,∆φj) + w2 6 (θic, θ
j
c) + w3wz 6 (θis, θ

j
s)+

w4χ
2(V i, V j) + w5D(Ci, Cj) + w6D(ti, tj) ,

(3)

where, 6 (·, ·) is the angular difference, D(·, ·) the L2 distance, and
χ2(·, ·) the chi-square distance between two histograms. We denote
by V the sun visibility features from Sec. 4.2.

(a) Input image (b) [Lalonde et al. 2007] (c) Ours

Figure 7: Sky matching comparison against [Lalonde et al. 2007].
The input image from the Vatican sequence (a) is matched against
frames from the Visby sequence using Photo Clip Art (b) and our
technique (c). While Photo Clip Art can capture the overall “feel”
of the scene (sunny, in this case), note that the shadow direction is
completely wrong.

The weights w1 = 2, w2 = 1.5, w3 = 1.5, w4 = 1.5, w5 = 1, and
w6 = 1 are used in all the examples shown in the paper. Note that
errors in sun and camera angles or sun visibility are more easily
perceived that turbidity or cloud cover, hence their larger relative
weights. Furthermore, matching the colors of the sky during sunrise
or sunset is critical for perception. We set an additional weight
wz = sin(θis) that increases the importance of the term when the
sun is close to the horizon (θis = π/2). Each of the terms in the
above functions are equalized by normalizing them to a range of
[0-1]. A nearest neighbor algorithm is used to match the function
M of one webcam against the library of source webcams.

Fig. 7 compares our new illumination matching function M with
the one proposed in [Lalonde et al. 2007]. While their approach
is good at representing the general scene mood (e.g. sunny vs.
cloudy), it does not accurately capture the sun position, so it can-
not be used to transfer the appearance of objects and scenes across
webcams in a physically-consistent way.

5.2 2-D appearance transfer across webcams

Once the illuminations of the source and destination webcams are
matched, the object of interest can be matted from the source we-
bcam and composited into the destination. Fig. 8 shows three dif-
ferent appearance transfer results: 1) skyscrapers from Tokyo are
placed into an image sequence in Berkeley, CA; 2) the Eiffel Tower
in Paris is composited into the Berlin skyline; and 3) the sky (it’s
just another object!) can likewise be transferred, here from Berke-
ley to Portugal. To compensate for color differences that might ex-
ist between cameras, we post-process the object by re-coloring ac-
cording to the scene colors, following [Reinhard et al. 2001]. When
the sky is transferred, pixels are automatically warped according to
the field of view of the cameras. Notice the beautiful sunset ef-
fect where the reflection of the sun, the colors of the buildings and
the sky appearance are all consistent. The consistency between the
illumination conditions of the transferred object and those of the
destination scene is what makes the results appear so realistic.

Illumination can be matched for each frame of the source / des-
tination webcam. However, in order to ensure smooth transitions
between frames adjacent in time, we add a constraint which penal-
izes large changes in appearance in the resulting video. We first
compute the mean histogram of scene intensity differences over all
pairs of adjacent frames in the sequence containing the source ob-
ject. We then penalize images whose histogram of object intensity
differences with respect to the previous frame differs from the mean
histogram (using the χ2 distance measure). We ensure global con-
sistency using dynamic programming as in [Schöld et al. 2000].

The success of appearance transfer depends on the quality of
matches recovered from the database. Rare illumination conditions
such as storms and dense fog for example, are harder to find and



may result in erroneous relighting results. Since not every webcam
can be matched to every other webcam (e.g. sun positions at the
earth’s equator and pole do not overlap), we assume that the web-
cams are distributed across the entire globe. As with other data-
driven approaches, many current limitations will be addressed by
simply adding more data. In addition, while this type of composit-
ing maintains consistency in the appearance of the object, shad-
ows cast by the object onto others (or vice versa) are hard to sim-
ulate without knowing 3D geometry of the scene. While shadow
detection and transfer solutions have been proposed [Weiss 2001;
Lalonde et al. 2007], they may not work in arbitrarily complex
scenes with occlusions, moving objects, etc. While this topic is
part of our future investigations, in the following section we present
a different way to accurately handle object shadows – by using 3D
virtual object models.

6 Illuminant transfer

Webcam sequences can be used to transfer pixel data across scenes,
as we demonstrated earlier, but we would also like to move beyond
pixels, and capture as much of the illumination information as we
can. This will allow us to insert synthetic 3D objects seamlessly
into a webcam sequence, and also to use the natural light from a
webcam to relight a novel 3D scene. In this case, knowledge of
geometry will result in physically-consistent shadows.

The way that the relighting problem is typically addressed in graph-
ics is by capturing natural light from the real scene and using it as
an environment map to light virtual objects [Debevec 1998]. An
environment map is a sample of the plenoptic function at a single
point in space capturing the full sphere of light rays incident at that
point. It is typically captured by either taking a high dynamic range
(HDR) panoramic photograph from the point of view of the object,
or by placing a mirrored ball at the desired location and photograph-
ing it. Such an environment map can then be used as an extended
light source for rendering synthetic objects.

Given only an image or a webcam sequence however, it is gener-
ally impossible to recover the true environment map of the scene,
since an image will only contain a small visible portion of the full
map (and from the wrong viewpoint besides). However, there is
psychophysical evidence suggesting that an approximation to the
environment map which is consistent with the target image is typi-
cally enough to create believable lighting effects [Dror et al. 2004].
Consequently, a simple technique for environment map estimation
from a single image has been proposed [Khan et al. 2006] that work
reasonably well for its intended setting. However, we have found
it inadequate for our task mainly due to its low dynamic range and
inability to estimate even approximate illumination direction. Both
problems stem from the fact that the sun and the sky – the main illu-
minants in an outdoor environment – are not being explicitly mod-
elled. Coincidentally, this is exactly the information that we can re-
liably recover from webcam sequences (Sec. 4). Here we propose
to use our model of natural illumination to estimate high dynamic
range environment maps at each frame. Since we are dealing with
outdoor images, we can divide the environment map into two parts:
the sky probe and the scene probe. We now detail the process of
building a realistic approximation to the real environment map for
these two parts.

6.1 Creating a sky probe

Our sky probe is composed of the sky layer, the sun layer, and the
cloud layer. The sky layer is generated in a straightforward way
from the sky parameters that were computed in Sec. 4.1. The esti-
mated turbidity and camera parameters allow us to use (2) and ex-
trapolate the sky appearance on the entire hemisphere, even though

Color channel α β
R 1.4243× 1010 0.2187
G 1.4463× 1010 0.2399
B 1.3× 1010 0.2889

Table 1: Recovered parameters after fitting our parametric model
to the sun data from the HDR sky database of [Stumpfel et al. 2004].

only a small portion of it was originally visible to the camera.

The camera calibration procedure also yields the relative position of
the sun with respect to the camera. For the sun layer, we can use this
to position a synthetic sun at the desired location. But how should it
look, and how bright should it be? We rely on the HDR sky dataset
of Stumpfel et al. [Stumpfel et al. 2004] to estimate sun appearance
and brightness. In all frames of the dataset where the sun is not
occluded by clouds, we can automatically detect the location of its
center by fitting a 2-D Gaussian in log-intensity space. We compute
the sun appearance by rotating the sky probe so that all the sun
locations are at the origin, and averaging them.

We also compute the sun brightness in each color channel across the
full database as a function of its height and fit a parametric model
of the form α exp(−βm(θs)), where m(θs) is relative optical path
length through Earth’s atmosphere [Kasten and Young 1989]:

m(θs) =
1

cos(θs) + 0.50572(96.07995− 180
π
θs)−1.6364

. (4)

Here, α is an arbitrary scale factor and β is a scattering coefficient.
Table 1 shows the recovered values for parameters (α, β) for the
RGB color channels, and Fig. 10 illustrates that the model provides
a good fit to the sun data.

The final sun appearance placed in the sun layer of the sky probe is
generated by taking the mean sun image and rescaling it by s(θs)
which will take care of both sun height and sun occlusion by clouds:

s(θs) = smaxsvis
α exp(−βm(θs))

α exp(−β)
, (5)

since m(0) = 1, and where svis is the partial sun visibility coeffi-
cient (defined in Sec. 4.2) and smax is the maximum sun brightness
value, reached when the sun is at zenith θs = 0 (smax = 1 × 105

in all our experiments).

Finally, we must define the cloud layer. Its role is mostly decorative
(since we have already taken care of sun occlusion by clouds), use-
ful mainly for relighting mirror-like objects which can reflect the
sky. We make an assumption that the cloud cover of the full sky is
statistically similar to the cloud cover of the visible sky. Therefore,
we can use texture synthesis to create plausible cloud cover for the
missing portion of the sky. We first apply the cloud segmentation
algorithm of [Lalonde et al. 2009] to extract the visible cloud layer.
Next we use Image Quilting [Efros and Freeman 2001] to synthe-
size more of the cloud layer, but we run it in the gradient domain to
preserve the color of the clear sky layer underneath. Quilting pro-
ceeds along the longitude first, and then the “north cap” of the map
is filled in by planar projection at the pole. The final sky probe is
the sum of the clear sky, sun, and the cloud layers. It captures the
approximate illuminant of the scene in high dynamic range and can
be used directly in rendering programs.

6.2 Estimating the environment map

To insert a synthetic 3D object into an image from a given webcam,
we need the full spherical environment map. We have already es-
timated the main illuminant in the scene – the sky probe, and the



(a) Object transfer (building)

(b) Object transfer (Eiffel tower)

(c) Sky transfer

Figure 8: Appearance transfer between webcams. The first column shows example frames from the webcams corresponding to the object
(top) and destination (bottom). The other three columns show (a) buildings transferred from Tokyo to Berkeley and “re-lit” by finding an
image in the Tokyo sequence with illumination that matches that of Berkeley; (b) the Eiffel Tower transferred in Berlin, notice how the shading
effects are consistent across the scene; (c) the sky transferred from Berkeley to Portugal, in which case the scene can be automatically “re-lit”
in an illumination-consistent way, observe how the reflections on the water are consistent with the sun position.

Figure 9: Rain or shine, the knight stands guard at the castle. Our technique can be used to render objects captured in a Light Stage [Debevec
et al. 2002].
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Figure 10: Sun intensity as a function of sun zenith angle. The
data points are obtained from the HDR sky database [Stumpfel
et al. 2004], and the solid lines indicate the prediction by our low-
dimensional parametric model (Eqn. 5).

rest will be filled-in from the input image directly. First, we use the
approach of [Khan et al. 2006] to map the pixels below the hori-
zon line in the image onto the bottom hemisphere. This way, we
create a map with the sky in the top hemisphere and the mirrored
spherical projection of the ground in the bottom hemisphere. How-
ever, we have not yet accounted for objects that protrude above the
horizon line and occlude part of the sky from view. For this we use
another simple approximation – find all non-sky objects above the
horizon (using the sky mask defined previously) and project them
onto a cylinder around the equator of the environment map.

6.3 Relighting virtual objects

We can now insert virtual objects into a real scene under various
illuminations. First, we show how a light-field object captured in a
Light Stage apparatus [Debevec et al. 2002] can easily be inserted
with the correct lighting. The object is synthesized by summing
images of the object taken under 256 different light directions, and
weighting them according to the light intensities specified in our
estimated environment maps. Fig. 9 shows the result of inserting
a light-field knight into a castle scene. To insert 3-D objects, we
follow the image-based lighting method of [Debevec 1998]. This
assumes knowledge of the geometry of the scene, which can be
acquired in several ways, using photometric stereo [Sunkavalli et al.
2007], or manual intervention [Debevec et al. 1996; Horry et al.
1997] for example. We approximate the scene with a ground plane
surrounding the object. Since geometry is known, complex shadow
effects can be generated by most off-the-shelf rendering packages.

We now demonstrate practical examples of our approach. Fig. 12
shows a scenario where architects wish to know how their newest
design will look in three different settings: on a beachfront property,
on a farm, or in the Swiss mountains. Our large database provides
a wide variety of such environments, which can be used to preview
how an object would appear at different times of day and under dif-
ferent weather conditions. Alternatively, one can also visualize how
an object will harmonize with existing surroundings by installing a
webcam at that site. For example, Fig. 13 illustrates what would
happen if the Madrid city planners chose to insert a statue of Venus
de Milo in a public square. The statue can be visualized in situ, lit
by real-world illumination conditions specific to that location.

We compare our approach to that of [Khan et al. 2006] in Fig. 11.
The dynamic range and sun orientation captured by our method
make the inserted object appear much more realistic.

(a) [Khan et al. 2006]

(b) Our result

Figure 11: Comparison between objects relit by environment maps
obtained with (a) the method of [Khan et al. 2006], and (b) ours.
The dynamic range and sun orientation captured by our method
make the inserted object appear much more realistic.

6.4 Relighting in a single image

Finally, we demonstrate an application of illuminant transfer for
relighting a scene from a single image (provided it was taken on
overcast day). We start by modeling the geometry of the scene.
For simplicity, we used a slightly modified “Tour into the Picture”
approach [Horry et al. 1997] in which there is no ceiling, but any
other single view modeling approach may be used. The geometry
allows us to compute a sky visibility map for each pixel. Since
there are no shadows present in the overcast image, the albedo of
every scene point can be estimated using the known illumination
and scene geometry, based on the Lambertian reflectance model.
We transfer a new sky probe as described above into the scene.
Using a simple ray tracing algorithm we are then able to relight
the scene with the new sky probe, as shown in Fig. 14.

7 Conclusion

We have shown how to exploit the abundance of Internet webcam
data that is available to us for relighting applications. Achieving vi-
sual realism by synthesizing appearance is a hard problem. Instead,
for the first time, we are able to transfer appearances (sky, objects)
from one scene into another and achieve a wide range of relight-
ing effects using webcam data. The large repository of webcams
serves as a new form of ”clip art” from which objects can be in-
serted into a user’s time-lapse sequence or even a single photograph
in an illumination-consistent way. We have shown several applica-
tions of relighting and appearance transfer between two webcams,
and webcams and single images. We believe this work presents a
first step in a promising new direction – using the webcams of the
world as a viable source of computer graphics content.
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(a) (b) (c)

Figure 12: An architect wants to show what his architectural model will look like in different settings: (a) on the beach, (b) on a farm,
and (c) in the mountains; and under different illumination conditions. It is easy to do so using our rich webcam dataset and our automatic
environment map extraction algorithm. The corresponding environment maps are shown as insets.

Figure 13: The Madrid city planners are considering adding a Venus de Milo statue to this square. Using our approach, it is easy to visualize
what it will look like in that environment. Notice how the cast shadows on the ground follow the shadows of the other objects in the scene,
and how the sun visibility is estimated properly. Shadows can be inserted behind objects by manual layering (as in the left-most image). The
corresponding environment maps are shown as insets.

Figure 14: Single image relighting. The overcast input image (left) is relit by a clear Berkeley sky and shown here in the morning, noon, and
evening.
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