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Abstract

Animated characters and robots are exhibiting increasing lev-
els of competence in complex tasks ranging from locomotion
to juggling. One continuing challenge, however, is to develop
behaviors that are robust with respect to variation in the envi-
ronment, the character, and the task. Examples of a behavior
(e.g. an individual performing a motion) are a rich source of
information, but reliable techniques are needed to adapt exam-
ples to new situations. This paper describes how task informa-
tion can be used to adapt existing examples to changes in the
environment or to changes in the character's physical charac-
teristics. Sets of rules for adapting or scaling examples to new
situations allow a behavior to be described in a compact way,
while also capturing some of the benefits of the information
that may be contained in the examples. Results are shown for
adapting example grasps to new object geometries and adapt-
ing dynamic behaviors to characters with differing physical
characteristics.

1 Introduction

Bernstein [3] describes dexterity as “the ability to find a
motor solution for any external situation, that is, to ad-
equately solve any emerging motor problem correctly,
quickly, rationally, and resourcefully.” Dexterity in this
sense is needed for autonomous characters or robots that
will be placed inunpredictable environments. For ex-
ample, we might want to create a robot that can grace-
fully manipulate any object in a hardware store, or we
might want to create virtual characters that can “act” out
a crowd scene in response to high level instructions from
a user.

Creating animated characters or robots that have a
high level of dexterity has proven to be extremely dif-
ficult. Achieving this goal will require developing be-
haviors that are robust with respect to variation in prop-
erties of the environment, the character, and the task.
Variation in the environment includes obstacles that a
character must avoid, or a variety of objects to be ma-
nipulated. Variation in the properties of the character
can range from simple modifications (e.g. for carrying a
load) to a complete character redesign. For example, an
animator may want to design a new character and use an
existing set of behaviors to control that new character.
Finally, variation in the task can include any variations
that may be requested by a user. For example, a user
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may want their character to run faster or to dribble a
basketball closer to the ground.

One appealing way to create behaviors is to make use
of examples. Examples are rich sources of informa-
tion, and may include many subtleties that we do not
know how to model in a compact manner. Example data
collected by measuring an actor's performance, for in-
stance, can capture an actor's strategy for performing a
particular task. It can also capture that actor's style.

If examples are to be used as part of a behavior defini-
tion, we must have a means of selecting appropriate ex-
amples and tailoring them to fit each new situation that
arises. One approach to this problem is to obtain a set of
examples that completely spans the behavior space. In
this case, relatively simple functions may be sufficient
for interpolating between examples [26] [1] [29].

We may not always be able to generate or store a suffi-
ciently large set of examples to obtain good results from
simple interpolation functions, however. This paper de-
scribes how information about a behavior or task can be
used to adapt existing examples to changes in the envi-
ronment or to changes in a character's physical charac-
teristics. Sets of rules for adapting or scaling examples
to new situations allow a behavior to be described in a
compact way, while also capturing some of the bene-
fits of the rich information that may be contained in the
examples. Section 2 outlines some previous research
in creating behaviors that can adapt to changing situa-
tions, Section 3 describes a technique that uses a static
force/torque analysis to adapt grasps to new object ge-
ometries while ensuring that the new grasp meets the
constraints of the task, Section 4 describes a technique
that uses a dynamic analysis to scale behaviors such as
running to work with characters having different phys-
ical characteristics, and Section 5 presents a discussion
of the results.

2 Background

A number of different strategies have been used in the
robotics and graphics communities to achieve robust
behavior in response to changes in the environment,
physical characteristics, or task. At a high level, these
strategies can be divided into procedural, planning, and
example-based approaches.

In the area of procedural approaches, Brooks [5] de-



scribes an architecture for constructing complex, reac-
tive behaviors. A similar approach has been used by
a number of researchers for creating autonomous ani-
mated creatures: Reynolds [24] developed flocking be-
haviors for groups of animated creatures; Blumberg and
Galyean [4] describe a virtual creature that can either be-
have autonomously or be directed by a user; Tu and Ter-
zopoulos [27] describe a set of integrated behaviors for
artificial fish; and Perlin and Goldberg [20] describe a
system for creating actors with distinct personalities that
respond to users and toeach other in a virtual environ-
ment. Dynamically simulated behaviors for human mo-
tion [12] [32] [6] may function well over a wide range
of user-specified parameters such as running velocity or
jumping height, and behaviors such as balancing may
be designed to be robust to unexpected disturbances. In
general, procedural approaches can result in impressive
behaviors and may allow a character to react quickly to
changing situations. The disadvantage of this type of
approach is that the burden rests with the designer of a
behavior to create a plausible response to every situation
that is likely to be encountered.

An alternative approach to generating robust behav-
iors involves planning each new action based on the
current situation, a set of constraints, and an evaluation
function. This approach has been used widely for plan-
ning motions for robotics [15], and it has been applied
to planning manipulation behaviors for animation [14].
Also in the animation domain, trajectory optimization
approaches [30] [17] [33] allow an animator to spec-
ify constraints on a motion (including key poses such
as an initial and final pose) and an evaluation function
such as minimum energy, and then compute the motion
that minimizes the objective function while meeting the
specified constraints. This approach allows an “opti-
mal” response to be computed for any situation, but a
set of constraints and an optimization function must be
defined to completely describe a behavior. This can be
a difficult task for complex, coordinated behaviors such
as walking or running.

A third approach to generating robust behaviors in-
volves interpolating between or extrapolating from ex-
isting examples of a behavior. A large amount of re-
search has been done on memory-based or nonparamet-
ric learning techniques [26] that compute a mapping
from input data to output data based on a set of stored
examples. Atkeson, Moore, and Schaal [1] review how
memory-based learning has been used for motion con-
trol in robotics. In animation, Wiley and Hahn [29]
have used interpolation between motion examples to
generate reaching motions for an animated character.
Unuma, Anjyo, and Takeuchi [28] and Bruderlin and
Williams [7] use interpolation in the frequency domain
to allow an animator to blend between different sets of

experimental motion data to produce walking, running,
and gestural motion with different styles.

When animated characters or robots have a large
number of degrees of freedom, it can be difficult to ob-
tain a sufficient number of examples to use simple in-
terpolation techniques. If a given set of examples does
not adequately span the space, simple interpolation may
result in motion that violates task constraints. For exam-
ple, interpolated motion for an animated character may
not result in a convincing motion to grasp or manipulate
an external object, and interpolated control parameters
for a dynamically simulated character may not result in
a running character that can maintain its balance. Be-
cause of this difficulty, it is important to understand how
much information can be extracted from a single exam-
ple. In previous work, Atkeson and Schaal [2] describe
learning a pendulum swing-up task for a Sarcos robot
arm based on a human demonstration of the same task;
they also review related work on imitation learning for
automatic robot programming. In animation research,
Bruderlin and Williams [7], Witkin and Popovic [31],
and Gleicher [10] provide interfaces to allow an anima-
tor to alter an example motion by modifying key poses
within the motion sequence and specifying other con-
straints on the motion.

This paper adds to previous work by showing how
task information can be used directly to adapt exam-
ples to new situations. Explicit use of task information
should dramatically reduce the number of examples re-
quired to represent a behavior, making it feasible to use
an example based approach even when the cost of ob-
taining examples is high.

3 Adapting Grasps to New Object Ge-
ometries

One source of variation with which an autonomous char-
acter must contend is variation is the environment. One
difficult problem is to adapt to variation in the shapes
and sizes of objects that must be grasped and manip-
ulated. Consider creating a robot that can repetitively
pick up objects and toss them into a bin. This robot is
performing a very similar task for each object, but the
object geometry may change dramatically from one sit-
uation to the next. It would be nice to have a compact
description of the grasp or set of grasps that can be used
to perform this task.

Pollard [21] [22] presents one method for adapting
grasps to new object geometries. This technique as-
sumes that a quality measure can be computed for any
grasp. This quality measure is an approximation of the
“effort” required to achieve a specified task. It is com-
puted by comparing the space of wrenches (forces and
torques) that must be applied to an object for the task



with the space of wrenches that can be achieved by a
grasp. The space of wrenches that can be achieved by
a grasp is obtained by placing a limit on the sum of ap-
plied contact forces [13] [9] [16].

To achieve a grasp with the same quality as the exam-
ple, a character could try to find points on the surface of
a new object that allow it to make contact in a way that
exactly matches the example grasp. In general this will
not be possible, either because there are no suitable cor-
responding points on the object surface, or because the
kinematics of the hand do not allow the hand to reach
those points.

If a grasp that exactly matches an example can be
found, then the new grasp will be just as good as the
example for performingany task with the new object.
However, this is a much more stringent constraint than
is really required. In general, any grasp will be capable
of applying to the object a large set of contact wrenches
that are not required to accomplish a particular task.
This additional grasp capability can be exchanged for
more flexibility in placing contacts on the surface of a
new object. Details can be found in Pollard [21] [22],
and Figure 1 shows an example:

� Figure 1A shows an example grasp, a modeled
grasp of a cylinder.

� Seven contacts are extracted from this grasp, as
shown in two views in Figure 1B. The task is de-
fined to resist small disturbance wrenches in any di-
rection, and the grasp is generalized to fit this task.

� Good regions corresponding toeach of the original
seven contacts are then “painted” onto the surface
of the new object (Figure 1C). This procedure guar-
antees that as long as a grasp contains one contact
in each of these seven regions, the resulting grasp
is guaranteed to be above some quality threshold.

� A search process (described in [22]) found that the
coordinate frame of the airplane had to be tilted
with respect to that of the example cylinder in order
to allow the fingers of the hand to wrap around the
wings. The same search process selected the hand
configuration shown in Figure 1D.

In summary, this technique allows a single example
grasp to be generalized to apply to a wider range of ob-
ject geometries with no loss in the resulting grasp qual-
ity. This approach could allow a compact representation
of a space of grasps based on task and general object
shape as seen in grasp taxonomies [19] [8], while pro-
viding some guidance as to how the examples will need
to be adjusted to fit new situations. This general idea
of grasp generalization could also be applied to other
tasks that involve interaction between a character and
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Figure 1: (A) An example grasp of a cylinder; (B) the grasp
has seven contacts, shown in two views; (C) good regions cor-
responding to these contact can be “painted” onto the surface
of a new object; (D) a configuration that makes contact in each
of the seven regions is guaranteed to be a good grasp for the
given task.



its environment. Examples include creating prototype
configurations for balancing while rock climbing or for
supporting a partner during dance.

4 Adapting Dynamic Behaviors to
New Characters

The previous section described a grasp planning algo-
rithm that addressed variation in environment geometry.
Another source of variation is in the physical character-
istics of a robot or animated character. A well-designed
behavior should certainlyaccommodate minor changes,
such as the attachment of an external load to a robot. It
should alsoaccommodate larger scale changes. For ex-
ample, an animator may want to design an entirely new
character and have that new character perform in a plau-
sible manner.

If an animator designs a new character from scratch,
the likelihood that the character will exactly match an
example in a behavior library is small. Characters will
tend to have different proportions, and their body parts
will have different masses. Because of the large number
of parameters required to describe a character's physical
characteristics, the size of the input space for this prob-
lem is extremely large. In addition, any behavior library
is likely to contain only a small number of examples,
because the cost of generating each new example is rel-
atively high. It may require measuring the motion of a
number of differently sized actors, or it may require the
talents of an experienced behavior designer or animator
to create and fine-tune the motion for any new character.

To begin to address these problems, Hodgins and Pol-
lard [11] describe a technique that adapts an example be-
havior to the physical characteristics of a new character.
This technique works by scaling control system param-
eters based on a dynamic analysis of the two characters.
The goal is to adjust the control system parameters to
achieve motion for the new character that has similar
dynamic properties to that of the original.

The animated behaviors used as examples were the
running and cycling behaviors described in [12]. The
animated motions were computed using dynamic sim-
ulation. Each simulation consists of a dynamic model
containing the equations of motion for a rigid-body hu-
man or humanlike character, constraint equations for the
interaction with the ground, parameterized control algo-
rithms for running or bicycling, a graphical represen-
tation for viewing the motion, and a user interface for
changing the parameters of the simulation. During each
simulation time step, the control algorithm computes de-
sired positions and velocities foreach joint based on
the state of the system and the requirements of the task
as specified by the user. Proportional-derivative servos
compute joint torques based on the desired and actual

Figure 2: This figure shows results of scaling running and cy-
cling behaviors to new characters. In each case the original
behavior was created for the male character on the left and
scaled and tuned to adapt it to the other characters shown.

value of each joint. The equations of motion of the
system are integrated forward in time, taking into ac-
count the internal joint torques and the external forces
and torques from interactions with the ground plane or
other objects. A description of the graphical and dy-
namic models and an overview of the control algorithms
are given in [12].

For running and cycling, we had only a single exam-
ple of each behavior, and we wanted to adapt the be-
havior to work for a variety of new characters, as shown
in Figure 2. If the characters are scale models of each
other, then a behavior for the new character can be ob-
tained by scaling control system parameters of the origi-
nal as described in Raibert and Hodgins [23]. Scale fac-
tors for a number of common control system parameters
are shown in thegeometric scalingcolumn of Figure 3.
This approach results in dynamically similar motion for
the two characters, and it is consistent with models that
have been explored for scaling properties in families of
animals such as primates or ungulates, which may span
up to three orders of magnitude in size [18].

In general, however, individuals will not be scale
models of one another, and a geometric scaling approx-
imation will not be adequate for generating motion for
a new character. There are two problems with this ap-
proximation:

� No single scale factor is adequate. For example, a
scale factor computed based on relative leg lengths
may not be appropriate for scaling the gains that
control arm motion.

� Dynamically similar behavior cannot in general be
achieved between two arbitrary models.
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Figure 3: Scaling rules that capture differences in size, mass,
and moment of inertia. The geometric scaling factor is de-
rived assuming uniform scaling by factorL in all dimensions
(geometric similarity), and assuming that the acceleration of
gravity and the density of the material are invariant to scale.
The mass scaling factor assumes also that mass scales by fac-
torM and moment of inertia scales by factorI. A “�” in the
mass scaling column indicates that the mass scaling rule is the
same as the geometric scaling rule.
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Figure 4: The leg of the child (right) is not a scale model of
the woman's leg. A scale factor can be computed for gains at
the hip joint during flight by assuming that the dimensionless
acceleration of the leg produced by torque at the hip is constant
for the two systems.

The first point is addressed by computing different
scale factors for different parts of the system. The scale
factors for gains at a particular joint, for example, are
computed based on the function of that joint. Gains at
the hip are primarily responsible for swinging the leg
forward during flight, and so the gains for the hip during
flight will be scaled based on the physical characteristics
of the leg (Figure 4).

The second point is also illustrated with Figure 4.
Measured properties of the leg are mass (M ), length (L),
and inertia (I). Dynamic similarity requires that the di-
mensionless groupI=ML2 be constant for the two sys-
tems, but this is a parameter over which we have no con-
trol, and so achieving dynamically similar motion may
not be possible. An approximation is to assume constant
dimensionless acceleration for the two systems. This as-
sumption, along with the requirement that we need co-
ordinated motion (e.g. the arms cannot be swung with a
frequency different from the legs) results in the scaling
factors shown in themass scalingcolumn of Figure 3.
Further details can be found in [11].

This technique has proven to be a good first step to
scaling behaviors to new characters, but it is only an
approximate scaling technique. The mass scaling ap-
proach is an approximation because it sets up the goal of
achieving similar looking motion (in terms of joint ac-
celerations) at different phases of the behavior. Equiva-
lent motion in this sense will not result in exactly the
same behavior unless the characters do happen to be
scale models of each other. As a simple example, a per-
son wearing a heavy backpack will have a tendency to
lean forward while walking or running in order to main-
tain balance. This type of adjustment is not accounted
for if the only goal is to achieve constant dimensionless
acceleration.

In the end, this simple scaling approach worked well
because a variety of task information is built into the
running and cycling controllers to help counteract er-
rors. In the case of the dynamic behaviors shown here,
task information includes a state machine, feedback
controllers, and some inverse kinematics (e.g. for foot
placement during landing). A search over a small num-
ber of high-level control parameters was also an impor-
tant step in the scaling process, and was used to tune the
motion for the new characters shown in Figure 2.

5 Discussion

This paper suggests that examples can be adapted di-
rectly to new situations using an analysis based on task
requirements. Two applications were shown to support
this argument. The first used a static analysis based on
forces and torques to adapt a grasp to a new object ge-
ometry. The second application used a dynamic analysis



based on accelerations to adapt running and cycling be-
haviors to new animated characters.

Perhaps force and acceleration analyses can be com-
bined to develop better scaling laws for dynamic tasks
involving interaction with the environment. There is
some evidence that people make use of such scaling
laws to achieve different goals. For example, Schaal,
Sternad and Atkeson [25] suggest that a dynamic scal-
ing relationship can be observed in the paddle motion of
subjects asked to paddle-juggle a ball at three different
heights.

A similar approach could be used to animate tasks
such as dribbling, catching, and throwing a basketball.
These behaviors could be represented compactly with
a small number of examples, and the examples could
be dynamically scaled to allow the character to dribble
at different heights, catch balls coming in at different
velocities, and throw the ball along different trajecto-
ries. Here, the characteristics of the interaction between
the hands and the ball could be adapted to appropriately
scale the ball's behavior.

To speculate further, we can look at a motion such as
running in a similar way. In this case, the character itself
is the manipulated object. In other words, the interesting
interaction occurs between the character's foot and the
ground. Perhaps a similar approach can be used to more
accurately scale the landing and liftoff parts of the run-
ning motion by controlling the impedance of the entire
body as seen from the foot/ground contact.

What is the advantage of having good algorithms to
adapt behaviors to variations in environment geome-
try, physical characteristics, or tasks? Such algorithms
should at least reduce the number of examples required
to represent a behavior. In grasping, examples could
be used to cover the qualitatively different families of
grasps that might be identified in a grasp taxonomy [19]
[8], and a force/torque analysis could be used to en-
sure that grasps can be adapted to changes in geometry
for objects within the same family. For dynamic mo-
tions such as manipulating a basketball, perhaps the ex-
tra ”storage space” for examples could be used to cover
a range of styles–something that currently seems diffi-
cult to capture quantitatively.
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