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Abstract

Using pre-recorded human motion and trajectory tracking, we
can control the motion of a humanoid robot for free-space,
upper body gestures. However, the number of degrees of free-
dom, range of joint motion, and achievable joint velocities of
today’s humanoid robots are far more limited than those of the
average human subject. In this paper, we explore a set of tech-
niques for limiting human motion of upper body gestures to
that achievable by a Sarcos humanoid robot located at ATR.
We assess the quality of the results by comparing the motion
of the human actor to that of the robot, both visually and quan-
titatively.

1 Introduction

Humanoid robots are already common in theme parks such as
Disneyworld and Universal Studios where the investment for a
new attraction is substantial. To make humanoid entertainment
robots a viable alternative for smaller scale attractions such as
location-based entertainment venues (Disney Quest and Dave
and Buster’s, for example) and in museums or theme restau-
rants, we need easier ways of programming these robots. En-
tertainment robots must have a natural and entertaining style
of motion and often require substantial motion databases to
ensure a large variety of behaviors.

For a humanoid robot, such as the Sarcos robot at ATR
(DB) [1] shown in figure 1, one obvious approach is to drive
the motion of the robot with motion capture data recorded
from a professional actor. Such data would contain the tim-
ing and many of the other subtle elements of the actor’s per-
formance. However the current mechanical limitations of hu-
manoid robots prevent the recorded motion from being di-
rectly applied, unless the human actors use only a fraction of
their natural joint range and move with slower velocities than
those commonly seen in human motion.

We addressed these limitations with straightforward tech-
niques: the location of the markers in the motion capture data�
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Figure 1: The Sarcos humanoid robot at ATR (DB) tracking motion
capture data of a human actor.

is first mapped to the degrees of freedom of the robot by in-
verse kinematics on individual limbs. Then joint angle and
velocity limits are imposed on the motion via a local scaling
technique. The robot tracks the trajectories of the transformed
data using a position and velocity tracking system with one or
two iterations of feedforward trajectory learning.

We tested these techniques with fourteen motion sequences
from seven professional actors. Each subject performed to the
same audio track of the children’s song, “I’m a little teapot.”
We chose this selection because it was familiar enough that
most actors would perform the motion in a similar but not
identical way. It was our hope that an individual’s style would
be preserved through the transformations necessary to allow
the robot to perform the motion. These transformations result
in significant changes to the motion even for the simple ac-
tions that accompany this children’s song making it important
to choose scaling techniques that preserve the salient aspects
of the motion and to assess the results with both qualitative
and quantitative measurements of the motion.

2 Related Work

Two bodies of work are relevant to this research: robotics re-
searchers have explored algorithms for adapting human mo-
tion to humanoid and legged robots and researchers in com-
puter animation have explored algorithms for adapting human
motion to animated characters. The problems are similar in
that both require human motion to be adapted to a system with
different kinematics than that of the actor who was captured.
But the difficulties encountered in the two fields are not the
same. The range of body types found in animated charac-
ters is much greater than that seen in humanoid robots making
the adaptation problem more challenging. On the other hand,
the motion of animated characters is less restricted than that
of current humanoid robots, reducing or even eliminating the
problem of handling joint and velocity limits that we faced in



adapting human motion to the Sarcos humanoid robot at ATR.

Riley et al. adapted motion data recorded from an Optotrak
motion capture system to the same robot used in this work [2].
If the motion was outside of the robot’s joint angle limits, their
system translated and scaled the joint trajectory globally. This
approach kept the magnitude of the motions as large as pos-
sible but at the cost of perhaps using a part of the joint space
that the human had not used. In some situations, the global
scaling might also reduce the magnitude of small but stylisti-
cally important oscillations. Because their sample motion, an
Okinawan folk dance, had a musical beat, this scaling law was
a good solution and the robot motion resembles that of the hu-
man dancer albeit with a slower overall velocity because of the
reduced range of motion.

Motion data has been proposed by Dasgupta and Nakamura as
a way to modify the walking pattern of legged robots to appear
more human-like [3]. Because balance is of primary concern
in walking, they used the motion data to specify a trajectory
for the zero moment point in the control system rather than
using it explicitly as desired joint angles.

Dynamically simulated humans have also been controlled with
human motion data. Zordan used data recorded from a mag-
netic motion capture setup to drive the upper body motion of
simulated human figures that gesture, drum and play patty
cake [4]. Task constraints for contact are enforced by using
inverse kinematics to modify the motion trajectories for the
kinematics of a particular animated character.

Playter built a simulation system for a two-dimensional run-
ning character in which the controller is constructed with the
aid of motion capture data [5]. Simple servo-mechanisms con-
trol each joint to approximately follow the desired motion tra-
jectory. The input motion trajectories are scaled in time in an
on-line fashion to match the flight and stance time for the char-
acter being simulated and to modify the desired joint trajecto-
ries in order to maintain balance and reduce errors in forward
speed and flight time.

Because of the difficulty of animating complex characters,
the animation community has devoted a significant effort to
adapting human motion to animated characters. In his mo-
tion editing and retargeting work, Gleicher chose to perform
a trajectory optimization that did not maintain physical real-
ism in order to allow interactive response for the user [6, 7].
In performance animation or computer puppetry, in contrast,
the motion is applied directly to the character without the op-
portunity for user intervention. Shin et al. implemented an
importance-based approach in which the relative importance
of joint angles for freespace movements and end effector posi-
tion and orientation were evaluated based on the proximity of
objects and on a priori notations in the performer’s script [8].
Their system was used to animate a character in real time for
broadcast.

3 Capturing Human Motion

We used a commercially available system from Vicon to cap-
ture the motion data of the actors [9]. The system has eight
cameras, each capable of recording at 120Hz with images of
1000x1000 pixel resolution. We used a marker set with 35
14mm markers that allowed us to measure measure whole
body motion. In particular, the system captured wrist angles
and head orientation but not finger or facial motion.

Our actors were professionally trained in expressive move-
ment and had extensive dance and drama education. We used
seven actors who are identified in this paper as Actors #1-#7.
They were instructed to perform to a pre-recorded audio track
which enforced a similar timing for all actors.

The audio track was the children’s song, “I’m a little teapot.”
We selected this piece because it was familiar to all of our ac-
tors and contained some sequences that were relatively well
prescribed by childhood training (“Here is my handle, here is
my spout.”) and some sequences that allowed more freedom
of expression (“When I get a steam up hear me shout.”). We
recorded each subject performing the motion twice. For the
first trial, subjects were told to stand without moving their feet
and to tell the story through gestures. Before the second trial,
the subjects were shown a movie of the robot in motion, in-
formally coached on the joint angle limits of the robot, and
instructed to try to constrain their motion to be closer to the
limits of the robot. We did not see a noticeable difference in
their gestures before and after instruction.

4 Techniques for Limiting Human Motion

The captured motion must be processed in several ways be-
fore it can be applied to the humanoid robot. First the motion
is constrained to match the degrees of freedom of the robot.
Then joint angle and velocity limits are applied. A trajectory
tracking control system is then used to follow the motion. Sub-
sequent iterations of trajectory learning improve the trajectory
tracking performance. Each of these stages is described in de-
tail in the sections below.

4.1 Constraining the motion to the joints of the robot
The processed motion capture data used for our experiments
was generated from raw data collected during the motion cap-
ture session using Vicon’s Bodybuilder software. The raw
marker data is mapped onto a skeleton having 39 degrees of
freedom in the upper body (figure 2). Link lengths for the
skeleton are specific to each human actor, and are established
by the software based on a calibration pose taken during the
motion capture shoot for that actor.

The motion capture data is mapped to the less flexible skeleton
of the robot (figure 2) by setting joint angles to match the ori-
entation of each segment of the robot with the corresponding
link or set of links of the human skeleton. Head, upper arm,



Figure 2: Degrees of freedom for the upper body of the motion
capture skeleton (left) and the robot (right). For the hu-
man skeleton, all joints are three degree of freedom ball
joints except the ROOT (6DOF), the elbows L EB and
R EB (1DOF each), and the clavicles L CLV and R CLV
(2DOF each).

lower arm, and hand orientations could be matched directly,
because both skeletons contain those links. The torso orien-
tation of the robot was set so that the triangle containing the
waist and shoulder positions had the same orientation for the
two skeletons. Joint limits were disregarded during this part
of the process.

4.1.1 Gimbal Lock: Joint angles show large variations
when the robot is near gimbal lock. Regions near gimbal
lock were encountered frequently in these motions because
the robot shoulder has a singularity when the arms are at 90
degrees abduction, or swung out to the side of the body to
a horizontal position. In this position, the rotational axes of
the motors for flexion/extension (R SFE or L SFE) and for
humeral rotation (R HR or L HR) align with one another and
one degree-of-freedom is lost.

To address this problem, we locate regions in the data that are
near gimbal lock and compute a restricted degree-of-freedom
solution within those regions. The process for a single joint
first creates two solution tracks. The desired rotational trans-
form for the joint is extracted from the motion capture data at
each frame of the motion sequence. Two solutions are pos-
sible for converting any rotational transform to desired joint
angles. These two solutions are swapped and adjusted by �
	
as needed to create two tracks (of three joint angles each) that
vary smoothly over time.

Second, desired joint angles are constructed from the two so-
lution tracks. Time periods when the robot is near gimbal lock
are marked. For time periods when the joint is not near gimbal
lock, the solution closest to the middle of the joint angle range
is selected. For time periods when the joint is near gimbal
lock:

� An initial guess is generated by linearly interpolating be-
tween joint angle values at the start and end of the time
period.� Given this initial guess, a joint angle solution is computed
assuming the robot is in a singular configuration. When
the robot is in a singular configuration, only the sum or
the difference of the two aligned joint angles is known.
For ZYX fixed-axis angles, for example, if � ,  , and � are
the Z, Y, and X axis rotations respectively, the solution is:� ��������� ��������� �! ��" # ��" �%$'&)(+* � � ,�.-0/ (1)� �213����� ����� ��� �! 54 " � 4 " #6$ &)(+* � � ,�.70/ (2)

where
 58 " 9 indicates row : , column ; of rotation matrix 

.

The two angles � and � are adjusted equally from their
linearly interpolated initial guess to obtain the desired
sum in the case where (+* � � ,�<-=/ , or difference in the
case where (+* � � ,�.7>/ .

4.2 Joint Angle Limits
The range of motion of the joints of the robot is significantly
less than that commonly seen in human motion. Therefore,
scaling the motion appropriately to bring it within the joint an-
gle limits of the robot is particularly important for preserving
the style of the motion. We used a non-uniform, local scal-
ing to modify each trajectory of the motion to lie within the
joint limits of the robot while retaining most of the individual
oscillations seen in the original motion.

Looking at each joint angle independently, each segment of
motion that is greater than the joint angle limit ?A@ is identified
(similarly for segments of motion that are less than the joint
angle limit ?
B ). The segment has endpoints in time of : # and : �
and a maximum value of ?DCE@ . The segment is then expanded
in time by a user-controlled margin that is a fraction of the
length of the segment. This expansion provides new endpoints:GF# �0: # 1�:GHJILK and :GF � �0: � �2:GH.IMK where :GHJILKN�O/QP � � : � 1R: # �
for the trials shown in this paper. All of the motion within this
expanded segment is then scaled by a linear blend between
two scale factors, S # and S � whereS # �UTTTT

V�W � VYX[Z\V�] W � V X^Z\ TTTT (3)S � �_TTTT
V W � V X^Z `V ] W � V X[Z ` TTTT (4)

With a a weighting function for a linear blend from 0 to 1 over
the expanded segment, we haveS 8 � �Yb 1)ac�+S # �'acS � (5)d ? 8 � �Yb 1)ac�G? 8 Z\ ��aN? 8 Z ` (6)? F8 �eS 8 � ? 8 1 d ? 8 �f� d ? 8 (7)



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

13 13.5 14 14.5 15 15.5 16 16.5 17 17.5

A
ng

le
 (

ra
di

an
s)

Time

Position and Velocity Scaling:  Actor #7, Trial #8, Joint B_TAA

Original
Joint Limits

Velocity Limits

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

10 10.5 11 11.5 12 12.5 13 13.5 14

A
ng

le
 (

ra
di

an
s)

Time

Position and Velocity Scaling:  Actor #7, Trial #12, Joint L_EB

Original
Joint Limits

Velocity Limits

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

11 11.5 12 12.5 13 13.5 14 14.5 15 15.5

A
ng

le
 (

ra
di

an
s)

Time

Position and Velocity Scaling:  Actor #7, Trial #8, Joint R_SFE

Original
Joint Limits

Velocity Limits

Figure 3: Results of position and velocity scaling. All plots show
the original mapping to the robot’s degrees of freedom,
the curve after local scaling to joint angle limits, and
the curve after both joint angle and velocity scaling.
(Top) Scaling of the waist abduction/adduction (B TAA)
axis as the performer bends to the left. The original bob-
bing motion is still evident in the robot’s motion, although
it has been moved to a different part of the workspace.
(Middle) Scaling of the left elbow joint (L EB). Both lo-
cal joint scaling and velocity scaling effects are seen as
the performer throws her arms out nearly straight. (Bot-
tom) Scaling of the right shoulder flexion / extension joint
(R SFE). Here the performer flings her arms up into the
air, holds them there for a short time and pulls them down-
ward abruptly. The robot cannot raise its elbows much
above the shoulder, and velocity limits for the shoulder
are somewhat severe, so the scaling techniques convert
this motion to a more subdued extension of the arms out
to the sides.

Figure 3 shows joint angles that were scaled using this algo-
rithm. The local oscillations that occur outside of the range
of motion of the robot are preserved albeit at a reduced scale
in the top graph. The bottom graph shows a motion segment
that is difficult to scale because the amplitude was drastically
reduced by the joint angle limits.

For some joint angle trajectories, local scaling may not give
the best answer. For example, percussive movements such as
striking a drum might best be scaled by truncation to preserve
the velocity of the movement up until the joint angle limit is
reached. If maintaining the speed of a movement as closely as
possible is more important than the absolute joint angle, then a
global scaling algorithm would allow the use of the full range
of motion at the cost of moving the joint into a part of the range
that the original motion did not use.

4.3 Velocity Limits
The joint velocities are computed numerically from the joint
position data. Velocity limits for each joint were obtained em-
pirically. Each joint angle curve is scaled by averaging the
results of an ideal, simulated, velocity-limited tracking con-
troller run both forward and backward in time. Given the orig-
inal curve g , the controller is run forward to produce gDh6i j[k,l
for all time steps m as follows:ng
jpo gqj�r3g
jts�l (8)ug h6i jvk,l o wyx zA{
| ng h6i j r ng j~}f� zA{
|�g h6i j r)g j�} (9)ngqh6i jvk,l�o ������| ng
�������[�,| ngD��� ng
h6i j � ug
hQi jvk,l }�} (10)gqh6i jvk,l�o gqh6i j � ng
hQi jvk,l (11)

where
ng � and

ng � are the lower and upper velocity limits for
this joint respectively, and all values for out of bounds indicesm are set to zero.

Run backward, the controller computes g�� as follows:ng
j�o gqj�r3g
jvk,l (12)ug �!i jts�l o wyx z�{q| ng �!i j r ng j�}f� zA{q|�g ��i j r3g j�} (13)ng �!i jts�l o ������| ng � �����v�f| ng � � ng �!i jQ� ug �!i jts�l�}�} (14)gq�!i jts�l�o gq�!i j � ng
��i jts�l (15)

The final, velocity-limited curve g�� is the average of the for-
ward and backward passes:g � i jfo��Q� �Q|�g
h6i j � g
�!i j } (16)

The controller is set to be critically damped, and the time con-
stant for response to errors is determined by a single stiffness
parameter z { . Averaging the forward and backward simula-
tions produces a curve that has been modified symmetrically
in time (figure 3).

4.4 Trajectory Tracking and Learning
The joint angle and velocity limited trajectory is used as in-
put to a trajectory tracking control system that computes joint
torques for the robot using a PD servo:� o�zq�Q|�g���r3g },� z� E| ng��Jr ng } (17)



Figure 5: Two trials for each of seven actors. The images show the actor in the pose that accompanied the end of “Here’s my handle, here’s my
spout” as well as the corresponding pose for the robot.
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Figure 4: Several seconds of an example trajectory before and after
trajectory learning.

where z
� and z�  are position and velocity gains respectively,g�� is the desired trajectory calculated from the human motion
data,

ng�� is the velocity of that trajectory (computed numeri-
cally) and g and

ng are the joint angle and joint velocity of the
robot. The gains were hand-tuned to be stiff without producing
vibration for the motion trajectories in our test set.

The joint angles produced by the trajectory tracking servo nec-
essarily lag behind the desired joint angles. We reduced this
lag and provided gravity compensation with a feedforward
term. The feedforward term was computed by running a par-
ticular trajectory and recording the torque from that trial for
use as the feedforward term on the next trial. This approach
to trajectory learning was originally proposed by Kawato et
al. [10, 11]. Figure 4 shows an example trajectory before and
after trajectory learning. The results presented in this paper
are after one or two iterations of feedforward learning.

5 Assessment of the Motion Quality

Figure 6 shows the motion of one of the trials for actor #7
sampled every 0.33sec. In many of the frames the robot mo-
tion is a good match for the actors. However, the end of
the fourth row of paired images shows the effect of the lim-
ited shoulder motion both in how high the robot can raise
its arms (L SAA, R SAA) and in humeral rotation (L HR,
R HR). The motion from this trial and others can be viewed
at http://www.cs.cmu.edu/ ¡ jkh/style/.
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Figure 7: Difference between the recorded human motion mapped

to the robot’s degrees of freedom but not joint angle or ve-
locity limited and the actual motion executed by the robot.
Each number is the average of the sum squared error over
the eight joint angles (in tenths of rad

�
). The table shows

the human motion for each of the fourteen trials compared
to the robot motion for each trial. If the robot trajectory
is a good match for the human motion, we would expect
smaller numbers on the diagonal (bold). If the other trial
from that actor (also bold) has a low number then the two
trials were similar.

Figure 5 shows two trials for each of seven actors. The images
show the actor and the robot in the pose that accompanied
“Here is my handle, here is my spout.” The differences be-
tween each of the two performances for an actor are in general
much smaller than the differences between the actors. Simi-
larly, the robot motion for one actor tends to be more similar
than the motion generated by the trajectory recorded from dif-
ferent actors.

Figure 7 shows the difference between the recorded human
motion mapped to the robot’s degrees of freedom but not joint
angle or velocity limited and the actual motion executed by
the robot. Small numbers along the diagonal indicate that the
robot motion was a good match for the corresponding human
motion.

6 Discussion

This paper describes our approach to scaling human motion
capture data to the capabilities of a humanoid robot. Joint and
velocity limits were incorporated into the motion using local
scaling algorithms, and the motion was processed to avoid arti-
facts due to the singularity within the workspace of the robot’s
shoulder.

Probably the greatest limitation of this approach is that we are
scaling the degrees of freedom of each joint independently. In
motion segments where one degree of freedom of a joint ex-
ceeds its limits but another does not, this produces motion that

does not match that of the actor. For example, when the actor
bends both sideways and forward, the resulting robot motion
is primarily forward because of the joint limits at the waist
joint. The motion might more closely match that of the actor
if the motion of both degrees of freedom were scaled to keep
their relative movement the same. The principle of scaling all
degrees of freedom of a joint together could be extended to
scaling the motion of a limb as one element. By using inverse
kinematics, we could ensure that the location of the robot’s
hand matched that of the actor’s as closely as possible. While
this criterion is not important for all tasks it would allow con-
tact between body parts and with objects in the environment.

Earlier work with this robot has included a dynamics model
for use in feedforward control [12]. We considered that ap-
proach but chose to use trajectory learning instead because it
was easy to apply and handled task dependent actuator dynam-
ics and friction. Inverse dynamics requires data for the desired
acceleration which has to be computed by differentiating the
motion capture position data and filtering heavily.

Although the resulting robot motion is often recognizable as
having many of the salient characteristics of the actor’s mo-
tion, there are also many details that are missing. We asked
the actors not to move their feet, but some of the captured se-
quences contain significant hip, knee, and ankle motion. This
motion was discarded and only the motion from the pelvis,
torso, arms and head was processed. We restricted the motion
in this way because the robot was not designed to support its
own weight and tracking the lower body motion while holding
the pelvis stationary and the feet off the ground would result in
motion that did not at all resemble that of the actor standing on
the ground. If whole body motion was required, for example
for adapting motion for a humanoid robot capable of walking
then motion stability would have to be addressed in addition
to the joint and velocity limits as discussed here.

Our motion capture was limited as well. For example, direc-
tion of gaze is often important for communication, particu-
larly in conversational turn taking. Our motion capture sys-
tem records the position and orientation of the head but cannot
record the gaze direction of the eyes relative to the head. The
robot has actuators to control the gaze direction of cameras
located as eyes in the head which were not used in these ex-
periments. We could synthesize the missing information with
heuristics about how people direct their gaze relative to their
head or use an eye tracker to record eye gaze along with the
motion data. Although the importance of eye gaze as a stylistic
element is not known, it has been demonstrated to be impor-
tant both in the performance of a conversational robot [13] and
in an avatar used for a negotiation task [14].

We recorded several other motions in addition to “I’m a Little
Teapot” but, as performed by our actors, each of these mo-
tions involved significant contact or near contact between the
actor’s body segments. When these motions were scaled to the
degrees of freedom and limb lengths of the robot, there was in-
terpenetration of body segments and the trajectories could not



be run safely on the robot. Small interpenetrations could be
resolved by detecting collisions and using the Jacobian of the
robot to perturb the trajectory and avoid the collision. Larger
interpenetrations might require a planning algorithm to deter-
mine how the trajectory should be altered. Because the origi-
nal motion was produced by actors whose kinematic structure
is similar to that of the robot, we hypothesize that the simple
approach might be sufficient.

In the longer term, we would like to more rigorously answer
the question of whether the style of an individual actor is re-
tained despite the transformations performed on the data to fit
it to the robot. We plan to show paired videos of motions (one
robot, one human) to subjects and ask them whether the two
videos are based on the same motion sequence. If the results
of this experiment show that the subjects are able to make this
distinction then we will have demonstrated that the style of an
particular performance was retained. A second, more difficult,
test would assess whether an individual’s style is recognizable.
In this experiment, subjects would view several instances of a
particular actor performing and then decide if a given robot
motion had been performed by that actor. If subjects can make
this judgment successfully, then the actor’s style has been re-
tained in the motion.
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Figure 6: Actor #7, Trial #12 sampled every ten frames (0.33sec).


