
Copyright
c 2000 IEEE. Reprinted, with permission from Proceedings of the IEEE International
Conference on Robotics and Automation,San Francisco, CA, April 24–28, 2000. 

Force-Based Motion Editing for Locomotion Tasks

Nancy S. Pollard Fareed Behmaram-Mosavat
Brown University Brown University

Abstract

This paper describes a fast technique for modifying mo-
tion sequences for complex articulated mechanisms in a
way that preserves physical properties of the motion. This
technique is relevant to the problem of teaching motion
tasks by demonstration, because it allows a single exam-
ple to be adapted to a range of situations. Motion may be
obtained from any source; for example, it may be captured
from a human user. A model of applied forces is extracted
from the motion data, and forces are scaled to achieve new
goals. Each scaled force model is checked to ensure that
frictional and kinematic constraints are maintained for a
rigid body approximation of the character. Scale factors
can be obtained in closed form, and constraints can be ap-
proximated analytically, making motion editing extremely
fast. To demonstrate the effectiveness of this approach, we
show that a variety of simulated jumps can be created by
modifying a single keyframed jumping motion. We also
scale a simulated running motion to a new character and to
a range of new velocities.

1 Introduction

Programming a motion task by demonstration is an ap-
pealing goal, because it limits the expertise required of the
user. User provided examples are “expensive,” however,
and will only sparsely cover the task space. For these rea-
sons, much previous work has been focused on extracting
task objectives from example motion for use in control,
learning, or planning processes that can fill the gaps be-
tween examples. Task objectives may include impedance
[1], motion of a manipulated object [2], or a symbolic rep-
resentation of the task [9]. (See [4] for an overview.)

Most previous research in programming by demonstra-
tion has been directed towards manipulating or applying
force to an external object. This paper applies this idea to
simulation of locomotion tasks (e.g. running and jumping).
Here, the role of forces is not to control an external object,
but to control the motion of the character itself. Task ob-
jectives are positions and velocities of the center of mass at
key points in the motion (Figure 2). Ground contact forces
are manipulated to alter those objectives, for example to

create runs at different speeds or jumps of different heights.
Friction and kinematic constraints are incorporated so that
forces remain within a given friction cone and the contact
point is always reachable. We focus on motion transforma-
tions that can be done in closed form – i.e. those that do
not require a search over parameter space.

Contributions of the paper are:

� A task model for locomotion tasks that can be ex-
tracted from any source of example motion.

� Fast techniques for editing this task model to achieve
new goals.

� A closed form approximation to basic frictional and
kinematic constraints to support fast constraint check-
ing.

These techniques are combined in an interactive motion ed-
itor, but could also be used in a motion planning algorithm.
The research was performed with the short term goal of
animating human characters in a physically plausible way,
but it could also be a first step toward developing flexible
behaviors for a humanlike robot.

2 Background

A variety of techniques have been used to create motion
for complex characters or robots, including interpolation
of examples, constrained optimization, and development
of task-specific control systems. Interpolation or blending
can be used when many motion examples are available. In
animation, interpolation is often performed on joint angle
curves (e.g.[18]). These techniques are kinematic, and so
the resulting motion may not be physically plausible. Some
alternatives are to use physically-based simulation to train
neural networks (e.g. [5]) or to interpolate control parame-
ters. The latter approach has been used in conjunction with
memory-based or nonparametric techniques for learning
from experimental data (e.g. [2]). Generating physically
correct results using interpolation is challenging, however,
when the state space dimension is high.

If an expression for optimal motion is available, con-
strained optimization techniques can be used, as in



Figure 1: This paper describes a fast technique for edit-
ing motion. This technique has been used to change run-
ning velocity, scale running motion to new characters, and
change the height and distance of a jump. The running mo-
tion was obtained from a physically-based simulation [8].
The jumping motion was keyframed.

[20][13][14]. Optimization can generate physically plau-
sible results when the character model is physically-based
(e.g. when a simulation is used inside the optimization
loop). Its main disadvantage is computation time, although
simplifying approaches [14] can help to alleviate this prob-
lem.

If a control system is available, some flexibility will be
designed into that control system [16] [15] [6] [19] [11] [8].
Creation of robust and flexible control systems for bipedal
locomotion is difficult, however, and requires the skills of
an experienced designer.

Rigid body approximations have been used for analy-
sis of both hopping robots [16] [10] and running humans
[12]. This paper builds on this work, using a rigid body
approximation to ensure that basic frictional and kinematic
constraints are met for any new motion that is generated.
Kinematic interpolation is used to create the motion of the
rest of the body. This two stage process gives us some
of the physical plausibility generally associated with opti-
mization or control, along with the ability to interactively
create new motion that is a feature of kinematic techniques
(Figure 1).

3 Stances

For this paper, we segment motion into stances (Fig-
ure 2). For dynamic motions such as running and jumping,
each stance is a period of continuous ground contact, and

landing

launch

zs

ze

x

contact

vs

ve

zs

ze

x

landing

launch

contact

heading

vertical A B

vs

ve

Figure 2: (A) Example motion is segmented into stances.
A stance is defined based on the motion of a character’s
center of mass. Parameters are start and end heightszs
andze, start and end velocitiesvs andve in theheading
direction, end velocityvp in the perpendiculardirection
(into the page, not shown) and distancex from the apex of
the first flight phase to the apex of the second flight phase.
(B) The apex used to define a stance might not be reached
in the actual motion.

stances are separated by periods of flight.

A stance is defined with six parameters (Figure 2A).
The curve in the figure represents the center of mass of
the character. A stance has its own coordinate frame, with
axes in theheading, perpendicular, andverticaldirections.
Theheadingof a stance is the direction of the character’s
horizontal velocity at the time of landing. Parameters de-
scribe position and velocity at the apices of the ballistic
portions of a stance. The parameters are: start velocity
(vs), start height (zs), end velocity in theheadingdirection
(ve), end velocity in theperpendiculardirection (vp), end
height (ze), and distance from apex to apex in thehead-
ing direction (x). Parameterszs andze are defined with
respect to the height of the contact point at landing. This
particular set of parameters was chosen because they can
be controlled easily by scaling applied forces (Section 4),
and because they are visually intuitive. Note that the bal-
listic portion of the stance as sketched in Figure 2A may
not be present in the actual motion. In walking, for exam-
ple, the character is in constant contact with the ground.
The theoretical apex is always used to define the stance,
however (Figure 2B).

Stance parameters can be extracted from motion data
and a physical description of the creature. The results in
this paper were all generated from body root position, body
root orientation, and joint angles provided at 30 frames per
second, a geometric description of the creature, and density
information [3].

Orientation is omitted from the set of parameters used to
define a stance under the assumption that orientation can,
to some extent, be controlled independently of position. In
the examples in this paper, we partially control orientation
by searching for an “optimal” contact point. Sections 6
and 7 describe some of the problems we encountered with



controlling orientation and outline a possible solution.

3.1 Forces

A model of applied forces is extracted for each stance.
Applied forces are modeled with the dominant terms of the
discrete Fourier transform (DFT) of sampled force data.
The center of mass position for an entire motion is nu-
merically differentiated twice and fit with a spline to ob-
tain acceleration�x(t). Start and end times for a stance are
identified, and theheadingdirection for that stance is com-
puted from the motion data. Acceleration is rotated into
the vertical / heading / perpendicularcoordinate system,
multiplied by character massm to obtain total force, and
sampled at N discrete timesteps:

FT (j) = m�x

�
t0 +

j �t

N

�
; j = 0; :::; N � 1 (1)

where the stance phase begins at timet0 and ends at time
(t0 + �t). An approximate continuous function for total
force f

T
(� ) is then obtained from the dominant terms of

the discrete Fourier transform ofFT (j):

f
T
(� ) = c

0
+
X
i

ci cos(!i�+�i)+mg; 0 � � � 1 (2)

where� is normalized time
�
t�t0
�t

�
and!i =

2�ji
�t

for some
integerji from 0 to N � 1. Applied ground contact force
f (� ) is:

f (� ) = c
0 +

X
i

ci cos(!i� + �i) (3)

This representation can be easily integrated to obtain ex-
pected positions and velocities. Orientation and angular
velocity can be estimated from a rigid body simulation.

4 Altering a Stance (Dynamic)

To drive a character from a fixed set of examples, we
need some way to fill the gaps in the state space. The tech-
nique proposed here is to edit stances by scaling applied
forces:

~f (� ) = � f (� ) (4)

where scale factor� is a square, diagonal matrix with ele-
ments�v, �h, and�p (scale factors in thevertical, heading,
andperpendiculardirections).

Equation 4 is really a definition of similarity – a stance
is similar to the original if it can be obtained by scaling
applied forces. Given this definition of similarity, five pa-
rameters can be adjusted to obtain a new stance:�v, �h,
�p, and landing and launch timestTD and tLO. Desired

position and velocity (in the form of parameterszs, vs,
ze, ve, vp, andx) fully determine the five unknown scale
and time parameters. A derivation can be found in Ap-
pendix A. This technique of scaling forces is interesting
because it combines aphysically-based representation of
motion (however simple) with an analytical technique for
editing that motion to meet specific position and velocity
constraints.

4.1 Limits on Stance Transformation

Scaling forces by arbitrary scale factors will produce
many results that are physically implausible. These re-
sults are filtered using four types of constraints, described
in equations 5 through 8. Scale factors must be positive:

�i � 0; i 2 fv; h; pg (5)

The maximum force is limited to a value (Fmax) obtained
by examining forces in the database:

�2hf
2

h(� )+�
2

pf
2

p (� )+�
2

vf
2

v (� ) < F 2

max; 0 � � � 1 (6)

Forces must remain within a given friction cone (with co-
efficient of friction�) over the entire stance:

�2hf
2

h (� ) + �2pf
2

p (� ) � �2�2vf
2

v (� ); 0 � � � 1 (7)

(Equation 7 assumes level ground – the ground contact nor-
mal is in the vertical direction.)

Finally, the distance from the contact point to the center
of mass must remain within a given range for the entire
stance:

�2min � kx(�; � )� xcp(� )k
2 � �2max; 0 � � � 1 (8)

wherex(�; � ) is position of the center of mass,xcp(� ) is
the position of the contact point, and�min and�max are
limits on allowable distance from contact point to center of
mass, set based on the kinematics of the character.

As written, equations 6 through 8 would be tested by
sampling� from 0 to 1 for each candidate set of scale fac-
tors� and contact pointxcp(� ). We can do better, however.
For any� , equation 6 represents an axis-aligned ellipsoid
centered at the origin. This constraint is approximated with
a single ellipsoid contained within constraint ellipsoids for
all � . Offline computation of coefficients:

Ai = max
�

f2i (� ); i 2 fv; h; pg (9)

allows us to do a simple check at runtime:

Ah�
2

h + Ap�
2

p + Av�
2

v < F 2

max (10)

For any� , equation 7 represents an axis-aligned ellipse
in the �h

�v
, �p
�v

plane, centered at the origin. This constraint



is approximated in a similar fashion. Offline computation
of coefficients:

Ah = max
�

�
fh(� )

fv(� )

�2
Ap = max

�

�
fp(� )

fv(� )

�2
(11)

allows the following simple runtime check:

Ah

�
�h
�v

�2
+Ap

�
�p
�v

�2
� �2 (12)

For any� , equation 8 expresses an axis aligned ellipsoid
that is not centered at the origin. Nevertheless, an approxi-
mation to this constraint can be created in a manner similar
to that for equation 7. (See Appendix B for a derivation.)
We assume that contact positionxcp(� ), expressed relative
to the center of mass at landing, is known. Because ellip-
soid center is a function of� , the approximation is not con-
servative, but it was quite good for the motions we tested
(e.g. see Figure 5).

4.2 Scaling to New Characters

Scaling stances to new characters is very straightfor-
ward in a force based scheme. The technique we use is
based on the concept of dynamic similarity. Although dy-
namically similar motion cannot be obtained for two dif-
ferent characters in general, it can be obtained for the rigid
body approximation used here. Time, state, and forces for
a stance are scaled based on a relative length measurement
L and a relative mass measurementM . Scaling rules are
summarized in [17] and [7].

Direct scaling is appealing, because it is simple and fast,
and it preserves the dynamic behavior of the simulated mo-
tion. It also maintains the constraints expressed in equa-
tions 5 through 8. All forces are scaled by the same pos-
itive scale factor (M ), and all positions by the same posi-
tive scale factor (L). Therefore, constraints are maintained
trivially if we can assume that the coefficient of friction
remains the same, the minimum and maximum extension
scale linearly withL and the maximum forceFmax scales
linearly withM , all of which are plausible for humanlike
figures. In fact, relative extension limits may provide a
good way to obtain the length scale factorL.

5 Full Character Motion (Kinematic)

Although we begin with reference motion for human-
like characters, motion editing is performed using a rigid
body approximation. A rigid body simulator allows forces
and center of mass motion to be visualized, but motion of
a more complex character is the desired end product for
animation.

speed(m=s) �h �min extmax cph
0.0 0.00 0.11 1.12 0
2.0 0.43 0.23 1.12 0.18
4.0 0.86 0.42 1.12 0.36
6.0 1.29 0.62 1.26 0.53

Table 1: Forces extracted from the example run can be
scaled to achieve steady-state velocities from0 to 6m=s.
(The original run was4:6m=s.) Parameters are force scale
factor in theheadingdirection (�h), the coefficient of fric-
tion required (�min), maximum distance from center of
mass to contact point (extmax), and position of the con-
tact point in theheadingdirection, expressed relative to
the center of mass at landing (cph).

We use a simple, kinematic process to create animated
motions such as that in Figure 1 from a rigid body simula-
tion. Our goals are to ensure that the foot of the character
stays planted and that the center of mass and orientation of
the character follow the intended trajectories.

In a first pass, each stance is considered separately. The
character is rooted at the contact point, and joint angle tra-
jectories are found which minimize error in center of mass
position, error in character orientation, and deviation from
the reference motion. In a second pass, the motion seg-
ments computed for individual stances are blended during
the flight phase connecting those stances to create continu-
ous, smooth motion.

6 Examples

Figure 1 shows results from two source motions: a sim-
ulated run and a keyframed jump. These example motions
were edited to change running velocity, to scale the run to
a new character, and to illustrate the range of jumps that
can be created by scaling the single example jump.

6.1 Running Velocities

A running stance is a period of continuous left or right
foot contact, followed by a period of flight. A total of 11
sequential stances were extracted from the example data.
Because the example motion was simulated, each stance
was slightly different. To create a steady-state run cycle,
we chose a pair of right and left stances that fit closely and
scaled them slightly to create seamless transitions.

The resulting run cycle was then scaled to new steady
state velocities ranging from0 to 6m=s. Table 1 shows
some parameters from those experiments. All of the run
cycles were viable given a coefficient of friction of0:7.
The6m=s run is near the kinematic limits of the character.

Because the stances extracted from the example motion
contain some accelerating and some decelerating stances,



0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2 2.5 3

H
ei

gh
t (

m
)

Velocity (m/s)

Liftoff and Landing Overlap (Velocity vs. Height)

Liftoff
Landing

Figure 3: For the jump, stances must be scaled so thatve
and ze at liftoff match vs and zs for landing. This plot
shows the range of overlap (velocity vs. height).

it is possible to plan motions where speed is dynamically
modulated. Simulating extended motion sequences, how-
ever, is beyond the scope of this paper, because we have
not described a general technique for controlling orienta-
tion. We can easily plan a sequence of stances to decel-
erate the runner by0:4m=s per stride, for example, but
after 5-6 strides, the runner’s orientation would begin to
diverge from its desired value. Our current system does
allow orientation to be partially controlled by controlling
contact placement, but much better solutions are certainly
possible. We are currently adding a simple controller to the
system, for example, so that longer, dynamically changing
sequences of stances can be explored.

6.2 Scaling to a New Character

To create a running sequence for a troll, we scaled the
steady-state run cycle from the man to the troll using the
rules summarized in [17] and [7]. Relative massM was
3:62, and relative lengthL was0:67. For this example,
the choice of a single length scale factor was somewhat
limiting – the troll is shorter than the man, but he is also
wider. Our first attempt resulted in foot placement much
too close to the center of the body (see Figure 1). This
problem can be controlled by scaling parametervp. Scal-
ing perpendicular velocity causes the optimal contact point
to move laterally to stabilize orientation.

6.3 Scaling Jump Distances and Heights

Two stances were extracted from the example jump –
one for liftoff and one for landing. To find jumps of new
heights and distances, we must find scale factors that blend
the liftoff motion seamlessly into the landing. Fortunately,
the stance parameters we use make this easy –ve andze for
liftoff must matchvs andzs for landing. Figure 3 shows a

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

H
ei

gh
t (

m
)

Distance (m)

Valid Distances and Heights for Complete Jump

Figure 4: Jumps (distance vs. height) that can be created
by scaling forces extracted from the example motion. No
point lies more than5% beyond the extremes of force, fric-
tion, and extension from the original motion.

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2 2.5 3

H
ei

gh
t (

m
)

Velocity (m/s)

Effect of Constraint Approximation

Landing (Approximated)
Landing (Calculated)

Figure 5: The constraint approximations create a state
space very similar to the original.

sampling of velocity in the heading direction vs. height at
the apex of the flight phase between the two stances. Any
point in the overlapping region is a candidate for forming
a new jump. Figure 4 shows the range of jumps that can
be created by scaling the original example. All of these
jumps have a maximum force, a maximum required fric-
tion coefficient, and maximum and minimum extensions
no more than5% beyond the bounds of the original mo-
tion. Animations of some of these jumps, along with other
results from this paper can be viewed from the web pages
at: http://www.cs.brown.edu/people/nsp/.

Figure 5 illustrates the effect of using the constraint ap-
proximations described in Section 4.1. Because the ex-
tension approximation is not conservative, some additional
points appear in the approximation. Overall, however, the
approximation is quite good.



7 Discussion

This paper has described a technique for editing exam-
ple motion for locomotion tasks. Locomotion tasks are
represented in terms of applied forces required to move the
character, and forces are altered to achieve new goals, such
as dealing with an increased load, changing velocities, or
altering the height and distance of a jump. Basic frictional
and kinematic constraints are maintained for a rigid body
approximation of the character. This editing technique is
fast – the only search or sampling performed to create a
new rigid body simulation is a two-dimensional search for
a contact point (to help stabilize orientation).

The algorithm described in this paper is not a control
algorithm, and there is much to be done to make it appro-
priate for use with an actual robot. We are currently inves-
tigating the use of force control with computed force as a
target. Additional feedback is incorporated to keep the cen-
ter of mass in the correct position and to maintain balance
and posture. Other areas of future work include incorporat-
ing biomechanical constraints beyond the simple kinematic
check discussed here and planning extended motions from
a much larger library of stances. We hope that this work
will ultimately contribute to the development of new tech-
niques for example driven robotic motion.

Acknowledgments

The authors wish to thank Jessica Hodgins for providing the
simulated running motion. Thanks also to Remco Chang, who
wrote the software to map rigid body motion to an animation of
the full character, and Carolyn Uy, who developed the rigid body
simulator for stance sequences.

References

[1] A SADA, H., AND ASARI, Y. The direct teaching of tool
manipulation skills via the impedance identification of hu-
man motion. InProc. IEEE Intl. Conference on Robotics
and Automation(1988).

[2] ATKESON, C. G., MOORE, A. W., AND SCHAAL , S. Lo-
cally weighted learning for control.Artificial Intelligence
Review 11(1997), 75–113.

[3] DEMPSTER, W. T., AND GAUGHRAN, G. R. L. Proper-
ties of body segments based on size and weight.American
Journal of Anatomy 120(1965), 33–54.

[4] DILLMANN , R., FRIEDRICH, H., KAISER, M., AND UDE,
A. Integration of symbolic and subsymbolic learning to
support robot programming by human demonstration. In
Robotics Research: The Seventh International Symposium,
G. Giralt and G. Hirzinger, Eds. Springer, New York, 1996.

[5] GRZESZCZUK, R., TERZOPOULOS, D., AND HINTON, G.
Neuroanimator: Fast neural network emulation and con-
trol of physics-based models. InSIGGRAPH 98 Proceed-
ings(1998), Annual Conference Series, ACM SIGGRAPH,
ACM Press, pp. 9–20.

[6] HARAI , K., HIROSE, M., HAIKAWA , Y., AND TAKE-
NAKA , T. The development of the honda humanoid robot.
In Proc. IEEE Intl. Conference on Robotics and Automation
(1998).

[7] HODGINS, J. K., AND POLLARD, N. S. Adapting sim-
ulated behaviors for new characters. InSIGGRAPH 97
Proceedings(1997), ACM SIGGRAPH, Addison Wesley,
pp. 153–162.

[8] HODGINS, J. K., WOOTEN, W. L., BROGAN, D. C., AND

O’BRIEN, J. F. Animating human athletics. InSIGGRAPH
95 Proceedings(Aug. 1995), Annual Conference Series,
ACM SIGGRAPH, Addison Wesley, pp. 71–78.

[9] K ANG, S. B., AND IKEUCHI, K. Toward automatic robot
instruction from perception – temporal segmentation of
tasks from human hand motion.IEEE Transactions on
Robotics and Automation 11, 5 (1995), 670–681.

[10] KODITSCHEK, D. E., AND BÜHLER, M. Analysis of a
simplified hopping robot.International Journal of Robotics
Research 10, 6 (December 1991), 587–605.

[11] LASZLO, J., VAN DE PANNE, M., AND FIUME, E. Limit
cycle control and its application to the animation of bal-
ancing and walking. InSIGGRAPH 96 Proceedings(Aug.
1996), Annual Conference Series, ACM SIGGRAPH, ACM
Press, pp. 155–162.

[12] MCMAHON, T. A., AND CHENG, G. C. The mechanics of
running: how does stiffness couple with speed?Journal of
Biomechanics 23(1990), 65–78.

[13] PANDY, M. G., ANDERSON, F. C., AND HULL , D. G. A
parameter optimization approach for the optimal control of
large-scale musculoskeletal systems.Transactions of the
ASME 114(nov 1992), 450–460.

[14] POPOVIĆ, Z., AND WITKIN , A. Physically-based mo-
tion transformation. InSIGGRAPH 99 Proceedings(Aug.
1999), Annual Conference Series, ACM SIGGRAPH, ACM
Press.

[15] PRATT, J., AND PRATT, G. Intuitive control of a planar
bipedal walking robot. InProc. IEEE Intl. Conference on
Robotics and Automation(Leuven, Belgium, 1998).

[16] RAIBERT, M. H. Legged robots that balance. MIT Press,
1986.

[17] RAIBERT, M. H., AND HODGINS, J. K. Animation of
dynamic legged locomotion. InComputer Graphics (SIG-
GRAPH 91 Proceedings)(July 1991), T. W. Sederberg, Ed.,
vol. 25, pp. 349–358.

[18] ROSE, C. F., COHEN, M. F., AND BODENHEIMER, B.
Verbs and adverbs: Multidimensional motion interpola-
tion. IEEE Computer Graphics and Applications Septem-
ber/October(1998), 32–40.



[19] SARANLI , U., SCHWIND, W. J., AND KODITSCHEK,
D. E. Toward the control of a multi-jointed, monoped run-
ner. In Proc. IEEE Intl. Conference on Robotics and Au-
tomation(1998).

[20] WITKIN , A., AND KASS, M. Spacetime constraints. In
Computer Graphics (SIGGRAPH 88 Proceedings)(Aug.
1988), J. Dill, Ed., vol. 22, pp.159–168.

Appendix A: Stance Scaling Derivation

Let stance times be0 the start of the stance,tTD at landing,
tLO at liftoff, and tE at the end of the stance. ParameterstTD,
tLO, andtE are unknown, but time on the ground (�t) is fixed
for a stance, and so:

tTD = tLO ��t (13)

Rewrite force equation 2 in terms of actual time t instead of
normalized time� and incorporate scale factors:

~f
T
(t) = � c

0
+
X
i

� ci cos(~!it+
~�i)+mg; tTD � t � tLO

(14)
Integrate equation 14 from timetTD to tLO and divide by

massm to obtain an expression for change in velocity:

_x(tLO)� _x(tTD) =
� c

0
�t

m
+ g�t (15)

Add the ballistic segments of the stance:

_x(tE) � _x(0) =
� c

0
�t

m
+ gtE (16)

In terms of stance parameters:

ve � vs =
�h c0;h�t

m
(17)

vp =
�p c0;p�t

m
(18)

gtE =
�v c0;v�t

m
(19)

whereg is 9:8m=s.
Integrate velocities from one apex to the next to obtain an ex-

pression for change in position:

x(tE) � x(0) = (20)

_x(0) tLO + _x(tE)(tE � tLO) + gtE

�
tLO �

tE
2

�
+

� c
0
�t2

2m
�
X
i

� ci�t2

m!i
sin(�i)

In terms of stance parameters:

x� ve (tE � tLO)� vs tLO = (21)

�hc0;h�t2

2m
�
X
i

�hci;h�t2

m!i
sin(�i)

ze� zs+ gtE

�
tLO �

tE
2

�
= (22)

�vc0;v�t2

2m
�
X
i

�vci;v�t2

m!i
sin(�i)

The six equations 13, 17, 18, 19, 21, and 22 can be solved
algebraically fortTD, tLO, tE , �h, �v, and�p.

Appendix B: Extension Constraint

Expressionx(�; �) is obtained by integratingf
T
(�) =

m�x(�) using equation 2 forf
T
(�). This integration results in

an expression containing a scaled and an unscaled portion:

x(�; �) = xc(�) + � xs(�) (23)

We assume contact pointxcp(�) is known. It does not scale with
� and can be folded into thexc(�) term. With a little manipula-
tion, equation 8 can be put into the following form:

�
2
min

�

�
�h � ah(�)

bh(�)

�2
+

�
�p � ap(�)

bp(�)

�2
+

�
�v � av(�)

bv(�)

�2
� �

2
max

(24)

For any� , the constraint boundaries of equation 24 are axis-
aligned ellipsoids in�v, �h, �p space, centered ata(�). To ap-
proximate the�max constraint, we compute an ellipsoid that fits
within the axis-aligned bounding box contained within the bound-
ing boxes of ellipsoids at all� . (This is not a conservative approx-
imation.)

Rmax = min
�

(a(�) + kb(�) �maxk) (25)

Rmin = max
�

(a(�)� kb(�) �maxk) (26)

ar =
Rmax +Rmin

2
; br =

Rmax �Rmin

2�max

(27)

�
�h � ar;h

br;h

�2

+

�
�p � ar;p

br;p

�2

+

�
�v � ar;v

br;v

�2

� �2

max

(28)
A runtime test is then performed using equation 28, wherear

andbr are constants.
Similarly, for the�min constraint, we compute the ellipsoid

that is defined by the bounding box that contains the bounding
boxes of the ellipsoids at all� :

Smax = max
�

(a(�) + kb(�) �mink) (29)

Smin = min
�

(a(�)� kb(�) �mink) (30)

as =
Smax + Smin

2
; bs =

Smax � Smin

2�min

(31)

�2

min �

�
�h � as;h

bs;h

�2

+

�
�p � as;p

bs;p

�2

+

�
�v � as;v

bs;v

�2

(32)
A runtime test is performed using equation 32, whereas andbs
are constants.


