Evaluating Motion Graphs for Character Animation

Paul S. A. Reitsma and Nancy S. Pollard
Carnegie Mellon University

Realistic and directable humanlike characters are an ongoing goal in animation. Motion graph data
structures hold much promise for achieving this goal; however, the quality of the results obtainable
from a motion graph may not be easy to predict from its input motion clips. This paper describes
a method for using task-based metrics to evaluate the capability of a motion graph to create the
set of animations required by a particular application. We examine this capability for typical
motion graphs across a range of tasks and environments. We find that motion graph capability
degrades rapidly with increases in the complexity of the target environment or required tasks,
and that addressing deficiencies in a brute-force manner tends to lead to large, unwieldy motion
graphs. The results of this method can be used to evaluate the extent to which a motion graph
will fulfill the requirements of a particular application, lessening the risk of the data structure
performing poorly at an inopportune moment. The method can also be used to characterize the
deficiencies of motion graphs whose performance will not be sufficient, and to evaluate the relative
effectiveness of different options for improving those motion graphs.

Categories and Subject Descriptors: Computer Graphics [Three-Dimensional Graphics and Realism]: Animation

General Terms: Experimentation, Measurement, Reliability
Additional Key Words and Phrases: motion capability, capability metrics, motion capture, human
motion, motion graphs, motion graph embedding, editing model

1. INTRODUCTION

Character animation has a prominent role in many applications, from entertainment to education. Auto-
mated methods of generating character animation, such as motion graphs, have a wide range of benefits for
such applications, especially for interactive applications. When coupled with motion capture and motion
editing, motion graphs have the potential to allow automatic and efficient construction of realistic character
animations in response to user or animator control.

Unfortunately, many of these potential benefits are difficult to realize with motion graphs. One major
stumbling block is a lack of understanding of the effects of the motion graph data structure; it is not known
with any confidence what a character can or cannot do when animated by a particular motion graph in a
particular environment. Due to this lack of knowledge of a motion graph’s capabilities, they are not reliable
enough for many applications, especially interactive applications where the character must always be in a
flexible and controllable state regardless of the control decisions of the user. Even if a particular motion
graph does happen to fulfill all our requirements, that reliability will go unknown and — for a risk-averse
application — unused without a method to evaluate and certify the capability of the motion graph.

This paper addresses the problem of analyzing a motion graph’s capability to create required animations.

Author’s address: Paul Reitsma, Computer Science Department, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh,
PA, 15213.

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use provided that
the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the
publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2007 ACM 0730-0301/2007/0100-0001 $5.00

ACM Transactions on Graphics, Vol. V, No. N, March 2007, Pages 1-39.



2 . Paul S. A. Reitsma and Nancy S. Pollard

To do so, we propose a definition of a motion graph’s capability, describe a method to quantitatively evaluate
that capability, and present an analysis of some representative motion graphs. The method identifies motion
graphs with unacceptable capability and also identifies the nature of their deficiencies, shedding light on
possible remedies. One important finding is that the capability of a motion graph depends heavily on the
environment in which it is to be used. Accordingly, it is necessary for an evaluation method to explicitly take
into account the environment in which a motion graph is to be used, and we introduce an efficient algorithm
for this purpose. In addition, the information obtained from this evaluation approach allows well-informed
tradeoffs to be made along a number of axes, such as trading off motion graph capability for visual quality
of the resulting animations or for motion graph size (i.e., answering “how much motion capture data is
enough?”). As well, the evaluation approach can offer insight into some strengths and weaknesses of the
motion graph data structure in general based on the analysis of a range of particular motion graphs. We
discuss briefly how our method for analyzing individual motion graphs, as well as our conclusions about the
motion graph data structure in general, might be useful for the related problem of motion synthesis. Finally,
we conduct experiments to examine the space/time scaling behavior of the evaluation method, as well as its
overall stability and validity over various scenarios.

1.1 Contributions
The primary contributions of this paper are:

—A statement of the problem of evaluating global properties of motion generation algorithms.
We propose that it should be possible to quantitatively evaluate a character’s ability to perform a suite
of tasks and to use these results to compare motion graphs or other algorithms for motion generation.

—A concrete method for evaluating motion graphs for applications involving a broad class of
motion types. We offer metrics to capture several measures of a character’s ability to navigate effectively
within an environment while performing localized tasks at arbitrary locations.

—An efficient algorithm for embedding a motion graph into a given environment for analysis.
The algorithm embeds the entire motion graph, allowing analysis of the full variability inherent in the
available motion clips, and is efficient enough to scale to large environments or motion graphs.

—Benchmarking results for a sample dataset over various environments. We show that the ability
to navigate a simple environment is easy to achieve, but that increased complexity in either the task or
the environment substantially increases the difficulty of effectively using motion graphs.

While benchmarking example motion graphs, we obtained two major insights about motion graphs as they
are commonly used today:

—Simple tasks in simple environments are easy for most motion graphs to perform, but capability degrades
rapidly with increasing complexity.

—Reactivity (e.g., to user control) is poor for motion graphs in general. Furthermore, techniques such as
adding data, allowing motions to be edited more, or using hub-based motion graphs did not raise reactivity
to acceptable levels in our experiments.

Portions of this research have appeared previously in [Reitsma and Pollard 2004]. This paper incorporates
substantial improvements, including: (1) a new embedding algorithm with asymptotically lower memory
requirements which allows evaluation of scenarios orders of magnitude larger; (2) several times as many
evaluation metrics covering a much wider range of practical considerations; (3) the ability to evaluate a wider
class of motion graphs, including those with user-triggered actions such as picking up an object or ducking;
(4) more thorough evaluation of the scaling behavior of the system; and (5) more thorough evaluation of
some of the underlying assumptions of the system. The majority of techniques and results in this paper are
new.

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



Evaluating Motion Graphs for Character Animation : 3

2. BACKGROUND

It is necessary to choose a particular automatic animation generation technique in order to demonstrate
concrete examples of our measurements in practice. We used motion graphs, due to a number of benefits the
algorithm offers (e.g., realistic motion, amenability to planning, similarity to in-production systems), and
due to the significant body of supporting work on the technique (e.g., [Molina-Tanco and Hilton 2000] [Lee
et al. 2002] [Kovar et al. 2002] [Arikan and Forsyth 2002] [Li et al. 2002] [hoon Kim et al. 2003] [Arikan et al.
2003] [Kwon and Shin 2005] [Lee et al. 2006]).

Some previous research has looked at the problem of altering motion graphs to overcome their disadvan-
tages. Mizuguchi et al. [2001] examines a common approach used in the production of interactive games,
which is to build a motion-graph-like data structure by hand and rely heavily on the skills and intuition of
the animators to tune the results. Gleicher et al. [2003] developed tools for editing motion data in a similar
manner, in particular the creation of transition-rich “hub” frames. Lau and Kuffner [2005] use a hand-tuned
hub-based motion graph to allow rapid planning of motions through an environment. Sung et al. [2005]
make use of a probabilistic roadmap to efficiently speed up path searches using a motion graph. Ikemoto
et al. [2006] use multi-way blending to improve the transitions available within a set of motion capture data.
Our analysis approach is complementary, as it can be used to evaluate and provide information on motion
graphs generated in any fashion. Shin and Oh [2006] and Heck and Gleicher [2007] introduced methods to
associate a single edge (or node) of a motion graph with multiple related motion clips, allowing any path
using that edge (or node) to use a blended combination of those motion clips.

In order to make embedding large motion graphs into large environments a tractable task, we use a
grid-based approach inspired by grid-based algorithms used in robotic path-planning (e.g., [Latombe 1991]
[Lozano-Pérez and O’Donnell 1991] [Donald et al. 1993]). We note that these algorithms are designed for
a different purpose than ours, namely that of finding a single good path for a robot to move from start to
goal positions, and hence cannot be easily adapted to our analysis problem. Instead of finding a single path,
our embedding approach represents the set of all possible paths through the environment for the purpose of
evaluating character capabilities.

Four other projects have considered placing a motion graph into an environment in order to capture its
interaction with objects. Research into this area was pioneered by Lee et al. [2002]. Their first approach
captured character interactions with objects inside a restricted area of the environment. A second approach
([Choi et al. 2003]) demonstrates how to incorporate a portion of a motion graph into an environment by
unrolling it onto a roadmap ([Kavraki and Latombe 1998]) constructed in that environment. Reitsma and
Pollard [2004] presented an earlier version of this work, which differed as noted in Section 1.1. Suthankar
et al. [2004] applied a similar embedding process to model the physical capabilities of a synthetic agent,
and Lee et al. [2006] applied a similar embedding process to incorporate motion data into repeatable tiles.
Our work is complementary to these projects, with the information gained via analysis being useful for
improving motion-generation algorithms. For example, analysis could drive the creation of a sparse-but-
sufficient roadmap.

While some work has been done on the evaluation of character animation, most such work has examined
only local quantities corresponding to a small set of test animations. For example, several researchers have
examined user perceptions of animated human motion (e.g., [Hodgins et al. 1998] [Oesker et al. 2000] [Reitsma
and Pollard 2003] [Wang and Bodenheimer 2003] [Wang and Bodenheimer 2004] [Harrison et al. 2004] [Ren
et al. 2005], [Safonova and Hodgins 2005]). By contrast, the goal of our approach is to evaluate more global
properties of the motions available to animate the character, such as the expected efficiency of optimal
point-to-point paths through the environment. These local and global measurements are complementary,
combining to form a more complete understanding of the animations that can be created.

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



4 . Paul S. A. Reitsma and Nancy S. Pollard

b

e
T

HHHHHHHHHHH Motion 2

—/

Fig. 1. A motion graph is formed by adding additional transitions between frames of motion capture data. In this diagram,

Motion 1

each vertical hashmark is a frame of motion; connecting arrows represent these additional transitions. The frames of Motion
1 from iy to iq represent one clip (node) in the motion graph, and the edges of the motion graph are the connections between
clips. The clip represented by the frames from i, to iq, for example, has two incoming edges: one from Motion 2 (blue arrow)
and another from frame i, 1 in Motion 1.

3. SYSTEM OVERVIEW

Our system takes as input (1) a set of motion capture data, (2) visual quality requirements for the animations
(represented as a model of acceptable motion editing), (3) a set of motion capability requirements (i.e., what
tasks the character must be able to accomplish), and (4) an environment in which the character is to perform
those tasks. These inputs define the scenario under analysis.

The motion capture data is processed to form a motion graph (see Section 3.1). We further process this
motion graph to capture interactions with the target environment (Section 3.2 and Section 4), based on
a model of motion editing (Section 3.3). The resulting data structure is used to measure the animated
character’s ability to successfully complete the required tasks in the given environment (Section 3.4 and
Section 5).

3.1 Introduction to Motion Graphs

The following is a brief introduction to the idea of a motion graph; much more detail can be found in the
references, for example [Kovar et al. 2002].

Normally, motion capture data is played sequentially; to replay the motion of clip 7, the animation tran-
sitions from frame i; to frame 1. The intention of a motion graph is to allow additional flexibility when
using the motion capture data. The data is examined to find additional transitions of the form iy to j,, (i.e.,
clip i, frame k to clip j, frame m) that will result in acceptable motions. One common criterion for selection
of such transitions is that frames i, and j,,_1 are sufficiently similar.

A motion graph is formed by considering these additional transitions to be the edges of a directed graph
(see Figure 1). Nodes in the graph are sequences of frames extending between transitions (e.g., frame i, to
frame ¢4_1), and are referred to in this paper as motion clips. Traversing this graph consists of playing a
sequence of these clips, with all clip-to-clip boundaries being at one of these additional transitions. To allow
continuous motion generation, only the largest strongly connected component (SCC) of the motion graph is
used.

3.2 Capturing Motion Graph/Environment Interaction

The details of a particular environment can have a very significant impact on the capabilities imparted to
an animated character by a motion graph. The simplest example of this is to consider two environments

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



Evaluating Motion Graphs for Character Animation : 5

(a) Empty environ- Environ with ) More complex en-
ment trench viron

(d) Complex environ (3D)

Fig. 2. Example environments. The upper obstacle (blue) in environments (b) and (c) is annotated as a chasm or similar
obstacle, meaning it can be jumped over. The environment shown in (c) and (d) is our baseline reference environment.

(Figure 2(a) and 2(b)), one of which has a deep trench bisecting it that must be jumped over; for a motion
graph with no jumping motions, the two environments will induce a very different ratio between the total
space of the environment and the space which can be reached by a character starting in the lower portion. A
more complex example is shown in Figure 2(c) and 2(d), where small changes to the sizes and positions of
obstacles—changes that may appear superficial—produce very large differences in the ability of the character
to navigate through the environment. Due to this strong environmental influence on the capabilities of a
motion graph, the only way to understand how a motion-graph-driven animated character will actually
perform in a given environment is to analyze the motion graph in the context of that environment.

For any given scenario to be evaluated, we need a way to capture the influence of the environment
on the capabilities of the motion graph. There are a number of possible approaches to capturing the
interaction between an environment and the motion graph; our approach is to embed the motion graph into

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



6 . Paul S. A. Reitsma and Nancy S. Pollard

(p'iaei)

o)
(P04

Fig. 3. A motion clip can be edited to place its endpoint anywhere within its footprint (yellow region). Dotted arrows show
the edited paths corresponding to the possible endpoints (p;, 6;) and (pk, Ok).

the environment—unrolling it into the environment in the manner described in Section 4.

3.3 Visual Quality Requirements

Embedding a motion graph into an environment so that its capabilities can be measured requires making
a choice of editing model. Generally, the visual quality of motions created in a motion graph will start at
a high base due to the verisimilitude of the underlying motion capture data, and will be degraded by any
editing done to the motion, either due to the loss of subtle details or to the introduction of artifacts such as
foot sliding. Such editing is necessary to transition between the different motion clips of the motion graph
and to precisely target the character to achieve certain goals (such as picking up an object or walking through
a narrow doorway). Additionally, allowing motions to be edited increases the range of motions available to
the animation system, increasing the capabilities of the available animations while decreasing their visual
quality.

We assume that current and future research on motion editing and on perceptual magnitude of editing
errors will allow animators to determine the extent to which a motion clip can be edited while maintaining
sufficient visual quality to meet the given requirements. Given those bounds on acceptable editing, a motion
clip starting at a point p and character facing 6 which would normally terminate at a point p/ and facing
07 can be edited to terminate at a family of points and facings {p;,0;} containing {p/,6r}. In general, the
better the editing techniques and the lower the visual quality requirements, the larger this family of valid
endpoints for a given clip. This family of points is known as the footprint of the motion clip; given a specific
starting point and direction, the footprint of a clip is all of the endpoints and ending directions which it can
be edited to achieve without breaching the visual quality requirements (see Figure 3).

Design of motion editing models is an open problem; we use a simple linear model, meaning the amount
of acceptable editing grows linearly with both distance traveled and motion clip duration (see Appendix A),
similar to the approach of Sung et al. [2005] and Lee et al. [2006].

3.4 Motion Capability Requirements

We define the capability of a motion graph within an environment as its ability to create motions that fulfill
our requirements within that environment. The appropriate metric for evaluating character capabilities
depends on the tasks the character is expected to perform. For localized tasks such as punching a target or
kicking an object, the task may be to efficiently navigate to the target and contact it with an appropriate
velocity profile, while for some dance forms the task may be to string together appropriate dance sequences
while navigating according to the rules of the dance being performed. This paper focuses on navigation

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



Evaluating Motion Graphs for Character Animation : 7

original motion graph
SCC, local reference frame random walk in task domain

Fig. 4. (Left) A motion graph may be constructed using a reference frame local to the character to preserve flexibility in the
character’s motion. (Right) Using this motion graph to drive the character through an environment with obstacles can result
in dead ends. Because obstacle information is not available in the local reference frame (left), extracting a strongly connected
component (SCC) from the original motion graph does not guarantee that the character can move through a given environment
indefinitely.

and localized actions (such as punching, ducking, or picking up an object). We focus on the following
requirements, chosen so as to approximate the tasks one might expect an animated character to be required
to perform in a dynamic scenario, such as a dangerous-environment training simulator or an adventure game:

—Character must be able to move between all major regions of the environment.

—Character must be able to perform its task suite in any appropriate region of the environment; for example,
picking up an object from the ground regardless of that object’s location within the environment.

—Character must take a reasonably efficient path from its current position to any specified valid target
position.

—The previous two items should not conflict; i.e., a character tasked with performing a specific action at a
specific location should still do so efficiently.

—Character must respond quickly, effectively, and visibly to user commands.

4. EMBEDDING INTO THE ENVIRONMENT

In this section, we describe the details of our embedding algorithm. To illustrate the design considerations
for an embedding approach, consider attempting to compute the value of a sample metric: Simple Coverage.
The value of this metric is just the fraction of the environment through which the character can navigate
freely. One immediate challenge is to form a compact description of the space of character trajectories —
simply expanding the motion graph in a breadth-first fashion from an arbitrary starting state, for example,
will rapidly lead to an exponential explosion in the number of paths being considered. A second key challenge
is to consider only paths which do not unnecessarily constrain the ability of the character to navigate. For
example, avoiding dead ends is necessary for an autonomous character with changing goals, or for a character
subject to interactive control. Even though the original motion graph has no dead ends, obstacles can cause
dead ends in the environment (see Figure 4)

In order to meet these challenges, we discretize the environment, approximating it with a regular grid of
cells. At each cell, we embed all valid movement options available to the character. This embedding forms a
directed graph, of which we only use the largest strongly connected component (SCC). Note that this SCC
is in the embedded graph, not within the original motion graph. For example, in Figure 4, link A is not valid
at that position within the environment, and so would be discarded for that position only; link A may not
be blocked in other parts of the environment, and hence may be a part of the (embedded) SCC in some
positions and not in others.

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



8 . Paul S. A. Reitsma and Nancy S. Pollard

While computing the embedded SCC has a high one-time cost, that cost is amortized over the many
tests run to compute the metrics of interest, each of which is made more efficient by having the information
embodied in the SCC available. This savings can reach many orders of magnitude for metrics such as testing
for availability of efficient paths through the environment. Consider, for example, the problem of searching
for an optimal path in an environment filled with obstacles. With the embedded graph, paths that lead
inexorably to collisions (of which there are many) are not part of the SCC and never need to be considered.
Computing this SCC in advance, then, allows efficient computations of the capabilities of the motion graph
under investigation.

4.1 Discretization
We discretize the environment along the following dimensions, representing the state of the character:

X The x-axis groundplane position of the character’s root.

Z The z-axis groundplane position of the character’s root.

© The facing direction of the character.

C The clip which brought the character to this (X, Z,©) point (i.e., the character’s pose).

C' is inherently discrete, but the groundplane position indices (X, Z) are determined by discretizing the
environment into a grid with fixed spacing distance between adjacent X or Z bins. Similarly, the facing of
the character is discretized into a fixed number of angular bins.

Typically, a ground-plane position specified by only X and Z is referred to as grid location; adding the
facing angle © denotes a grid point; finally, specifying the pose of the character by including the motion clip
that brought the character to that point specifies a grid node in the 4D state space.

Each grid node can be considered a node of a directed graph, where [z, z, 0, ¢| has an edge to [z, 2/, 01, ¢/]
if and only if:

—Clip ¢ can transition to clip ¢/ in the original motion graph

—Given a character with root position (z,z) and facing 6, animating the character with clip ¢/ places
(a1, z1,01) within the footprint of ¢f.

—The character follows a valid path through the environment (i.e., avoids obstacles and respects annotations)
when being animated from (x, z, 0) to (a/, z/,01) by the edited clip /.

A pair of nodes (u,v) is known as an edge candidate if the first two criteria hold (i.e., the edge will exist
unless the environment renders it invalid). Note that collision detection is a part of the third criterion (that
the character follows a valid path through the environment), and hence is performed every time an edge
candidate is examined.

For example, suppose clip A can be followed by either clip B or clip C in the original motion graph. In the
environment represented in Figure 5, the starting point ([1, 1, 7, A] is marked with a blue star, endpoints of
valid edges with green circles, and edge candidates which are not valid edges are marked with red squares.
The edge ([1,1, 5, A],[5,1, F,C]) is in the embedded graph, since its endpoint is within C’s footprint and
the path to it is valid. By contrast, there is no edge from ([1,1, §, A],[5,0, 5, C]), since the edited path of
clip C (dotted arrow) is not valid in the environment (it intersects an obstacle).

Note that this discretization approach offers a tradeoff between precision and computation. Our metrics
generally give broadly similar results across a range of grid sizes (see Section 6.5), suggesting that the values

computed in a discretized setting are reasonable approximations of those values in the continuous case.

4.2 Space-Efficient Unrolling

Reitsma and Pollard [2004] present an embedding algorithm that works by computing all edges and then
using Depth-First Search to find the largest strongly connected component (SCC). The main limitation of this

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



Evaluating Motion Graphs for Character Animation : 9

Fig. 5. Computing edges from a single node; the endpoints of valid edges are marked as green circles. Note that not all nodes
within a clip’s footprint are the endpoints of edges, as obstacles can obstruct the edited path from the source to the target node
(dotted path).

(a) Seed node (b) Reachable pass 1 (c) Reachable pass 2 (d) Reachable nodes
. s = | = = = A = = = | = = = A = = = | = = = s = = = = = = =
1 %s [ T T T —+ s 1111 + + s+ + + + + + o+ + + + + + o+
1 L T O T I 7+ N + o+ o=+ + 10 + + =+ + 5 oaon
A [ T T I BT + + 4+ + + 1 s ok + + + o omon
s 1 I = | = = = = I I = | = = = s | | = | = = = = = = = = = = =
(e) Reaching pass 1 (f) Reaching pass 2 (g) Reaching nodes (h) scc

Fig. 6. Steps of the embedding algorithm. (a) A seed node (green ”S”) is chosen. (b) First pass of the reachable flood marks
nodes reachable in one step from the seed node. (c) Second pass marks additional nodes reachable in two steps. (d) All reachable
nodes are marked (blue vertical hashes). (e) First pass of the reaches flood marks nodes which reach the seed node in one step.
(f) Second pass marks additional nodes reaching in two steps. (g) All reaching nodes are marked (red horizontal hashes). (h)
Intersection of set of reachable nodes and set of reaching nodes (purple ”+”) is the SCC of the embedded graph.

algorithm is that it requires explicitly storing all edges needed to compute the embedded graph. While this
is an efficient and sensible approach for smaller environments or coarser grids, due to memory considerations
it significantly limits the size of environments and the resolution at which they can be processed.

As an alternative that requires much less memory, we propose a flood-based algorithm which takes ad-
vantage of the fact that edges outgoing from or incoming to a node can be computed only as needed. For
grid nodes u and v, an edge candidate (u,v) will be in the SCC if and only if nodes u and v are both in the
SCC, and (u,v) is an edge of the embedded graph (i.e., its associated path is valid within the environment),
so storing only the nodes in the SCC allows computation of the correct edges as needed.

Finding the SCC for use with this on-the-fly approach can be done efficiently in the discretized environment

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



10 : Paul S. A. Reitsma and Nancy S. Pollard

(see Figure 6):

—Choose a source node s (green 7S”).
—Flood out from s, tagging all reachable nodes (blue vertical hashes).
—Flood into s, tagging all nodes reaching it (red horizontal hashes).

—Intersection of the two tagged sets is the SCC (purple ”+7).

In practice, motion graphs embedded into environments typically result in an embedded graph with a
single SCC whose number of nodes is linear in the total number of nodes in the environment which are not
obstructed by obstacles!; 10-25% of the total number of nodes in the environment is a typical size for an
SCC. Accordingly, s can be chosen uniformly at random until a node inside the SCC is found without an
asymptotic increase in time?.

Flooding is done using a multi-pass Breadth-First Search. For finding the set of Reachable nodes, bit arrays
are used to tag which nodes are Active or Reached. Initially only s has its Active bit set, and no nodes
have their Reached bits set. At each pass, the algorithm iterates through each node k in the environment.
If Active(k) is set, then k is expanded. Expanding a node consists of setting Reached(k) to true, setting
Active(k) to false, and finding the set of edges for k3. For each of those edges j, Active(j) is set if and only
if Active(j) and Reached(j) are both false (i.e., j has not been tagged or expanded yet). The algorithm ends
when there is no node k such that Active(k) is set.

Since any node’s Active bit is set to true at most once, the algorithm terminates. Since all nodes reachable
from s will have their Active bit set, the algorithm correctly computes the set of nodes reachable from s.
Each pass of the algorithm may touch every node in the environment, but each edge is expanded only once
per flood direction. Accordingly, the runtime of the algorithm is the cost of computing whether each edge
is valid in the environment plus the cost of reading each node’s tags for each iteration until until the search
is complete; i.e., O(e) + O(D x N), for e the number of edges in the SCC, N the number of nodes in the
environment, and D the diameter of the embedded graph (i.e., the maximum depth of the Breadth-First
Search). In practice, the O(e) term dominates, making the algorithm approximately as efficient as regular
Breadth-First Search.

The set of nodes which can reach s is computed analogously; however, since the set of reachable nodes
in already known, only those nodes need to be expanded, as no other nodes can be in the SCC. This offers
substantial computational savings.

Note that storing the Reachable and Reaching sets requires two bits of storage per node, and that another
bit is required as scratch memory for the Active set, for a total memory requirement of three bits per node.

4.2.1 Space Complexity. We can estimate the theoretical space complexity of the embedded graph with
respect to the parameters affecting it. For a given environment, the number of nodes in the embedded graph
is

O(n) = O(AzzaC) (1)

! There is some evidence this should be expected; see, for example, [Muthukrishnan and Pandurangan 2005] regarding this
property in random geometric graphs.

2In practice, the actual overhead is minimal if fast-fail tests are used. Testing that source nodes have at least 5,000 reaching
and reachable nodes efficiently rejects most nodes outside the SCC; in our experiments, testing that the source node can reach
itself was the only other fast-fail test required.

3Recall from Section 4.1, an edge from node [z, 2,6, c] to node [/, 21,01, c/] exists if and only if (1) clip ¢ can transition to
clip ¢/ in the original motion graph, (2) starting the character at position (z,z,0) and animating it with clip ¢/ will place
(1, z1,6r) within that clip’s footprint, and (3) the resulting path is valid in the environment (i.e., avoids obstacles and respects
annotations).

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



Evaluating Motion Graphs for Character Animation : 11

and the number of edges in the embedded graph is
O(e) = O(Ax*2%a*Cb) = O(nxzab) (2)
where:

A = the accessible (i.e., character would not collide with an obstacle) area of the environment, in m?.

x = the discretization of the X axis, in grid cells per m.

z = the discretization of the Z axis, in grid cells per m.

a = the discretization of the character’s facing angle, in grid cells per 27 radians.

C = the number of motion clips used (i.e., the number of nodes in the original motion graph).

b = the mean branching factor of the original motion graph.

Equation 1 simply notes that the number of nodes in the SCC is linear in the total number of nodes
into which the environment is discretized. Equation 2 demonstrates how the average number of edges per
node is constant with increasing environment size, but increases linearly with increasing resolution (in each
dimension), due to more grid points being packed under each clip’s editing footprint. Note that a clip’s
editing footprint increases in size with the length and duration of the clip, but that enforcing a minimum
and maximum clip duration when creating the motion graph ensures two clips’ footprints will differ in area
by at most a constant factor.

The one-step unrolling algorithm presented in [Reitsma and Pollard 2004] stores the edges of this embedded
graph explicitly, and so has space complexity O(nzzab). By contrast, the flood-based algorithm presented
here has space complexity O(n); i.e., linear in the number of nodes in the embedded graph, rather than
in the number of edges, meaning the amount of memory required is reduced by a factor of ©(zzab). In
practice, the big-Theta notation hides an additional large constant factor of improvement, as only a few bits
are required to compute and store each node.

The empirical scaling behavior of these two algorithms with respect to environments of increasing size is
examined in Section 6.4.3.

4.2.2 Time Complexity. While the space-efficient algorithm requires asymptotically less space than the
one-step unrolling algorithm, it typically does not require asymptotically more time.

The algorithm of Reitsma and Pollard [2004] computes each edge candidate in the environment once,
stores valid edges, and accesses each cached edge twice when using Depth-First Search to find the SCC. The
runtime for this algorithm is:

Trpoa = O(0Nbf + 2E) = O(oF + 2E) = ©(oF) (3)

where NV is the number of unobstructed nodes in the environment, f is the mean number of nodes under
the footprint of a clip, E is the number of edges in the environment, and o is the mean number of obstacle-
intersection tests required when computing each edge.

When expanding a node, the algorithm of Section 4.2 computes either incoming edge candidates or outgoing
edge candidates. As anode will be expanded only once in each direction (Reachable/Reaching), each outgoing
edge candidate from that node and each incoming edge candidate to that node will be computed only once
when finding the SCC. Accordingly, the runtime of our algorithm is:

T't100a = O(onbf + onbfr) = O(oF) (4)

where n,. is the number of nodes reachable from the SCC, and f/ is the mean number of nodes under the
reverse footprint of a clip (i.e., the set of start points {p, 8} such that the footprint of clip ¢ played from that
point will contain the end point (pr, 67)).

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



12 : Paul S. A. Reitsma and Nancy S. Pollard

|
theoretical| __|
edit region| | | /

edit region

£

i

S\ Y \\\ x \
AY \\ edit region

‘\\ |\Z motion path
Ay shapped to grid

(solid line) 10V
]

Fig. 7. In our grid-based algorithm, the end of each motion segment is snapped to the centers of grid points inside the editing
footprint for that motion segment. This figure compares how growth in this theoretical edit region compares to the regions
actually used in the grid-based algorithm.

In the typical case, where n = O(N) (i.e., the number of nodes in the SCC is linear in the number of
unobstructed nodes in the environment), the runtimes for T;p04 and Tf00q are asymptotically equivalent.
Substantial runtime differences can occur from two sources: first, f/ will typically be larger than f, due to
the manner in which angular edits are made to clips; second, n, and especially n will typically be smaller
than N. Empirical runtimes are examined in Section 6.4.3.

4.3  Correctness of the Embedding Algorithm

Our embedding algorithm is resolution complete in the sense that a sufficiently fine grid will capture all
significant variations in character paths that are possible given our motion graph, task domain, and motion
editing model. However, at practical grid resolution, some possible paths will be lost. Figure 7 shows an
example. Consider a straight walking motion that can repeat. Figure 7 shows a sketch of edit regions grown
using our approach, which requires forcing motion clips to terminate at cell centers. The theoretical edit
region that would result from playing the same motion clip twice in succession is also shown. Eventually,
(after playing the motion clip three or four times in succession), the theoretical edit region will contain
grid centers that are not captured by our algorithm. As the grid is made finer, the practical effect of this
approximation will decrease, and we discuss the results of experiments testing the stability to changes in
grid resolution of our analysis approach in Section 6.5.

The embedding algorithms are made conservative by making connections only to grid centers within the
edit region associated with a motion segment. When the algorithms are implemented in this way, no paths
can be generated that are not possible given the motion graph, task domain, and motion editing model.

4.4 Obstacles and Annotation Constraints

Annotations can be used to define general constraints on the motions usable in the environment; annotations
we used (with examples of use) included:

—Obstacle cannot be traversed (high wall).

—Obstacle can be traversed by jumping motions (chasm).

—Obstacle can be traversed by jumping or stepping motions (low wall).
—Region can be traversed only by sneaking motions (area near guard).

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



Evaluating Motion Graphs for Character Animation : 13

—Region cannot be traversed by jumping motions (normal locomotion should not be assumed to include
jumping for no reason).

—Picking-up motions should not be used unless the user selects the action.

Most of these annotations—either defining different obstacle types which interact differently with different
motion types, or defining regions where the character must act in a certain way—are self-explanatory, and
are handled automatically during collision-detection; any path which violates an annotation constraint will
not be expanded, and hence cannot contribute to the embedded graph. Annotations such as the last one are
more complicated, as some motions need to be designated as strictly-optional (and hence cannot be used to
connect parts of the embedded graph) but readily-available. We refer to these as selective actions.

4.5 Selective Actions

Selective actions are those actions which must be strictly optional (i.e., selectable by the user at will, but
otherwise never occurring in unconstrained navigation). A user may choose to have the character perform a
picking-up action when there are no nearby objects on the floor, for example, but it would look very strange
for such a spurious pick-up action to show up in automatically-generated navigation.

An embedded graph created from all motions will not respect this requirement; in particular, parts of
the environment may be reachable only via paths which require selective actions, rather than by regular
locomotion, and hence those parts of the environment should not be considered reachable.

Selective actions are handled by a slight modification to the embedding algorithm. First, the embedding
algorithm described previously is run with only those actions deemed “locomotion” permitted; all other
actions are deemed “selective”, and are not expanded, although any selective-action nodes reached are
marked as such. An exception is made for selective actions which are necessary for traversing an annotated
obstacle; e.g., jumping motions are permitted only insofar as they are required to traverse obstacles such
as the jumpable-chasm obstacle in Figure 2(b). This creates a backbone embedded graph composed of
locomotions.

Next, for each reachable selective action, nodes from all valid paths of reasonable length are added to the
embedded graph. The result may not be a strongly connected component, since some of the added paths
may not rejoin the SCC; accordingly, the embedding algorithm is rerun (as illustrated in Figure 6) to find
the new strongly connected component. This time, however, the resulting SCC must be a subset of the
previous embedded graph (i.e., the original SCC plus the added paths); hence, that information can be used
to substantially reduce the number of nodes expanded by the embedding algorithm. The resulting embedded
graph, known as the augmented SCC will automatically include all reachable selective actions which can in
turn reach the backbone SCC by paths of reasonable length, and will include all such rejoining paths.

The cost for creating this augmented SCC is the cost for creating the initial SCC, plus the cost of adding
in paths from each selective action out to a fixed depth, plus the cost of re-running the flooding algorithm
on this subset of nodes. The total cost is:

Taug = Tflood + Tpaths + Tflood/ = O(OE) + O(O’I’Lbfh) + O(OE) = O(OE) (5)

where h is the mean depth in edges of the added paths. Comparing to Equation 4, computing the augmented
embedded graph is asymptotically equivalent to computing the regular motion graph with all motions treated
equally, and in practice requires about twice as much computation time. In addition, storing the “selective”
actions during computation of the initial embedded graph and storing that initial SCC during computation
of the final, augmented SCC requires an extra bit of storage per node, for a total cost of four bits per node
in the environment.

We used this type of embedded graph for all of our experiments.

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



14 : Paul S. A. Reitsma and Nancy S. Pollard

Fig. 8. A grid cell is covered by a clip if that clip’s footprint includes the cell’s center. (Covered grid cells are in green.)

5. MOTION GRAPH CAPABILITY METRICS

To measure the capability of a motion graph, we define metrics which evaluate the motion graph’s ability to
fulfill the requirements identified in Section 3.4.

5.1 Environment Coverage

The most basic problem a motion graph can have in an environment is simply that it is unable to navigate
the character effectively enough to access large regions of that environment. Accordingly, the environment
coverage metric is designed to capture the ability of the character to reach every portion of its workspace
without becoming irretrievably stuck, similar to the viability domain from viability theory (see, for example,
Aubin [1990]). For navigation, this workspace is represented by discretized grid points {X, Z, ©} (see Section
4.1).

We define grid point (X, Z,0) as covered by clip c if the center of (X, Z,©) is within the footprint of ¢
(see Figure 8).* From this occupancy information we compute Environment Coverage as:

>, covered(i)
; collisionF'ree(i)

C = 6

X724 = 5 (6)
where the numerator contains a count of all 3D grid points which are covered by at least one clip in the
embedded graph, and the denominator contains a count of all grid positions which are theoretically valid
for character navigation (i.e., some motion type exists for which the character would not collide with an
obstacle or violate an annotation constraint; see Figure 9). C'xz4 is a discretized estimate of the fraction of
viable (z, z,0) workspace through which the character can navigate under arbitrary control. Cxz, the 2D
equivalent, can be defined analogously.

Regions with low or no coverage typically indicate that the entrances to those regions from the rest of
the environment are highly constricted, and there are few ways to place the motions required to enter that
region without colliding with obstacles or violating annotation constraints.

5.2 Action Coverage

The coverage for action k is defined analogously to Environment Coverage. The 2D version is:

>, coveredy (i)

; collisionF'ree(i)

(7)

Cxzi= 5

4An alternative definition of coverage is that any grid point containing any root position of any frame of any clip is covered. In
practice, these definitions give essentially identical results, but the former definition is significantly faster to compute.

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



Evaluating Motion Graphs for Character Animation : 15

Fig. 9. Coverage over a simple environment. Obstacles are in red; covered areas are in grey. Brighter grey means more coverage
(i.e., the grid location is covered by more clips).

where coveredy (i) is true if and only if there exists an edge in the embedded graph such that animating the
character with that edge causes the central frame of action k to occur in grid location 1.

5.3 Path Efficiency

The path efficiency metric is designed to evaluate the ability of the motion graph to allow the character
to navigate efficiently within the accessible portion of the environment. Each path will have a particular
value for path efficiency, and hence the goal is to estimate the distribution of path efficiencies over the set
of all possible paths through the environment. To estimate this distribution, we must make an assumption
about the manner in which paths will be specified. For this paper, we examine the problem of point-to-point
navigation, where the (X, Z) values of start and end points are specified (such as with a mouse) and a path
must be found for the character to travel between these two points®. Ideally, a near-minimal-length path
would exist for all pairs of start and end positions. The metric for relative path length in point-to-point
navigation is:

Ep = pathLength (8)

mainPathLength

where pathLength is the length of the shortest path available to the character from the start point to the
end point and minPathLength is the length of an ideal reference path between those two points (see Figure
10).

When evaluating the path efficiency ratio of a (start, end) pair, we work with the embedded graph described
in Section 4. Using this graph ensures that only paths which do not result in dead ends are considered, and
also significantly improves the efficiency of shortest path calculations.

Given this embedded graph, we use Monte Carlo sampling to estimate the distribution of path efficiency
ratios within the 4D space defined by all valid (start,end) pairs. Start and end positions are selected
uniformly at random from the set of grid positions which have non-zero coverage (see Section 5.1). Value
pathLength, the shortest path available to the character, is computed using A* search through the embedded
graph. Value minPathLength, the shortest path irrespective of available motions, is estimated using A*
search over the discretization grid imposed on the environment, with each 2D (X, Z) grid location being
connected to all neighbors within five hops in either X or Z (i.e., an 11x11 box). Path efficiency is then
computed as in Equation 8.

Due to the highly discrete nature of motion graphs, extremely short paths may have unrepresentative path
efficiency ratios according to the presence or absence of a clip of particular length in the motion graph; to

5Several similar definitions of this metric are possible, such as accepting paths that pass through the target point, rather than
only ones ending there. In practical embedded graphs, the results will tend to be very similar, but the definition used here can
be computed more quickly, and is closer to the “go to the click” interaction paradigm which motivates the metric.

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



16 . Paul S. A. Reitsma and Nancy S. Pollard

Fig. 10. Paths through a simple environment. Obstacles are in bright red, the minPathLength path is in deep red, and the
pathLength path is in green (starting point is marked with a wider green dot). (Left) A typical path. (Right) The theoretical
minPathLength path can head directly into the wall, while the pathLength path, which relies on motions in the SCC, must end
in a state that allows for further movement.

reduce this erratic influence and to consider paths more representative of typical user-controlled navigational
tasks, we throw away (start,end) pairs whose linear distance is less than 4m and re-select start and end
candidates. Since the space complexity of Ax grows exponentially with path depth and we expect more
sophisticated planning algorithms will be used in practice, we similarly throw out (start,end) pairs whose
minPathLength is greater than 7m. We believe such longer paths will not have significantly different path
efficiency distributions from paths in the 4 — 7Tm range, due to the ability to chain shorter paths together
to create long ones. Note also that extremely slow-moving motions, such as idling in place, can skew the
results. We treat each clip as having a minimum effective speed of 0.5m/s for the purposes of minimum
path computation in order to help filter out spurious paths such as ones which make all turns by stopping
and turning in place. Note that this speed is virtual only; while a path which includes two seconds of idling
would have an additional 1m added to its length during the search for the shortest path, if selected its true
length would be used to calculate the path efficiency ratio.

A poor score on the Path Efficiency metric usually results from the most direct route between the start
and end locations passing through areas of very limited coverage (and, hence, very limited path options).

5.4 Action Efficiency

This metric measures the efficiency overhead required to execute a desired action, such as picking up an object
lying on the floor across the room. The metric is measured in a Monte Carlo fashion exactly analogous to
that described for Path Efficiency:

pathLength, )
minPathLength

where a is the action type in question, minPathLength is the length of the reference path computed exactly
as per the path efficiency metric, and pathLength 4 is the length of the shortest path through the embedded
graph that ends in a clip which executes an instance of action a in the end location.

High values of this metric as compared to the Path Efficiency value for the same (start, end) pair typically
represent actions which are inflexibly linked into the motion graph, such as a ducking motion which can only
be accessed after running straight for several meters, and which are coupled with or consist of motions which
do not fit well into regions of the environment (such as a region requiring twisty paths between obstacles).

AE, =

5.4.1 A* Planner. Our A* planner uses the following as a conservative distance estimate:

Dest:DS—>X+||X_E|| (10)

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



Evaluating Motion Graphs for Character Animation : 17

where D, is the heuristic estimate of distance from the start point S to the end point E, Dg_ x is the
length of the path currently being examined, and || X — E|| is the linear distance between X, the end of the
current path, and F.

Note that our A* path planner returns the optimal path between the specified start and end locations;
applications which use a different style of planner which sometimes returns sub-optimal paths will have
commensurately-worse path-based metric results. In the more demanding environments, some of the optimal
paths initially move a substantial distance away from the end location, so a path planner with a limited
horizon would generate paths that were longer or even substantially longer than optimal, which would result
in a worse score on both the Path Efficiency and the Action Efficiency metrics.

5.5 Local Maneuverability

Inspired by the idea of local controllability [Luenberger 1979], the local maneuverability metric is designed to
evaluate the responsiveness of the character to interactive user control. In many interactive applications, a
highly responsive character is critical; in a hazardous-environment training scenario, for example, a significant
lag in character response would not only be immensely frustrating and interfere with training, but could
actually teach bad habits; for example, if a character is unable to transition rapidly into evasive behaviors,
users may simply learn to avoid using such behaviors, even in situations where they would be appropriate.

The instantaneous local maneuverability of a character is simply the mean amount of time required for that
character to perform any other action which is currently valid. At a particular moment, the instantaneous
local maneuverability of the character with regard to action k is:

LMy (t) = (1 — a(t)) % Doy + MDP, (11)

where ¢ is the currently-playing clip, «(t) is the fraction of that clip already played at time ¢, D, is the
duration in seconds of clip ¢, and M D Py, is the shortest possible time to reach an instance of motion type k
from the end of the current path while following paths from the motion graph. For example, if the character
is 0.3s from the end of a running clip and the minimum-time path from the end of that clip to an instance
of punching is 1s, then the character’s Local Maneuverability with respect to punching is 1.3s.

The character’s overall Local Maneuverability is the weighted sum of its per-action Local Maneuverabilities:

1
LM(t)= —— > (wyxLM) (12)
KN e e,

where K is the set of actions which are in the motion graph and currently valid, and wy is the weight for
action type k. This gives an overall measure of the character’s ability to respond to external control, taking
into account the different reactivity needs of the different motion types (i.e., evasive actions such as ducking
may need to be available much more rapidly than actions such as picking up an object).

There are two ways to measure expected overall local maneuverability. The first is Theoretical Local
Maneuverability, which is measured in the original motion graph:

1

LMyp ) = ——
el

> (0.5% D, + MDMP,) (13)
ceC

where C is the set of all clips in the motion graph and M DM F. j, is the duration in seconds of the minimum
duration path through the motion graph from the end of clip ¢ to any instance of motion type k. This gives
a baseline for what instantaneous local maneuverability a character can be expected to have at any time
under ideal conditions (i.e., the environment does not invalidate any of the minimum-duration paths). Poor
theoretical local maneuverability values typically indicate poor connectivity between motion types in the
motion graph.

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



18 : Paul S. A. Reitsma and Nancy S. Pollard

By contrast, in-practice or Practical Local Maneuverability computes the expected instantaneous local
maneuverability from each node of the embedded graph:

1

LMpj = ——
PEa]l

> (05D, + MDEP,, ) (14)
neG

where G is the set of nodes in the embedded graph, ¢, is the clip associated with embedded graph node n,
and MDEP, ; is the duration in seconds of the minimum duration path through the embedded graph from
the end of clip ¢ to an instance of motion type k. This gives an expectation for what instantaneous local
maneuverability a character can be expected to have at any time when navigating through the environment
in question. Comparing this to its theoretical equivalent can provide information about the restrictions the
environment places on responsiveness to user control.

Note that computing local maneuverability for every node is computationally expensive; in practice, we
use a subset of nodes selected uniformly at random (i.e., 1% sampling means any particular node was used in
the calculation with probability 0.01). The stability of the result at different sampling densities is examined
in Section 6.5.

Finally, note that local maneuverability can be computed for many slices of the data; of note are:

—Computing the local maneuverability for a single action which needs to be rapidly accessible at all times
(such as evasive ducking).

—Computing the local maneuverability from one subset to another, such as from locomotions to all evasive
maneuvers.

—Computing the local maneuverability from locomotions to same-type locomotions with the character’s
facing turned more than N degrees clockwise from the starting facing, in order to gain a local measure of
the character’s ability to respond rapidly to a user’s navigational directions (such as “run into that alcove
to the left to avoid the boulder rolling at you”).

—Computing statistical information on any of the above by examining the distribution of local maneuver-
ability values over all nodes. Information about extremal values, such as how often it would take greater
than 3 seconds to reach an evasive motion, can be particularly informative.

6. RESULTS
6.1 Example Scenarios

The two components of a test scenario are the motion graph used and the environment in which it is em-
bedded. Our primary test environment was a large room with varying levels of clutter (Figure 11(c)). This
room measures 15m by 8m, and our primary testing resolution used a grid spacing of 20cm by 20cm for
the character’s position and 20 degrees for the character’s facing angle. We include results from other en-
vironments, including tests on randomly-generated environments of varying sizes and configurations, and
other discretization grid resolutions. To take into account obstacles, we do collision detection with a cylin-
der of radius 0.25m around the character’s root, although more exact collision detection algorithms (e.g.,
[Gottschalk et al. 1996]) could be plugged in seamlessly; hence, all obstacles can be described as 2D shapes
with annotations.

All motion graphs used were computed using motions downloaded from the CMU motion capture database
(mocap.cs.cmu.edu). Our dataset consisted of 50 motion clips comprising slightly over seven minutes of cap-
tured motion, with significant amounts of unstructured locomotion (running, sneaking, and idling), several
examples each of several actions (jumping, ducking, picking up an object from the floor, punching, and
kicking an object on the floor), and transitions between the locomotions and some of the (locomotion,action)

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



Evaluating Motion Graphs for Character Animation : 19

15 meters

8 meters

(a) Empty (b) Random (c) Baseline

Fig. 11. Evaluation environments of increasing complexity. The upper obstacle (blue) in environment (c) is annotated as a
chasm or similar obstacle, meaning it can be jumped over.

pairs (sneak+duck, run+duck, run+punch, run+kick, sneak-+pickup, etc.). Each source motion was labeled
with the types of motions it contained, as well as the start, center, and end times of actions.

The per-pair values of adding a transition between any pair of frames were computed using the technique
of Lee et al. [2002]. The resulting matrix of transition costs was processed in a globally-greedy manner to
identify local maxima (see Appendix B) and to enforce user-specified minimum and maximum clip lengths.
Our primary motion graph consisted of 98 nodes (clips) connected by 288 edges, representing 1.5 minutes of
motion capture data with eight distinct types of motion. We also include results from larger motion graphs
containing additional examples of the same types of behavior.

Our embedding algorithm was implemented in Java and used a simple hash table of fixed size to cache
nodes’ edge lists during metric evaluation, with hash table collisions being resolved by a simple hit-vs-miss
heuristic. Running on a 3.2GHz Xeon computer, finding the final (augmented) embedded graph required
about 6.7 minutes and produced an embedded graph with 218K nodes and 1.88M edges.

When playing back motion through the embedded graph, transitioning from the end of motion clip A to
the start of clip B was done by warping the first frame of clip B to match the last frame of clip A, and
then using quaternion splines to smoothly remove that warping over the following 0.5s. Motion editing to
warp clips to grid centers was done using displacement splines on the root translation and facing angle. This
editing technique of course creates footsliding artifacts, which should be cleaned up in post-processing.

6.2 Baseline

Table I shows evaluation results from our basic test scenarios. XZ Coverage is the fraction of collision-free
(X,Z) grid cells in the environment which contain at least one node of the embedded graph; XZA Coverage
is the analogous quantity taking into account character facing (see Section 5.1). Local Maneuverability
(Section 5.5) is the minimum-duration path from a running motion to an instance of the “pick” action in
either the original motion graph (Theoretical LM) or the embedded graph (Practical LM). Path Efficiency
is the ratio of the distances of the shortest point-to-point path in the embedded graph vs. an ideal reference
path (Section 5.3), and Action Efficiency is the ratio of the distances of the shortest path ending in a “pick”
motion vs. the same ideal reference path (Section 5.4). All of these paths are optimal for their particular
start and end locations, so the Median Path Efficiency, for example, is the efficiency of the optimal path for

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



20 : Paul S. A. Reitsma and Nancy S. Pollard

Environ || Coverage(%) Local Maneuv Path Efficiency Action Efficiency

XZ XZA Theory | Prac Mean | Median Mean Median
Empty 99.8 94.1 3.6s 4.4s 1.00 1.00 1.25 1.11
Random 94.3 66.5 3.6s 5.6s 1.21 1.03 1.93 1.85
Baseline 95.7 60.6 3.6s 6.6s 1.87 1.11 2.85 2.59

Table I. Evaluation results for the three basic test scenarios. Capability steadily worsens as the environments become more
congested with obstacles, as shown by the across-the-board increase of all metric values.

a typical pair of start and end points. Accordingly, any scenario with poor Path Efficiency has a poor value
for that metric in the optimal case, so a path at “90% Path Efficiency” means the optimal path for that
particular start and end location was less efficient than the optimal paths for 90% of the other (start, end)
pairs chosen.

Results for the environment with no obstacles are excellent, suggesting that the process of discretization
and analysis does not unduly affect the capabilities of the motion graph. Note, however, how Practical Local
Maneuverability and Action Efficiency show mobility is slightly affected, largely by the walls surrounding
the environment removing some path options.

The environment with randomly-placed obstacles is relatively open, but represents a much more realistic
environment, with more interesting evaluation results. XZ Coverage is still high (94.3%), but XZA Coverage
is much lower (66.5%), reflecting congested regions which the character can only traverse along a single axis.
Median Path Efficiency is still very close to the optimum, but the mean path is over 20% longer than the
reference path, meaning that some regions of the environment are difficult for navigation and require very
long paths. This is reflected more strongly in the sharply higher values for Practical Local Maneuverability
and especially for Action Efficiency. The latter is especially interesting; even the median paths were much
(85%) longer than the reference paths, suggesting that the motion graph requires a sizeable open region to
efficiently set up and use motions such as “pick”s.

The performance of the default motion graph in the Baseline Environment — the most obstacle-dense of
the three — is quite poor, especially with respect to having the character use specific actions in specific parts
of the environment. The high XZ Coverage value (95.7%) indicates that the character can reach almost
any point in the environment; however, the lower XZA Coverage value (60.6%) — reflecting restrictions on
the character’s facing at many points in the environment — indicates the character may have a restricted
ability to maneuver at many points. We see that most point-to-point paths through the embedded graph are
still relatively efficient (median was 11% longer than reference), although interactions with highly congested
regions of the environment cause a significant number of exceptions (Figure 12).

By contrast, the mean time from any frame to the nearest “pick” action in the embedded graph is almost
doubled (3.6s to 6.6s) from its already-high value in the original motion graph, and is substantially worse
than the equivalent measurement in the relatively-cluttered Random Environment. Accordingly, we observe
substantial difficulty in creating efficient point-to-point paths which end in a specific action, such as a “pick”
motion; even typical paths (Figure 13) are about 160% longer than the ideal reference paths (see Table I,
Action Efficiency (Median)).

Of the discrete actions available in our motion graph (i.e., pick, duck, kick, punch), the range of areas in
which each could be used varied widely (see Figure 14). In addition, a slight modification to the Baseline
Environment radically changed the coverage pattern (see Figure 15).

Section 6.3 examines several potential approaches for improving the performance of motion graphs in this
environment. Section 6.4 explores how this evaluation approach scales with increasing size and complexity
of scenarios, as well as the effects of our on-demand edge computation algorithm. Finally, specifying a set
of metrics required making several assumptions, the validity of which are examined in Section 6.5.

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



Evaluating Motion Graphs for Character Animation : 21

) Good path ) Median path ) Bad path
(IOth percentile) (50th percentile) (90th percentile)

Fig. 12. Representative character navigation paths in the baseline scenario. The best paths actually available to the character
are in green, ideal reference paths are in dark red. The starting point of the actual path is drawn slightly widened. A 10"
percentile path means that, of all the (start,end) pairs tested, only 10% resulted in a better Path Efficiency metric score (i.e.,
had a ratio between optimal path actually available to the character and ideal reference path that was lower).

) Good path ) Median path ) Bad path
(10th percentile) (50th percentile) (90th percentile)

Fig. 13. Representative character pick paths in the baseline scenario. Best-available paths ending in a pick action are in dark
green and ideal reference paths are in dark red. The starting point of the actual path is drawn slightly widened. A 10"
percentile path means that, of all the (start,end) pairs tested, only 10% resulted in a better Path Efficiency metric score (i.e.,
had a ratio between optimal path actually available to the character and ideal reference path that was lower).

6.3 Improving Motion Graphs

We examine the effects of three common techniques which can be used to improve the flexibility of a
character’s performance when using a motion graph:

(1) Adding more motion data
(2) Allowing more motion editing

(3) Increasing inter-action connectivity

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



22 : Paul S. A. Reitsma and Nancy S. Pollard

|

(a) Duck coverage (b) Kick coverage ) Punch coverage ) Pick coverage

Fig. 14. XZ Coverage locations for ducking, kicking, punching, and picking-up in the baseline scenario. Areas where the action
can be performed are marked in white. Section 7.2 examines the poor coverage of the punching action.

) Baseline ) Shortened (¢) Larger motion
graph

Fig. 15. (a) XZ Coverage for the baseline scenario. (b) XZ Coverage for a version of the baseline scenario with the environment
shortened from 15m to 14m. (c) XZ Coverage for the shortened environment with a larger motion graph. Areas through which
the character can navigate are marked in grey, with brighter grey corresponding to more ways to navigate through the area.

6.3.1 Larger Motion Graphs. Table II shows the evaluation results for motion graphs of approximately
200%, 300%, and 400% the size of the baseline motion graph (first row). Larger motion graphs were created
from the original dataset by allowing progressively lower-quality transitions to be included in the motion
graph. Larger motion graphs allow more flexibility in creating motions, and improve the metrics across the
board; however, no substantial improvement to the efficiency of paths ending in a “pick” action was noted
until the size of the motion graph had tripled from the original, and adequate performance was not obtained
until a motion graph of quadruple size was used.

In addition, even the motion graph of 200% baseline size allowed sufficient flexibility to navigate efficiently
within the Baseline Environment, and to restore the capability lost in the shortened environment (see Figure
15).

Unfortunately, our primary method of generating larger motion graphs — by lowering the threshold for
acceptable transitions when creating the motion graph — tended to lower the overall quality of motions
generated from that motion graph, due to the larger amount of editing needed to smooth over the lower-
quality transitions. In practice, some of the paths generated from the largest motion graph were very

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



Evaluating Motion Graphs for Character Animation : 23

Coverage(%) Local Maneuv Path Efficiency Action Efficiency

Clips XZ XZA Theory | Prac Mean | Median Mean Median
98 95.7 60.6 3.6s 6.6s 1.87 1.11 2.85 2.59
190 || 98.3 90.3 3.3s 4.6s 1.11 1.01 2.36 2.10
282 98.3 91.5 3.6s 3.9s 1.06 1.01 1.47 1.37
389 || 98.3 95.5 2.6s 3.0s 1.02 1.00 1.20 1.11

Table II. Evaluation results by size of motion graph (see Section 6.3.1). All metric values show substantial improvement,
although different tasks improve at different rates.

Edit Coverage(%) Local Maneuv Path Efficiency Action Efficiency
Size XZ XZA Theory | Prac Mean | Median || Mean Median
75% || 40.5 17.2 3.6s 10.3s 2.67 2.67 5.12 5.39
88% 51.5 28.9 3.6s 9.0s 1.54 1.24 3.29 3.31
100% || 95.7 60.6 3.6s 6.6s 1.87 1.11 2.85 2.59
112% 96.8 69.4 3.6s 5.9s 1.55 1.05 2.34 1.89
125% || 97.2 75.9 3.6s 5.7s 1.25 1.02 1.98 1.48
150% 98.3 84.0 3.6s 4.9s 1.18 1.02 1.61 1.19

Table III. Evaluation results for the baseline scenario with different sizes of editing footprint (see Section 6.3.2). All metric
values improve, but not necessarily to acceptable levels (e.g., Local Maneuverability).

efficient and looked good at a global level, but contained poor-quality motion and looked poor at a more
local level, suggesting that increased capability from lower transition thresholds should be balanced against
this potential quality loss.

6.3.2 Increasing Allowed Editing. Table III shows the evaluation results for the baseline motion graph
with varying assumptions about the maximum allowable amount of motion editing. The results show that a
minimum level of editing is necessary to form a well-connected embedded graph. After that point, however,
capability improves at a decreasing rate. Even the highest level of editing does not adequately resolve the
problems with poor Practical Local Maneuverability and Action Efficiency, with transitioning from running
to a “pick” action taking a mean of almost 5 seconds, and paths ending in a “pick” being over 60% longer
than the ideal reference paths.

While allowing more motion editing permits greater coverage of the environment, in practice there are
limits on the extent to which a motion can be edited while remaining of high enough quality to meet the
requirements of the application. When editing size is larger than 125% of baseline, we observe unacceptable
footsliding artifacts in the resulting motion.

6.3.3 User-Modified Motion Graphs. Table IV compares the baseline motion graph with a small but
densely-connected hub-based motion graph which was carefully edited to have highly-interconnected motion
types in a manner similar to that of Lau and Kuffner [2005].

While the hub-based motion graph has superior Local Maneuverability, its Path Efficiencies are only
slightly better than that of the baseline motion graph. In general, the hub-based motion graph did not offer
as much improvement as expected, some reasons for which are examined in Section 7.2.

6.4 Scaling Behavior of the Methods

Realistic scenarios often include large environments with complex motion graphs, and a practical method for
evaluating motion graphs must be able to scale to meet these demands. We examined the scaling behavior
of the evaluation method in terms of increasing demands of several different types.

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



24

Paul S. A. Reitsma and Nancy S. Pollard

Motion || Coverage(%) Local Maneuv Path Efficiency Action Efficiency
Graph XZ XZA Theory | Prac Mean | Median Mean Median
Baseline 95.7 60.6 3.5s 6.6s 1.87 1.11 2.85 2.59
Tuned 93.0 40.0 2.9s 5.2s 1.51 1.17 2.48 2.39

Table IV. Evaluation results for the Baseline Environment with either the baseline motion graph or a smaller, hub-based one
(see Section 6.3.3). The hub-based motion graph has better capability by most measures, but by a surprisingly small amount.

Fig. 16. 40m by 10m environment partitioned into rooms by 8m-long walls and populated with random obstacles. 10m by 10m,
20m by 10m, and 80m by 10m environments of the same format were also used to evaluate scaling behavior of the algorithm in
equivalently-dense environments.

Time(s) Edges Memory Used

Area(m?) Total | Embedding | Metrics /sec | /m? Base Peak
56 612 163 470 3.5k 10k 182MB | 204MB

120 1,769 742 1,010 5.8k 36k 182MB | 283MB

240 4,709 2,137 2,550 8.2k 73k 183MB | 382MB

1,000 24,337 15,667 8,653 8.3k | 130k 190MB | 361MB
5,000 || 417,075 274,052 142,955 10.2k | 560k || 222MB | 542MB

Table V. Time and memory requirements for evaluation of environments of different sizes.

“Edges/sec” is the number of edges in

the embedded graph divided by the total embedding time. For comparative purposes, an NBA basketball court is approximately
430m?, and an NFL football field is approximately 5, 300m?; evaluation of either would fit comfortably within the memory of

a typical desktop PC.

Size(m) || Embedding || Time(s) Edges
Time(s) /m? /sec | /m?
10x10 1,007 10.5 3.7k 38k
20x10 2,190 11.0 3.5k 39k
40x10 4,076 10.2 3.8k 39k
80x10 9,571 12.0 3.7k 44k

Table VI. Time to compute the embedded graph is approximately linear with area across environments with equivalent obstacle
densities. (Additional “fake obstacles” (which had no effect on edge validity) were added to the smaller environments to equalize
collision-detection overhead between environments.)

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



Evaluating Motion Graphs for Character Animation : 25

6.4.1 Scaling with Increasing Area. Table V shows the time and memory requirements for evaluating
environments of different sizes. Embedding Time is the total computation time required to obtain the
strongly connected component of the final embedded graph. Metrics time is the computation time required
to compute all metrics. Base memory is the memory use reported by the Java Virtual Machine (JVM)
after the graph embedding. Peak memory is the maximum memory use reported by the JVM; path search
is the main contributor to the difference between peak and base memory, with some effect from dynamic
edge caching. Each environment was populated with randomly-selected and randomly-placed obstacles in
the manner of the Random Environment (Figure 11(b)) of a size appropriate to the environment (i.e., larger
environments tended to have both more and larger obstacles). Graph embedding dominated the running
time of larger environments, increasing from 28% of processing time for the smallest environment to 66% for
the largest.

In this experiment, runtime scaled approximately quadratically with area, but actually decreased on a
per-edge basis (“Edges/sec” column in Table V). The apparent reason for this quadratic scaling with area
is that the size of each obstacle increased with the size of the environment, making successive environments
closer and closer approximations of an unconstrained environment; accordingly, the size of the embedded
graph (and hence the computation time) increased faster than the size of the environment (“Edges/m?2”
column).

To factor out the effects of different obstacle densities, we examined a set of environments designed to
have approximately equal obstacle density (see Figure 16). All environments in the set were 10m long, with
widths of 10m, 20m, 40m, and 80m. Each environment was partitioned into 10m by 10m sections by a
series of narrow 8m-long walls (so movement between sections was possible only through the 2m gaps beside
the walls); these partitions made the larger environments approximate a series of the smallest 10m by 10m
environment, rather than having large regions away from the constraining influence of side walls. Each
environment was populated with an equal density of random obstacles drawn from the same population (i.e.,
comparable sizes). Finally, each environment contained enough “fake” obstacles (requiring collision tests
but not affecting edge validity) to bring the total obstacle count up to the number of obstacles present in
the largest environment. These fake obstacles made per-edge collision detection costs comparable across the
environments.

By contrast with the largely unconstrained environments seen previously, embedding time for these envi-
ronments divided into “rooms” scaled close to linearly with area (Table VI). The partitioned environments
maintain approximately the same embedded graph density at all sizes, and hence their computational re-
quirements scaled linearly with area, as the theoretical analysis suggested. We note, however, that there was
a small upwards trend in embedded graph density and per-m? embedding time (about 15% over an 8x size
increase), suggesting that even the small 2m openings between adjacent rooms may have slightly changed
the obstacle density of the environments. We conclude that different configurations of obstacles — such as
long, thin walls partitioning the interior of a building vs. small, scattered bushes or tree trunks in a field —
may have qualitatively different effects on the capability of an animated character.

Finally, we note that the embedded graph in the largest environment evaluated (100m by 50m) contained
122,368,278 nodes and 2,798,837,985 edges. Explicitly storing this embedded graph would have required
approximately 11GB of memory; computing it via the method of Reitsma and Pollard [2004] would have
required approximately 50GB, as compared to the 0.5GB used by our method.

6.4.2 Scaling with Increasing Motion Graph Size. Table VII shows the time and memory requirements for
evaluating the Baseline Environment with motion graphs of various sizes. Larger motion graphs were formed
from the same database of motions by progressively lowering the threshold for acceptable transitions. Total
running times ranged from under half an hour to over six hours, with metric evaluation taking approximately
75% of the overall time. Much of the heightened requirements were due to the path searches through the

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



26 : Paul S. A. Reitsma and Nancy S. Pollard

Motion Time(s) Memory Used
Graph Total | Embedding | Metrics Base Peak
87s 1,613 399 1,201 182MB 200MB
163s || 10,616 1,602 9,001 || 352MB 594MB
248s 19,214 4,014 15,185 523MB 995MB
350s || 29,519 8,204 21,303 || 741MB | 1,246MB

Table VII. Time and memory requirements for embedding different sized motion graphs in the Baseline Environment. Increasing
the size of the motion graph was one of the most effective ways to improve its capability, but also one of the most costly in
terms of resources required for tasks such as path search.

large motion graphs required for the Efficiency metrics, as A* search is exponential in the branching factor,
which tends to be higher in larger motion graphs.

6.4.3 On-Demand Edge Computation Overhead. Table VIII shows the time and memory requirements
for evaluating environments using different levels of edge caching. Default caching places edge-lists into a
very simple hash table of fixed size, using usage-frequency information to determine which list to keep in the
event of a collision. Full caching stores all edges prior to metric computation, so stored edges are included
in base memory. Explicit caching computes all candidate edges and uses Depth-First Search to find the
embedded graph as in [Reitsma and Pollard 2004].

Explicit computation of the embedded graph rapidly becomes intractable due to the memory requirements.
Moreover, the minimum possible time such an algorithm could take — conservatively estimated by adding
together the time to find the edges, find the largest SCC (without augmentations), and compute the metrics
with fully-cached edges, but ignoring any other necessary operations — is at best lower than the flood-based
algorithm used in this paper by a small constant factor, due to the smaller number of nodes expanded by
the flood-based algorithm (see Section 4.2.2).

For the flood-based algorithm, the three caching regimes tested offer a tradeoff between storage space and
computation time. Caching all edges in the embedded graph before computing the metrics is only a small
amount of memory overhead for small scenarios and results in almost a 50% reduction in computation time,
but memory requirements become increasingly costly as environments or motion graphs grow larger, for
increasingly smaller gains in computation time (only 30% for the larger environment). Caching frequently
used edges (the default) provides a tradeoff that maintains most of the speed benefits for only a fraction of
the memory.

6.5 Validity of the Evaluations

While the results of these metrics seem intuitively reasonable, one of the key goals of this work was to reduce
the reliance on animator intuition by providing objective and verifiable evaluations.

Past a minimum threshold resolution, the metrics are relatively stable, with evaluation results steadily but
slowly improving with increasingly fine resolution; however, the problems identified in the default resolution
remain in the finer resolution analyses. This trend suggests that the baseline evaluation at which our initial
tests were performed should be a reasonable (if pessimistic) estimate of the metric values that would be
obtained in the limit as grid sizes went to zero. While drastic improvements in the metric values were not
observed in our experiments, such improvements are possible, making this approach a conservative estimate.

In addition, while Local Maneuverability results are only given for the running-to-pick-up action transition
and Action Efficiency results are only given for paths ending in a picking-up motion, several other actions
were tested (run-to-duck, sneak-to-duck, paths ending in a duck, etc.), with substantially similar results
to those reported for picks. Similarly, the Path Efficiency and Action Efficiency metrics gave essentially
the same results regardless of whether path-planning was unbounded or limited to a generous horizon. For

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



Evaluating Motion Graphs for Character Animation : 27

Time(s) Memory Used

Cache Area(m?) Total | Metrics Base Peak
None 56 992 822 182MB 200MB
Default 56 612 437 182MB 204MB
Full 56 504 324 191MB 209MB
Explicit 56 499+ 324 572MB 590MB
None 120 2,791 2,118 182MB 258MB
Default 120 1,736 1,068 182MB 289MB
Full 120 1,412 690 235MB 306MB
Explicit 120 1,181+ 690 1,064MB | 1,135MB
None 240 6,934 4,076 183MB 325MB
Default 240 5,496 2,639 183MB 382MB
Full 240 4,307 1,302 357TMB 498MB
Explicit 240 || 3,192+ 1,302 || 2,070MB | 2,211MB
None 1,000 41,780 15,117 189MB | 274MB
Default 1,000 30,027 9,870 189MB 361MB
Full 1,000 27,859 5,954 || 1,305MB | 1,390MB
Explicit 1,000 13,747+ 5,954 || 9,832MB | 9,917MB

Table VIII. Time and memory requirements for different edge-caching schemes. All times are in seconds. Explicit caching
refers to the algorithm of Reitsma and Pollard 2004. The ”+4” notation is used as we replicated only the first parts of their
algorithm for comparative purposes; some additional computation beyond the amount timed is required by their algorithm.
The caching scheme used allows a tradeoff between space and time requirements for the evaluation, although a simple caching
scheme achieved most of the benefits of full caching while keeping the memory footprint low: the running time of our on-demand
algorithm is within a small constant factor of what could be achieved if the embedded graph were built explicitly, while the
memory required grows at an asymptotically lower rate. (The Metrics column corresponds to the relative performance one
would expect when using the embedded graph (e.g., searching for paths).)

efficiency, both metrics were run with a horizon of six times the length of the reference path; failure to find
a path within that distance resulted in an effective path length equal to the horizon distance for metric
purposes.

Practical Local Maneuverability was tested at sampling densities ranging from 100% (i.e., the true value)
down to 0.03%. The computed values were highly stable past approximately 1% sampling density, validating
our probabilistic sampling approach. The baseline at which our evaluations were performed was 10 samples
per square meter of the environment, or about 2.3% sampling density for the Baseline Environment.

Path Efficiency and Action Efficiency metrics were run with between 50 and 500 samples, as compared to
the baseline of 150 sample paths. Metric results were stable across different numbers of samples, suggesting
that the default number of samples evaluated should provide a reasonable estimate of the true metric values.

6.5.1 Measurement Stability Across Different Environments. Table IX gives the distributions of evalua-
tion results for the baseline motion graph run in 20 randomly-generated environments. The area (120m?)
of the environments and types of obstacles placed were the same as those in the Random Environment used
for initial testing (see Figure 11(b)), although configuration details (height/width of environment as well as
number /size /shape/placement of obstacles) were determined randomly. Figure 18 shows the XZ Coverage
overlaid on three representative environments.

In contrast to the drastic changes seen with the shortened Baseline Environment (Figure 15), results were
relatively stable across different environment configurations, with no drastic changes in the capability of the
motion graph. As Figure 17 shows, the distribution of values for metrics evaluated on the randomly-generated
environments was approximately normally distributed. This result suggests motion graph capability will tend
to be strongly correlated across many classes of similar environments.

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



28 . Paul S. A. Reitsma and Nancy S. Pollard

Total Times(s) XZ Cvgs(%) Prac LM Path Efficiencies || Action Efficiencies
Mean | StdDev || Mean | StdDev || Mean | StdDev || Mean | StdDev Mean StdDev
1,535 260 90.3 3.1 5.8s 0.55s 1.25 0.11 2.11 0.36

Table IX. Mean values and standard deviations for evaluation results of randomly-generated environments. Environments with
similar types and densities of obstacles tend to induce similar levels of capability on motion graphs.

800 825 850 875 900 925 950 975 100.0

(a) XZ Coverage

(b) Action Efficiency
Fig. 17. Distributions of a representative pair of metric values for the random environments evaluated. Y axis is count of
number of environments in each bin. Metric values were distributed approximately normally.
7. DISCUSSION
7.1 Findings
When using regular motion graphs on general environments, our experiments identified several problems.

7.1.1  Effects of Complexity. One fundamental result of our experiments is the observation that when
working with a motion graph data structure, easy tasks are easy; more complex tasks are hard. For a simple
task, such as basic locomotion in an obstacle-free environment, all motion graphs we tested performed well,

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



Evaluating Motion Graphs for Character Animation : 29

(a) Difficult environment (b) Typical environment (c) Easy environ-
ment

Fig. 18. Representative examples of the random environments created for testing, with XZ Coverage displayed in grey.

with extremely good coverage and average paths under 1% longer than ideal reference paths.

Making either the task or the environment more complex, however, had a substantial effect on the capabil-
ities of the motion graph. More complex tasks, such as transitioning to a particular action type or performing
a particular action type at a designated location in the environment, were more difficult to perform in even
the obstacle-free environment, with Local Maneuverability and Action Efficiency values both higher by about
20% (Table I). Moreover, both measures degraded rapidly even in the relatively-open random environments,
and especially in the highly-congested Baseline Environment. Similarly, even basic locomotion suffered in
the relatively-open random environments, going from near-perfect efficiency to an average path length 25%
longer than the ideal reference, and locomotion in the Baseline Environment was extremely inefficient, with
average paths generated by the baseline motion graph being over 85% longer than the reference paths.

We note that one approach to handling this complexity has been pioneered by Lee and his colleagues
([Lee et al. 2002][Lee et al. 2006]). Briefly, their approach is to collect substantial quantities of motion data
interacting with each obstacle or cluster of obstacles in close proximity in the environment, in a sense forming
a specialized motion graph for each unique region in the environment. As this technique relies on re-using
motions captured for the specific parameters of each object cluster, however, it is unclear how the technique
might apply to more general environments.

While motion graphs are effective for simple animations in simple environments, we note that the ability
to deal with increased complexity of both task and environment is necessary to make motion graphs a more
general tool. In particular, simple tasks in environments with few or no obstacles may not provide an
adequate test of a motion generation algorithm’s abilities.

7.1.2  Reactivity. Even the Theoretical Local Maneuverability of a typical motion graph is quite poor,
and embedding the motion graph in even a relatively open environment degrades this measure of reactivity
substantially (Table I). For example, changing from a running motion to an evasive action (ducking) in the
baseline motion graph took an average of 3.6s even in theory, increasing to an average of 5.8s in the random

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



30 : Paul S. A. Reitsma and Nancy S. Pollard

environments (Table IX) and 6.6s in the Baseline Environment. Considering that interactive environments
such as games and training scenarios will tend to operate at timescales driven by users’ recognition and
choice reaction times (approximately 0.5s, rising to 1s for unexpected stimuli; see [Green 2000a] [Green
2000b] [Kosinski 2005]), substantial improvements in the ability of motion graphs to react to interactive
control are necessary. Tkemoto et al. [2006] examine one possible approach to this problem.

7.1.3 Embedding. We note the importance of evaluating the capability of a motion graph within the
context of its target environment. Our experiments with variants of the Baseline Environment (Figure 15)
show that minor changes to an environment can potentially cause drastic changes in the effective capability
of one motion graph — in this case making the upper portion of the environment largely inaccessible — while
causing virtually no changes in the effective capability of another motion graph. However, our experiments
with randomly-generated environments (Table IX) demonstrate that there is a strong correlation between
the capability of a motion graph in environments with similar types and densities of small obstacles. The
capabilities of motion graphs in our randomly-generated environments were distributed approximately nor-
mally (Figure 17). Based on the results with the Shortened Baseline Environment (Figure 15), however, it
appears that smaller numbers of longer or wider obstacles will lead to less predictable capability than the
larger numbers of smaller obstacles used in the randomly-generated environments.

7.2 ldentified Causes

Our experiments suggested three main problems with the motion graphs tested.

First, many clips, especially those of actions such as picking-up, ducking, or jumping, were effectively “set
pieces” — i.e., they were linked into the motion graph in such a way that substantial amounts of specific
motion was unavoidable both before and after the action itself. Both instances of punching actions, for
example, required about eight meters of mostly straight-line movement to perform, resulting in the almost
complete inability to perform punches in the Baseline Environment (Figure 14(c)). By contrast, other actions
were embedded in linear paths through the motion graph consisting of about 2-4m of movement, which was
much easier to place within the environment (Figure 14). Lengthy “set pieces” of motion such as these
are not only easily disrupted by obstacles, reducing the coverage of the action in the environment, but also
drastically worsen Local Maneuverability.

Similarly, actions of these sorts tend to have only a few instances in the motion graph in order to keep
the overall size of the graph down as the variety of actions it contains increases. Unfortunately, the paths
corresponding to the instances of these actions are often poorly linked into the motion graph, with the start
of the branchless portion of the path typically being accessible from very few (often only two) other clips
in the motion graph. In a congested environment, however, the ability to take any particular transition
from the character’s current location can easily be blocked by obstacles, meaning that the small number
of direct paths through the motion graph to the desired action can easily be rendered unavailable. This
makes the character’s Local Maneuverability unacceptably fragile and variable, as well as contributing to
the inefficiency of paths.

Finally, many obstacles in close proximity, such as the lower-left region of the Baseline Environment (Figure
11(c)), create a need for paths with specific patterns of left-and-right turning in order to wend between the
obstacles. Motion graphs, due to their heavy reliance on the source data, have trouble substantially changing
the curvature patterns of their constituent paths, although some of this is possible during clip transitions.

We examined three common approaches to resolving these problems: adding more data to the basic motion
graph; allowing more extensive motion editing at clip transitions; and using a small but highly-connected,
hub-based motion graph.

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



Evaluating Motion Graphs for Character Animation : 31

Fig. 19. This environment requires a particular pattern of turns and movement lengths be available in the database, and hence
could be hard to navigate with semantically-invariant editing methods.

7.2.1 Generality from Motion Graph Size. We note that in our experiments the most effective method
for improving the capability of a motion graph was simply to add more data, increasing the number of nodes
while keeping the density of the graph roughly constant. The apparent reason for this improvement was the
way the increased variety of actions allowed increased flexibility in navigating constrained areas (i.e., higher
or lower curvature of turns allows threading between obstacles), as well as the larger number of target nodes
in the motion graph for paths constrained to end in a specific actions. Both of these factors made it more
likely that an appropriate clip of motion would be available for any given point in the environment.

This had an especially large effect on the ability of the motion graph to efficiently reach specific actions.
For the largest motion graph, Practical Local Maneuverability improved sharply to only about 15% higher
than Theoretical Local Maneuverability, and Action Efficiency for “pick” actions was only 20% above the
ideal (Table II). Reducing the effect of “set piece” actions is only part of this improvement, however, as the
shortest of the available “pick” action sets was still 3.0m, vs. 3.7m in the baseline motion graph.

This was also, however, one of the most computationally expensive methods, especially for tasks using
the motion graph, such as path-planning. Accordingly, to scale to very large motion databases will require
either separating out distinct behaviors as suggested by Kovar et al. [2002] or pursuing an approach that
involves clustering and/or multiple levels of resolution, as in the work of Arikan et al. [2003] or Lau and
Kuffner [2005].

7.2.2  Generality from Motion Editing. Increasing the amount of motion editing permitted had a signifi-
cant effect on the capability of the motion graph, but did not resolve the problems identified, especially for
tasks requiring specific actions: even when allowing 50% more motion editing — a level apt to produce poor
animations — Practical Local Maneuverability for “pick” actions was still nearly five seconds, with average
paths required to end in a “pick” action being over 60% longer than the ideal reference (Table III).

We note that our motion editing model assumes editing is largely semantically-invariant; i.e., edits are
conducted purely at a local level, using incremental changes to produce acceptable variations of a source
motion. Editing approaches of this type, while commonly used, have limited flexibility. Consider Figure 19;
only source motions with the correct number of turns in nearly the correct places can easily navigate this
environment when only local edits are permitted. By contrast, more sophisticated editing techniques which
can curve paths to suit the demands of the environment could allow greater capability with the same source
motions. Recent work by Shin and Oh [2006] and by Heck and Gleicher [2007] on increasing the flexibility
of each edge (or node) of a motion graph may be particularly appropriate to threading a character between
nearby obstacles.

7.2.3 Generality from Motion Graph Connectivity. We note that the densely-connected, hub-based mo-
tion graph we used has slightly better performance than the larger automatically-generated motion graph,
but that the difference is surprisingly small; both produced poor paths in the baseline and random environ-
ments, with poor Local Maneuverability.

One reason for the smaller-than-expected improvement is that the lengths of the available pieces of motion

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



32 : Paul S. A. Reitsma and Nancy S. Pollard

are not altered by this increased connectivity, and the character must often travel a significant distance before
returning to a hub pose and becoming able to transition to a new clip of motion. For example, performing
a “pick” action required playing approximately 3.7m of motion in the baseline motion graph before a choice
of which clip to transition to next was available, vs. 3.5m in the hub-based motion graph. Due to this,
the immediate-horizon ability of the character to navigate through a congested environment is not greatly
improved.

Accordingly, a highly-connected, hub-based motion graph which does not address the problem of long “set
piece” chunks of motion does not appear to adequately address the deficiencies observed.

One potential solution would be to increase the degree of connectivity not only at the ends of clips, but
inside clips as well. This approach would allow the character to move between actions such as locomotion
with different radius of curvature more freely, permitting a greater ability to navigate in highly-congested
environments.

Unfortunately, this approach would substantially increase the size and density of the motion graph. The
resulting graph would be significantly harder to reason about, either intuitively or analytically, and would
be much more expensive to use for operations such as path planning. Both of these drawbacks undermine
some of the important benefits of motion graphs, suggesting the importance of a careful and well-informed
tradeoff.

7.3 Scaling Behavior

7.3.1 Memory. Asnoted in the theoretical analysis of memory requirements (Section 4.2.1), base memory
required increases linearly with the size of the target environment, but the constant is so small that the
amount of memory required is not a bottleneck for our algorithm. The main component of base memory
is caching prerotated clips for faster edge computation; however, our results suggest that the overall base
memory requirements are reasonable.

Peak memory requirements are driven by the A* search technique used to evaluate the ability of the motion
graph to produce efficient paths in the target environment. Due to the exponential nature of A*, this value
is highly sensitive to parameters such as the planning horizon, and in practice memory limitations can be
significantly lessened by appropriate parameter settings and heuristics. Moreover, applications using motion
graphs will by necessity already have a path-planning method in place, and that method will be the most
appropriate one to use when evaluating scenarios for that application. As such, peak memory requirements
and their solutions are amply discussed in the path-planning and search literature.

7.3.2  Computation Time. For larger and more complex scenarios, computation time is typically a stronger
concern than memory requirements. For larger environments, computation time is increasingly dominated
by the time required to embed the graph in the environment (increasing from under 30% for the smallest
environment to over 60% for the largest). In practice, larger environments are often qualitatively different
from smaller environments, and their greater openness leads to denser embedded graphs.

By contrast, larger motion graphs continue to have the large part of their runtime (around 70%) come
from path search. As with memory requirements, computational requirements for path search and path
planning have been a subject of much research, and whatever method is intended for use in the application
employing the motion graph can be used efficiently in the embedded graph.

7.4 Alternative Editing Models

The analysis in this paper examined the capability of motion graphs constructed via a concatenation-based
approach to motion editing (i.e., clips of source data are edited to fit together seamlessly, and are played one
after another to animate the character). This approach typically uses displacement splines or blending (e.g.,
[Kovar et al. 2002], [Stone et al. 2004], [Kwon and Shin 2005], [Lee et al. 2006], etc.), and can be augmented

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



Evaluating Motion Graphs for Character Animation : 33

Fig. 20. (Left) The character is following a random path through a motion graph that has been embedded into an environment
tiled with a repeating pattern. (Right) A random path wraps around from left to right, bottom to top, then right to left.

with techniques such as splicing (e.g., [Heck et al. 2006]) and timewarping to increase the richness of the
database. Minor modifications, however, would allow the approach to be used with alternative types of
motion editing, such as controllers (e.g., [Zordan et al. 2005]), interpolation (e.g., [Shin and Oh 2006]), or
certain types of spacetime optimization (e.g., [Abe et al. 2004]).

Shin and Oh [2006] and Heck and Gleicher [2007] introduced methods to allow a single motion graph edge
(or node) to represent a parametric family of related motions created by blending between discrete source
motions. For example, a family of walks with variable turn rates could be created by blending together
a set of source walks with different turn rates. Rather than corresponding to a discrete path through the
environment, such a family of motions would effectively trace a continuous path volume between the start
point and the ending footprint (which is itself simply the set of all endpoints of the paths making up the path
volume). Points in the path volume would correspond to one instant of a motion which could be generated
by blending together source motions; accordingly, a grid point is reachable from the start point by this edge
if (a) the grid point is in the footprint of the path volume (i.e., at the endpoint of one of the paths in the
family represented by the edge), and (b) the editing method can create some path between the start point
and the end point which is contained entirely within the path volume.

Computing the footprint and doing collision detection for this (potentially complex) (z, z, ) path volume
may require substantial computation; however, extending our discretization approach to the path volume
should allow efficient computation. The path volume can be precomputed and a discretized version of
it stored with the motion graph edge. Collision detection could be performed efficiently by aligning this
occupancy grid to the start point and testing each of its cells for validity in the environment. In addition,
sampling the path volume with a representative array of precomputed paths, each with a small but finite
footprint, would allow an efficient test for path-existence. Each such path could precompute a bit vector
representing which cells of the occupancy grid it traverses, and a simple logical AND with a bit vector
representing occluded cells of the occupancy grid would determine whether the path was available.

This approach would require additional storage, but only a relatively small amount even for finely-sampled
path volumes, as the storage required would depend only on the number of motion families (super-edges or
super-nodes) in the original motion graph, rather than on the environment or its discretization.

Controller-based editing typically produces motions that do not deviate too far from the source motion,
and could potentially be thought of as creating similar families of motion, as could spacetime optimization-
based editing techniques such as [Abe et al. 2004]; accordingly, we expect that a similar treatment would
allow this evaluation approach to be applied to either of these motion editing methods.

8. CONCLUSIONS AND FUTURE WORK

The results presented in this paper, along with the earlier version in [Reitsma and Pollard 2004], are to our
knowledge the first attempts to evaluate global properties of a motion graph data structure such as ability
to efficiently reach all points in an environment and ability to quickly respond to user control in a complex

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



34 : Paul S. A. Reitsma and Nancy S. Pollard

Metric Improvement vs
Motion Graph Size

100 \——LMP
75 - Pi.ck/

25 —

50

% of Optimal

Baseline mg200 mg300 mg400
Motion Graph

Fig. 21. Increasing the size of a motion graph improves capability for all tasks, but different metrics approach their optimal
value at different rates. The Y axis shows how close a particular metric is to its ideal value, while the X axis shows the size
of the motion graph (approximately 100, 200, 300, or 400 clips). Simpler tasks, such as efficient navigation (“Path”, pink line)
approach optimal more rapidly than more complex tasks, such as efficiently picking up an object at a specified location (“Pick”,
yellow line), suggesting that past a certain size it may be most useful to ignore the unconstrained navigation task and instead
target added clips towards improving the picking task. By contrast, tasks such as rapid response to user input (Practical Local
Maneuverability or “LMP”, blue line) are not improved to near their optimal level by to this improvement method, suggesting
that a radically different method, or even an algorithmic change, may be necessary.

environment.

Embedding a motion graph into the environment and assessing global properties of this data structure
allows us to compare motion datasets and identify weak points in these motion datasets and problematic
areas in the environments. In addition, analysis of a range of motion graphs across a range of environments
can shed light on the strengths and weaknesses of the motion graph algorithm in general.

We also provide a method for determining a reasonable answer to the standard question of “how much
motion is enough?” Our analysis techniques, coupled with task-based metrics representing the application at
hand, can be used to evaluate the capabilities of a motion graph, allowing one to be selected that is neither
too big for efficient searching and planning nor too small for effective task performance.

Our experiments highlighted several important considerations regarding generating animations with mo-
tion graphs.

First, capability degrades surprisingly rapidly with increasing complexity. Tasks more complex than basic
navigation and environments with obstacles in close proximity sharply narrow the options available when
path-planning with a motion graph. Accordingly, testing an animation system with only simple tasks or
relatively unconstrained environments may not provide the full picture of the system’s abilities.

Reactivity for characters animated by motion graphs is often poor even in theory, and is easily degraded
further by complex tasks or environments. The ability to react rapidly to user control, however, is crucial
to interactive applications, and an inability to move efficiently between motion types lessens the capability
of motion graphs with regards to more complex tasks.

Several approaches can help alleviate these problems, including denser motion graphs (perhaps with shorter
clips or edges transitioning from the inside of clips), more sophisticated editing techniques, and adding more
data to motion graphs. These approaches tend to offer performance tradeoffs, however, increasing capability
while increasing the computational cost of using a motion graph.

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



Evaluating Motion Graphs for Character Animation : 35

Our hope is that analysis methods such as the one in this paper will be useful in managing tradeoffs such
as these. For example, our analysis revealed that the motion graph improvement methods tended to improve
the different metrics at different rates (Figure 21). One potential application of these methods is to direct
available memory or computation resources towards those tasks which will generate the greatest capability
bang for the resource buck.

In addition, such methods potentially allow a motion graph to be certified as sufficient for a particular
environment and set of tasks, or even certified as suitable for a class of environments (e.g., environments
whose obstacles do not cluster more tightly than a certain threshold). Additionally, a conservative estima-
tion of capability may allow deemed-acceptable motion graphs to be used with confidence in their target
environments.

We see several directions for extensions to this research. A more general scenario could include dynamic
environments, multiple autonomous characters, deformable objects, and complex interactions, and we hope to
relax some of the simplifying assumptions we have made about the nature of the scenario to be evaluated. In
addition, this evaluation approach could be placed in a feedback loop with a motion graph generation system,
potentially allowing automatic optimization of motion graphs. As well, we are interested in generalizing the
evaluation approach, both to other task domains and to other motion generation algorithms.

Finally, we note that the main bottleneck in the current approach is computation time. One option
for reducing this time is to divide the environment into segments, either examining only those segments
required (such as in the case of localized changes to obstacles) or forming the environment out of a number
of repeatable tiles (see Figure 20; this approach is examined in more detail in [Reitsma and Pollard 2004]
and [Lee et al. 2006]). Alternatively, it should be noted that all major steps in the evaluation process are
highly parallelizeable, allowing a tradeoff between computation time and required hardware.

In summary, the techniques shown here provide a way to evaluate a character’s capabilities that is more
sound than the trial and error approach commonly used. Evaluation techniques such as these can help a
user to compare alternative data structures and provide detailed information on performance to aid the user
in refining their motion graph or motion generation algorithm.

ACKNOWLEDGMENTS

Supported in part by the NSF under grants 11S-0326322, CCF-0343161, and ECS-0325383. Alias/Wavefront
donated their Maya software for use in this research.

A. EDITING FOOTPRINTS

The editing model is based on the intuition that the amount a motion can be changed will tend to grow with
the distance it covers, as well as with the time spanned by the clip—in essence, we assume an error will be
acceptably small if it is small relative to the rate at which other actions are taking place.

We specify the amount that V', the root position and orientation, can be adjusted as a linear function of
both distance traveled and number of frames in the clip:

abs (V; =V < (s+ad) | r. (15)
Tg

where (V; — V1) is the vector difference between the new and original root configurations, s is the arclength
of the original motion clip, d is the duration of the motion clip, « is a scaling factor used to weight arc length
vs. duration in terms of editing importance, and (s + ad)[r, 7. 7¢]7 is the size of the ellipsoidal footprint
representing allowable edits to root configuration.

The new path taken by the clip is computed by adding the currently-accumulated portion of (V; — V) to

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



36 : Paul S. A. Reitsma and Nancy S. Pollard

each frame:
(s(k) + ad(k))
s+ ad

where V;(k) is the edited (position,orientation) of the character’s root at frame k, V/(k) is the unedited
(position,orientation) of the character’s root at frame k (i.e., corresponding to original endpoint (p,8/)),
s(k) is the arclength of the path through frame k, and d(k) is the duration of the path through frame k.

B. TRANSITION SELECTION

To create the motion graphs used in our experiments, we used a globally-greedy algorithm that attempts to
coalesce nearby edges into hubs of high-quality transitions.

First, we find the frame-to-frame similarity matrix in a manner similar to Lee et al. [2002]. From this
data, we consider only the local maxima (each maximum dominates a 5-frame radius in the matrix), and
consider only maxima above a pre-set threshold. This defines a set of candidate transitions, and could be
used directly to form a motion graph. The resulting motion graph would have no guarantees on minimum
or maximum clip length, however, whereas we wished to enforce a minimum length of 0.5s and a maximum
of 1.5s.

Enforcing the minimum length is accomplished by coalescing nearby candidate transitions; i.e., deleting
all candidate transitions within a window of frames and replacing them with transitions to a single frame
within that window. The algorithm for this is given in detail below; in brief, the approach is to examine
each window of frames (i.e., every set of sequential frames of length 0.5s) and select the optimal frame
within that set to reroute all of the transitions in that set through; this frame is given a score equal to the
sum of the quality of all acceptable (i.e., above threshold) transitions which will be re-routed through it.
Once this value is calculated for all windows of frames, the globally-highest value is selected, the transitions
in the corresponding window are coalesced, and the process iterates until no window contains more than
one transition (i.e., all clips are at least 0.5s long). A maximum clip length of 1.5s is enforced as a post-
processing step by splitting long clips. Although O(n*) in a naive implementation, the coalescing step can be
implemented to incrementally update the window values based only on changes since the last step, making
the process run in O(n?) and, in practice, take only a few hours even for our largest motion graphs.

Vi(k) = Vi(k) + Vi=V) (16)

B.1 Coalescing Candidate Transitions

Repeat

—Find window w with count(w) > 1, frame ¢ € w that maximizes value(w, c)
—coalesce(w, ¢)

Until count(w) <1V windows w

window(s, f, m): the set of m frames in source file s ranging from f to f + m — 1. Here, m is always the
minimum clip size, and w will always refer to a window of this sort.

count(w): the number of frames f € w s.t. 3 frame g € DB s.t. equivalency(f,g) > 0.
DB: the set of frames of the input source motion files

value(w,c): > equivalency(c,g) Vg s.t. 3f € w s.t. equivalency(f,g) > 0. i.e., the value of window w if
all transitions must go through frame c.

equivalency(f,g): the similarity of frames f and g, if that value is greater than the acceptance threshold,
else 0.

coalesce(w,c): Vg € DB s.t. 3f € w s.t. equivalency(f,g) > 0 recompute equivalency(c,g) and set
equivalency(f, g) to 0. i.e., force all transitions inside window w to use frame ¢ or no frame at all.

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



Evaluating Motion Graphs for Character Animation : 37

Motion Graph

Clips | Transitions | Motion
98 288 87s
190 904 163s
282 1,712 248s
389 3,198 350s

Table X. Clips, transitions, and total amount of motion contained by the different motion graphs created for our main evalua-
tions. The full motion database contained 439 seconds of motion.

B.2 Crafting Representative Motion Graphs

The frame-to-frame similarity matrix computed above will depend strongly on the precise details of the
input motion capture clips. In practice, even a relatively small change in the transition qualities between an
input file and other files in the database can result in a substantially different motion graph. If one running
motion is replaced by another, for example, or even if the same running motion is used but with a different
transition-selection threshold, a very different motion graph can result due to the discrete nature of taking
local maxima in the similarity matrix, coalescing them to enforce minimum clip lengths, and taking the
largest strongly connected component of the result.

In order to ensure that high-quality and representative motion graphs were used for our tests, each of
the 50 input files was assigned a “desirability” weight which directly modified the relative quality of any
transitions to or from that motion. These weights were manually adjusted until an acceptable motion graph
was obtained. Our baseline motion graph was crafted via these weights to have a representative mix of all
available motion types, with an emphasis on the two main locomotions (running and sneaking), a smaller
amount of idling motion, and one to four examples of each of the actions (jumping, picking-up, ducking,
punching, kicking) in the database. In addition, we ensured that each instance of an action was directly
accessible from locomotion (i.e., it was not necessary to pass through a kicking motion to reach a ducking
motion, for example), and that all three types of locomotion (including idling) could be reached from each
other without passing through an action clip (i.e., the motion graph consisting of just the three locomotions
was also a strongly connected component).

Three larger motion graphs were created from the primary motion database in the manner detailed above
(see Table X). The sneaking and running motions contained in the baseline motion graph created by this
process is visualized in Figure 22.

REFERENCES
ABE, Y., Liu, C. K., AND Poprovi¢, Z. 2004. Momentum-based parameterization of dynamic character motion. In 2004 ACM
SIGGRAPH / Eurographics Symposium on Computer Animation. 173-182.

ARIKAN, O. AND FORrRSYTH, D. A. 2002. Interactive motion generation from examples. ACM Transactions on Graphics 21, 3
(July), 483-490.

ARIKAN, O., ForsyTH, D. A., AND O’BRIEN, J. F. 2003. Motion synthesis from annotations. ACM Transactions on Graph-
ics 22, 3 (July), 402—408.

AUBIN, J.-P. 1990. A survey of viability theory. Society for Industrial and Applied Mathematics Journal of Control and
Optimization, 28(4), p.749-788.

CHol, M. G., LEE, J., AND SHIN, S. Y. 2003. Planning biped locomotion using motion capture data and probabilistic roadmaps.
ACM Transactions on Graphics 22, 2 (Apr.), 182-203.

DonNALD, B., XAVIER, P., CANNY, J., AND REIF, J. 1993. Kinodynamic motion planning. Journal of the ACM 40, 5, 1048-1066.

GLEICHER, M., SHIN, H. J., KOVAR, L., AND JEPSEN, A. 2003. Snap-together motion: Assembling run-time animation. ACM
Transactions on Graphics 22, 3 (July), 702-702.

GOTTSCHALK, S., LiN, M. C., AND MANOCHA, D. 1996. OBBTree: A hierarchical structure for rapid interference detection.
Computer Graphics 30, Annual Conference Series, 171-180.

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



38 . Paul S. A. Reitsma and Nancy S. Pollard

(a) Paths (4x4m) (b) Depth 1 (11x11m) (c¢) Depth 2 (11x11m) (d) Depth 3 (11x11m)

Fig. 22. Figure 22(a) shows the sneaking and running motions available in the Baseline motion graph, displayed in a 4m by 4m
area. The character starts at the white dot, facing upwards. The other figures show in an 11m by 11m area all available sneaking
and running motions unrolled to different depths of graph expansion, along with additional clips representing discretized sample
of the result of applying our editing model to those source motions. Endpoint markers (green) mark the extent of each clip’s
editing footprint.

GREEN, M. 2000a. Driver reaction time. http://www.visualexpert.com/Resources/reactiontime.html.

GREEN, M. 2000b. How long does it take to stop? methodological analysis of driver perception-brake times. Transportation
Human Factors, 2(8), 195-216.

HARRISON, J., RENSINK, R. A., AND VAN DE PANNE, M. 2004. Obscuring length changes during animated motion. ACM
Transactions on Graphics 23, 3 (Aug.), 569-573.

HEeCK, R. AND GLEICHER, M. 2007. Parametric motion graphs. In 2007 ACM Symposium on Interactive 8D Graphics.

HEeck, R., KOVAR, L., AND GLEICHER, M. 2006. Splicing upper-body actions with locomotion. Computer Graphics Forum 25, 3
(Sept.), 459-466.

Hobcins, J. K., O’BRrIEN, J. F.; AND TUMBLIN, J. 1998. Perception of human motion with different geometric models. IEEE
Transactions on Visualization and Computer Graphics 4, 4 (October), 307-316.

HOON Kim, T., PARK, S. I., AND SHIN, S. Y. 2003. Rhythmic-motion synthesis based on motion-beat analysis. ACM Transactions
on Graphics 22, 3 (July), 392-401.

IkEmoTO, L. K. M., ARIKAN, O., AND FORSYTH, D. 2006. Quick motion transitions with cached multi-way blends. Tech. Rep.
UCB/EECS-2006-14, EECS Department, University of California, Berkeley. February 13.

KAvRrAKI, L. E. AND LATOMBE, J.-C. 1998. Probabilistic roadmaps for robot path planning. In Practical Motion Planning In
Robotics: Current Approaches and Future Directions, K. Gupta and A. del Pobil, Eds. John Wiley, 33-53.

KosinskI, R. J. 2005. A literature review on reaction time. hitp://biae.clemson.edu/bpc/bp/Lab/110/reaction.htm.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion graphs. ACM Transactions on Graphics 21, 3 (July), 473-482.

KWwoN, T. AND SHIN, S. Y. 2005. Motion modeling for on-line locomotion synthesis. In 2005 ACM SIGGRAPH / Eurographics
Symposium on Computer Animation. 29-38.

LATOMBE, J. C. 1991. Robot Motion Planning. Kluwer Academic Publishers, Boston.

Lau, M. AND KUFFNER, J. J. 2005. Behavior planning for character animation. In 2005 ACM SIGGRAPH / Eurographics
Symposium on Computer Animation. 271-280.

LEE, J., CHAIL J., REITsMA, P. S. A., Hopcins, J. K., AND POLLARD, N. S. 2002. Interactive control of avatars animated with
human motion data. ACM Transactions on Graphics 21, 3 (July), 491-500.

Leg, K. H., CHOol, M. G., AND LEE, J. 2006. Motion patches: building blocks for virtual environments annotated with motion
data. ACM Transactions on Graphics 25, 3 (July), 898-906.

L1, Y., WaNG, T., AND SHUM, H.-Y. 2002. Motion texture: A two-level statistical model for character motion synthesis. ACM
Transactions on Graphics 21, 3 (July), 465-472.

LozANO-PEREZ, T. AND O’DONNELL, P. A. 1991. Parallel robot motion planning. In Proc. IEEE Intl. Conference on Robotics
and Automation.

LUENBERGER, D. G. 1979. Introduction to Dynamic Systems: Theory, Models, and Applications. John Wiley & Sons.
MizucucHl, M., BUCHANAN, J., AND CALVERT, T. 2001. Data driven motion transitions for interactive games. In Short
Presentation, Furographics 2001.

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



Evaluating Motion Graphs for Character Animation : 39

MoLINA-TANCO, L. AND HILTON, A. 2000. Realistic synthesis of novel human movements from a database of motion capture
examples. In In proceedings of IEEE Workshop on Human Motion 2000.

MUTHUKRISHNAN, S. AND PANDURANGAN, G. 2005. The bin-covering technique for thresholding random geometric graph
properties. In Proceedings of SODA 2005.

OESKER, M., HECHT, H., AND JUNG, B. 2000. Psychological evidence for unconscious processing of detail in real-time animation
of multiple characters. Journal of Visualization and Computer Animation 11, 105-112.

REITSMA, P. S. A. AND POLLARD, N. S. 2003. Perceptual metrics for character animation: Sensitivity to errors in ballistic
motion. ACM Transactions on Graphics 22, 3 (July), 537-542.

REITSMA, P. S. A. AND POLLARD, N. S. 2004. Evaluating motion graphs for character navigation. In 2004 ACM SIGGRAPH
/ Eurographics Symposium on Computer Animation. 89-98.

REN, L., PATRICK, A., EFROS, A. A., HODGINS, J. K., AND REHG, J. M. 2005. A data-driven approach to quantifying natural
human motion. ACM Transactions on Graphics 24, 3 (Aug.), 1090-1097.

SAFONOVA, A. AND Hobains, J. K. 2005. Analyzing the physical correctness of interpolated human motion. In 2005 ACM
SIGGRAPH / Eurographics Symposium on Computer Animation. 171-180.

SHIN, H. J. AND OH, H. S. 2006. Fat graphs: Constructing an interactive character with continuous controls. In 2006 ACM
SIGGRAPH / Eurographics Symposium on Computer Animation. 291-298.

STONE, M., DECARLO, D., OH, I., RODRIGUEZ, C., STERE, A., LEES, A., AND BREGLER, C. 2004. Speaking with hands: creating
animated conversational characters from recordings of human performance. ACM Transactions on Graphics 23, 3 (Aug.),
506—513.

SunG, M., KovARr, L., AND GLEICHER, M. 2005. Fast and accurate goal-directed motion synthesis for crowds. In 2005 ACM
SIGGRAPH / Eurographics Symposium on Computer Animation. 291-300.

SUTHANKAR, G., MANDEL, M., SYCARA, K., AND HoDGINS, J. K. 2004. Modeling physical capabilities of humanoid agents using
motion capture. In AAMAS 2004 Proceedings.

WANG, J. AND BODENHEIMER, B. 2003. An evaluation of a cost metric for selecting transitions between motion segments. In
2008 ACM SIGGRAPH / Eurographics Symposium on Computer Animation. 232—238.

WANG, J. AND BODENHEIMER, B. 2004. Computing the duration of motion transitions: an empirical approach. In 2004 ACM
SIGGRAPH / Eurographics Symposium on Computer Animation. 335-344.

ZORDAN, V. B., MAJKOWSKA, A., CHiu, B., AND FasT, M. 2005. Dynamic response for motion capture animation. ACM
Transactions on Graphics 24, 3 (Aug.), 697-701.

Received Month Year Revised Month Year Accepted Month Year

ACM Transactions on Graphics, Vol. V, No. N, March 2007.



