
Legible Simplification of Textured Urban Models
Remco Chang∗

UNC Charlotte
Thomas Butkiewicz†

UNC Charlotte
Caroline Ziemkiewicz‡

UNC Charlotte
Zachary Wartell§

UNC Charlotte

Nancy Pollard ¶

Carnegie Mellon University
William Ribarsky ‖

UNC Charlotte

ABSTRACT

Mesh simplification and discrete levels of detail (LOD) are well-
studied areas of research in computer graphics. However, until
recently, most of the developed algorithms have focused on sim-
plification and viewing of a single object with a large number of
polygons. When these algorithms are applied to a large collection
of simple models, many objects may be completely erased, leading
to results that are misleading to the viewer. In this paper, we present
an approach to simplifying city-sized collections of 2.5D buildings
based on the principles of “urban legibility” as defined by archi-
tects and city planners. We demonstrate that our method, although
similar to traditional simplification methods when compared quan-
titatively, better preserves the legibility and understandability of a
complex urban space at all levels of simplification.

Keywords: Urban models, simplification, levels of detail.

Index Terms: I.3.5 [Computational Geometry and Object Mod-
eling]: Hierarchy and geometric transformations—Curve, surface,
solid, and object representations

1 INTRODUCTION

Traditionally, research in the areas of mesh simplification and levels
of detail has focused on complex models with natural shapes. How-
ever, with the advent of 3D global visualization tools for public use
such as Google Earth, the ability to render and visualize a large col-
lection of simple models such as buildings has become increasingly
important. Beyond this, there is the need to make the rendering of
urban spaces useful for tasks such as navigation or developing spa-
tial mental maps.

Existing techniques for mesh simplification can have trouble
with models of buildings, which are often nothing more than boxes
with eight vertices in which polygon decimation results in a mesh
that no longer retains the appearance of a building. Furthermore,
when polygon decimation is performed on a collection of simple
meshes given a target polygon count, the smaller objects are of-
ten completely decimated because their removal causes less overall
geometric error (Figure 2(b)). For a city-sized collection of simple
buildings, this could mean the disappearance of an entire residential
area in which the buildings tend to be smaller than that of commer-
cial regions. This simplified version of the city model no longer
resembles the un-simplified one.

In this paper, we incorporate concepts from architecture and
city planning as guidelines for performing mesh simplification.
Specifically, we examine the concept of urban legibility on which

∗e-mail: rchang@uncc.edu
†e-mail: tjbutkie@uncc.edu
‡e-mail: caziemki@uncc.edu
§e-mail: zwartell@uncc.edu
¶e-mail: nsp@cs.cmu.edu
‖e-mail: ribarsky@uncc.edu

Lynch [10] has identified through user studies that the “image” of
a city can be categorized into paths, edges, districts, nodes, and
landmarks. We believe that if these elements of legibility are pre-
served during the simplification process, the image of the city can
also be maintained, thereby creating urban models that are better
understood by users. Although these categories are qualitative mea-
surements, each step of our algorithm is based on considerations of
one or more of these concepts.

The key idea of our algorithm is based on merging of similar
elements. Consider a row of identical houses separated by little
space; when these houses are viewed from afar, we should be able
to combine their geometries and render them together as one sin-
gle model (Figure 1). To accomplish this goal, we break our algo-
rithm down into five steps. Hierarchical clustering, cluster merging,
model simplification, and hierarchical texturing are performed dur-
ing pre-processing, and the runtime LOD selects the appropriate
models to render. Hierarchical single-link clustering is adopted to
cluster models of buildings following the principles of paths and
edges. Polyline-based cluster merging and simplification creates
logical districts and nodes while preserving paths and edges. Hi-
erarchical texturing creates the appropriate amount of texture for
each generated clusters, and finally, the LOD process enforces the
preservation of significant landmarks.

2 RELATED WORK

A tremendous amount of research has been put into mesh simpli-
fication. For a more comprehensive survey of mesh simplification
techniques, see the work by Luebke [9]. Those techniques which
are most relevant to our algorithm combine vertices based on their
proximities and similarities to other vertices and thus are able to
merge multiple meshes into one. Garland and Heckbert [4] intro-
duce QSlim, in which “virtual” edges are added between uncon-
nected vertices that are within a user-specified Euclidean distance
τ . These virtual edges are treated in the same manner as actual
edges in the mesh. We also take inspiration from Jang et al. [6],
who suggest that for man-made objects, removal of entire features
is typically more visually understandable than vertex removal. Our
goal of urban legibility is similar in that we emphasize understand-
ability over geometric accuracy.

In the field of cartography, the concepts of “generalization” of
both building ground plans and 3D building models have been ac-
tive areas of research. Kada and Luo [7] use the concept of half-
space to drastically reduce the complexity of 2D building ground
plans. While this approach retains the overall appearance of the
original building ground plan, it sometimes creates erroneous, self-
intersecting lines. Anders [1], on the other hand, shares our idea of
simplifying 3D urban models by aggregating nearby buildings. His
algorithm projects the building models onto three orthogonal planes
(length, width, and height) and creates a simplified model based on
the projections. Unfortunately, this method only works for simple
symmetric models that do not self occlude during the projections.
In the case of complex models whose geometry need to change in a
view-dependent manner, a new algorithm is necessary.

Although there have been numerous applications in 3D global
visualization and GIS visualization, the majority of the research has



(a) (b) (c) (d)

Figure 1: Levels of simplification of an urban environment. (a) original model with 285,039 polygons. (b) simplified model with 129,883 polygons,
ε = 100 α = 2. (c) simplified model with 85,332 polygons, ε = 300 α = 2. (d) shows the same model in (c) from a top-down view. Notice that
buildings far away are more aggressively aggregated than the ones near the view point. However, regardless of the amount of aggregation, all
clusters obey the rules of legibility. The inset highlights the tall buildings (landmark ) that are drawn separately to preserve the skyline.

focused on terrain simplification and visualization (see the survey
by Losasso [8]). The use of simplification for displaying collections
of building models has been mostly limited to discrete levels of
detail in which buildings beyond a certain distance are not rendered.
To the best of our knowledge, no existing simplification algorithm
prioritizes higher levels of knowledge such as urban legibility.

Urban legibility was introduced by Lynch [10], and the idea has
served as inspiration for building virtual worlds, wayfinding in vir-
tual environments, and navigation through abstract data [3]. A
number of researchers have also performed user studies to inves-
tigate the effectiveness of urban legibility in wayfinding in virtual
environments (a comprehensive survey can be found in Dalton’s
work [3]). Most relevant to our work, Shalabi [11] has used con-
cepts from urban legibility in conjunction with impostors to visual-
ize urban environments of limited scale.

3 WHY URBAN LEGIBILITY

Existing techniques for mesh simplification are often not suited for
simplifying large collections of objects such as buildings because
vertex, edge, or face removal often destroys geometry that is essen-
tial to the comprehension and recognizability of such objects. Fig-
ure 2 shows a comparison between the original urban model, the
model simplified using a traditional simplification method, and tex-
tured and un-textured simplified models using our algorithm. The
simplified models in Figures (b, c, d) contain the same number of
polygons.

(a) (b)

(c) (d)

Figure 2: (a) Original (textured) models of buildings; (b) Models sim-
plified using QSlim; (c, d) Textured and un-textured building models
generated with our algorithm using the same number of polygons as
the QSlim model

It is obvious that these four models’ appearances are very dif-
ferent, and arguably they convey different levels of recognizability
to the viewer. However, when we use models generated from the
three simplification methods in fly-through tests, we find that the
amount of pixel error caused by the different simplification meth-
ods are quantitatively nearly indistinguishable (Figure 3). In other
words, although the different simplification methods create qualita-
tively and visually different models, the quantitative measurements
of the goodness of these models are almost the same.

From this simple experiment, we realize that in order to create
models that are legible and understandable to the users, we cannot
rely solely on quantitative measurements such as pixel differences.
Instead, a higher level knowledge that encompasses our understand-
ing of urban models must be used to guide the simplification pro-
cess and generate models that are legible to the users. For such high
level knowledge, we turn to the concept of urban legibility.

Figure 3: The amount of pixel error as percentages of the screen res-
olution during a fly-through using an urban model simplified by QS-
lim, and textured and un-textured simplified models generated using
our algorithm. Pixel errors are calculated based on the number of
pixel differences between images rendered using one of the simplifi-
cation techniques and the original model.

4 URBAN LEGIBILITY

Urban legibility is a concept that has been used for many years in
the area of city planning. In his book The Image of the City, pub-
lished in 1960, Lynch [10] surveyed residents of Boston and asked
them to sketch out their neighborhoods in relation to the city (Fig-
ure 4). Based on these sketches, Lynch defined these inhabitants’
sense of legibility as “...the ease with which [a city’s] parts may be
recognized and can be organized into a coherent pattern.”



Figure 4: A hand-drawn sketch of Boston produced on November 17,
1955. Based on a series of these images, Kevin Lynch was able to
identify the five elements of urban legibility that he believed were the
building blocks of people’s mental map of an urban environment.

“Coherent pattern” refers to cues that people use to “structure
and identify the environment.” Lynch further classified them into
five types of elements:

Paths: Avenues of travel, such as streets, walkways, railroads,
canals, etc.

Edges: Linear elements not considered as paths, including struc-
tures or features providing boundaries. For example, shorelines,
edges of development, walls.

Districts: Medium to large sections of the city which an observer
mentally “enters.” For example, a historical residential area.

Nodes: Strategic spots of intense activity and/or information
flow, occurring most frequently at junctions of paths. For exam-
ple, Times Square in New York City.

Landmarks: Recognizable objects that are distinctive to the ob-
servers. Examples include towers, sign posts, hills, etc.

Although Lynch defined these elements as cues used by the in-
habitants of a city, we believe that these elements also help peo-
ple better recognize a city and maintain spatial coherence from a
bird’s-eye view. We base our assumption on Haken and Portugali’s
information theory of urban environments, which states that the
amount of information per building in a cluster of similar buildings
decreases as the number of buildings in the cluster increases [5]. In
order to identify these clusters so as to maximize information while
simplifying geometry, we can turn to Lynch’s theory of meaning-
ful urban structures. Therefore, it is with Lynch’s five legibility
elements in mind that we devise our algorithm for simplifying and
viewing a collection of buildings. It is our belief that for as long
as the simplification algorithm retains these elements of legibility
when reducing geometry or texture of an urban model, the resulting
urban model will remain legible to the user.

Our algorithm consists of five steps. Hierarchical clustering
maintains paths and edges when grouping similar buildings to-
gether; cluster merging combines the geometries of the buildings
into a single model and creates districts and nodes; simplification
reduces the geometric complexity of the model while preserving
paths, edges, districts and nodes; texturing adds visual fidelity to
the created model; and finally, the LOD process selects the appro-
priate models to render at runtime, preserving the landmarks in the
scene. The following sections describe the five steps in our algo-
rithm.

5 HIERARCHICAL CLUSTERING

Lynch considers paths as the predominant city elements, so it is
critical that our clustering algorithm does not cluster buildings on

Figure 5: Left: single-link clustering. Right: complete-link cluster-
ing. There are two clusters in both images, the red buildings con-
stitute one cluster, while the yellow ones fall into the other. Notice
that single-link clustering creates clusters that follow along a path,
whereas complete-link clustering, much like k-means clustering, cre-
ates oval-shaped clusters.

opposite sides of a path. Our algorithm does not require knowledge
of the street layout, only building footprints, with which we main-
tain both paths and edges by preserving the empty spaces between
buildings. To achieve this, we use single-link clustering, which cre-
ates clusters that respect boundaries of paths. In contrast, k-means
and complete-link clustering both produce oval-shaped clusters that
do not consider paths or edges (Figure 5).

Single-link clustering is a greedy algorithm. At any given iter-
ation, it finds the closest pair of elements or clusters (in Euclidean
distance) and groups them together into a cluster. Therefore, for n
number of elements, single-link clustering requires n−1 iterations,
and produces a total of n−1 clusters. The greedy nature of the algo-
rithm relies on distance minimization, and guarantees that a build-
ing will be clustered with other buildings on the same side of the
road before being grouped with buildings from the other side of the
road, as long as the distances between the buildings are not wider
than the width of the road. In most urban environments in which
buildings are very close to each other, this property of single-link
clustering ensures that clusters obey paths and edges.

Unfortunately, single-link clustering does not guarantee the re-
sulting cluster hierarchy (dendrogram) is balanced, meaning that
the depth of the tree is often far from the ideal depth of lg(n). To
create a moderately balanced tree, we use a distance metric that
incorporates cluster size:

d(C1,C2) = min{ size(C1) · size(C2)
avgClusterSize2 ·d(x,y)|x ∈C1,y ∈C2} (1)

where size(Cx) denotes the number of buildings in cluster Cx,
d(C1,C2) is the cost of merging clusters C1 and C2, d(x,y) is the Eu-
clidian distance between the two closest vertices in buildings x and
y, and avgClusterSize is the average number of buildings in all the
existing non-leaf nodes. With the introduction of avgClusterSize,
we are able to reduce the depth of the tree from 726 to 170 in the
Charlotte dataset, which contains 370,000 buildings.

Note that an optimal implementation of single-link clustering
has the complexity of O(n2). However, our single-link clustering
is a O(n3) algorithm. This is due to the fact that avgClusterSize
changes at every step, causing all distances to have to be recom-
puted. For efficiency, we pre-compute the nearest neighbors of each
building and only consider the nearest neighbors during clustering.
This reduces the complexity of the algorithm to O(k3) where k is the
number of neighbors. We found empirically that a value of 50 for k
is sufficient for all of our models in producing clusters that follow
paths and edges while drastically reducing the clustering time.

6 MERGING AND SIMPLIFYING CLUSTERS

Once the clustering process is complete, each node in the hierarchy
contains a number of buildings that are geographically near each
other and are roughly bounded by paths and edges. We then merge



the buildings within each cluster into a single geometric model
(called a merged hull), which contains and resembles the aggregate
of the buildings. This merger often creates logical districts (Fig-
ure 6 top row). The merging of clusters is recursively performed
until all (non-leaf) nodes in the hierarchy contain a merged hull.

Because all the buildings are 2.5D, we can consider merging the
footprints of the buildings separately from merging the heights of
the buildings. This permits us to apply different rules to the foot-
prints and the heights. Our merging algorithm begins by finding the
2D convex hull of all the buildings’ ground vertices, and iteratively
subdivides a line segment to form the largest possible triangular
area between the original line segment and the two newly created
ones (Figure 6 bottom row). Based on the inverse of the one-mouth
theorem [12], this process can continue until no line segment can
be further subdivided without causing self-intersections.

(a) (b) (c)

(d) (e) (f) (g)

Figure 6: Top row: Creating a district by merging two clusters (a) and
(b) into (c). Bottom row: Steps of cluster merging and simplification.
(d) The convex hull of the two merging clusters; (e, f, g) three iterative
steps of line segment subdivision. Notice that the merger introduces
geometric error, or negative space, as highlighted by green stripes in
(g).

The computation of this iterative line subdivision method has
the worst case upper bound of O(n3) where n is the number of ver-
tices. For the sake of efficiency when computing the merging of
the clusters, we stop the subdivision process when the target num-
ber of edges is reached. Although the target number is a changeable
parameter, it is imperative that the number of edges in a parent clus-
ter is less than or equal to the sum of the two children’s number of
edges. By adhering to this rule, the cluster hierarchy remains mono-
tonic in that traversing deeper down the hierarchy always results in
more geometric detail. Empirically, we find that setting the parent
cluster’s number of edges to be 75% of the two children’s combined
edges results in a good balance between computation time and ge-
ometric detail.

Once the simplified merged hull has been calculated, we define
the height of the cluster to be the weighted average height of all
the buildings in the cluster, where the weight of each building is
directly proportional to its area. Buildings with dramatically dif-
ferent heights are considered as landmarks and handled separately
during the runtime LOD. The final polygonal model for each clus-
ter (called a cluster mesh) is produced by protruding the merged
hull towards the sky to the height of the cluster, and using OpenGL
(GluTesselator) to create the triangulation of the roof.

We find the result of our merging and simplification process to
produce clusters that are understandable in the form of districts
while preserving the elements of path, edges, and nodes (Figure 7).
Furthermore, similar to the concept of half-edge collapse, no new
vertices are created during this process, making this algorithm very
useful when used in conjunction with OpenGL vertex arrays for
both speed and memory conservation.

Figure 7: Polyline simplification. Left: 6000 edges; Right: 1000
edges.

7 NEGATIVE SPACES AND LEVEL OF DETAIL

During the hull merging and simplification process, geometric er-
rors are introduced into the final mesh. We call these geometric
errors “negative spaces” because geometry is added to previously
empty spaces.

The area of the negative space of a cluster mesh is the difference
in area between its footprint and the sum of the buildings’ foot-
prints. Our LOD algorithm will not render a cluster if the visual
effect of this area is too large. In our implementation, we approx-
imate this negative-space area as a rectangle with the same ratio
in dimensions as the axis-aligned bounding box of the merged hull
(Figure 9 (a)). During the LOD process, this negative-space area is
converted into a 3D box with the same height as the cluster mesh.
The camera-facing sides of the box are projected onto screen space,
and the number of pixels is compared against a user-defined toler-
ance (ε). If the number of pixels is greater than ε , the cluster will
not be rendered, and its descendants will be checked recursively
(Figure 8).

The concept of landmarks is perhaps the most subjective of

(a) (b)

(c) (d)

Figure 8: (a) View of downtown Charlotte and its surrounding regions
from afar; (b) what is actually being rendered when the selected yel-
low box region in (a) is enlarged. (c) using a pixel tolerance ε of 50;
(d) setting ε to 500: notice that as ε increases, so does the amount
of simplification. Nonetheless, both models obey the principles of
legibility.



Lynch’s categories. However, it is reasonable to assume that taller
buildings have higher visual importance than shorter ones because
of their roles in defining the skyline. A user-defined threshold (α)
in numbers of pixels is used to determine the acceptable error in
height. During runtime, α is projected onto each cluster mesh and
converted to a height value in world coordinate (called αheight ),
shown in Figure 9(b). If any building is taller than its cluster’s
αheight , the original building mesh is rendered along with the cluster
mesh (Figure 9(c)). Figures 9(d, e, f) show the affects of changing
α on a city’s skyline.

8 HIERARCHICAL TEXTURE

As with the above urban geometry simplification, the purpose of
our hierarchical texture approach is not visual quality in its strictest
sense, but rather legibility of the urban environment at all scales.
As such, the main goal for texturing is not necessarily to enforce
small or even unnoticeable pixel errors. Instead, the goal is to create
textures that maintain legibility and interactivity.

It is generally accepted that texture mapping is one of the most
resource-intensive processes in graphics rendering. For our applica-
tion, the texture problem is doubled because we generate n−1 new
cluster meshes in which the geometries are often different from the
original models, making it impossible to reuse textures.

To create side textures for each cluster mesh, we iteratively gen-
erate an image for each face by placing an orthographic camera
such that its near clipping plane lies on the face. The combined
images from all faces are set to fit into one single texture, with the
resolution of each image proportional to the length of each face.

Texturing the roof is more difficult because the negative spaces
between buildings are more visible from a top-down view. If the
camera angle changes slightly from such a view, the viewer expects
to see parts of the facades of the buildings. We take images of
the roof from five different camera angles: a top-down view and
45-degree views from north, east, south, and west. Buildings are
scaled to the height of the cluster mesh to avoid ”shifting” between
the camera angles. During runtime, the system chooses the texture
that is closest to the look vector.

Due to the limited texture resources, it is important that we con-
strain the amount of texture generated to a minimum. Analytically,

(a) (b) (c)

(d) (e) (f)

Figure 9: Top row: (a) The negative spaces are approximated as 3D
boxes, shown in red. The green lines represent αheight , or acceptable
height tolerance for each cluster; (b) Finding αheight : the user-defined
height tolerance α is projected onto a cluster mesh and converted to
height tolerance (αheight ) in world coordinate. (c) Buildings in a cluster
mesh (circled in red) that are taller than (αheight ) (shown as a green
line), are considered to be landmarks and are drawn separately over
the cluster mesh. Bottom row: (d) Original skyline (243,381 poly-
gons) (e) Simplified skyline that resembles the original skyline (α = 2,
ε = 100, 15,826 polygons) (f) Skyline that loses its resemblance to the
original skyline by not maintaining landmarks (α = 10000, ε = 100,
13,712 polygons).

we can find the upper bound of the maximum texture resolution re-
quired for any cluster mesh given the user-defined pixel tolerance
ε . Since no cluster mesh should have a texture resolution that ex-
ceeds its maximum size on screen, the cluster mesh’s maximum
size defines the upper bound of the texture resolution. We know
the footprint area of the cluster mesh, and the area of the negative
space. So given ε , we can trivially compute the maximum size that
a cluster mesh would ever appear on screen, and hence the maxi-
mum number of texture pixels for the roof troo f and the sides of the
cluster mesh tside:

troo f = (areaclusterMesh/areanegativeSpace)∗ ε (2)

tside = (
√

areaclusterMesh/
√

areanegativeSpace)∗ ε ∗4 (3)

In the case of tside, we multiply the number of calculated pixels
by 4 because there are four sides to each 3D negative space. Al-
though the fact that tside does not depend on the height of the cluster
mesh is counter intuitive, it indicates that the geometry simplifica-
tion and texturing are inter-dependent. During runtime, given ε ,
the LOD process chooses the appropriate geometry to render, and it
guarantees that the associated texture for that geometry is optimal.

Due to the large size of the urban datasets, texture storage and
retrieval is also a critical aspect in rendering. Conceptually speak-
ing, we separate clusters into groups that are geographically close
to each other and combine their textures into texture atlases. In
practice, we consider three types of clusters - those in the cut, those
above the cut, and those below the cut, where the cut is found by
using the LOD process looking down at the city model. The clus-
ters in the cut are clusters visible in the LOD and approximately
equal in size. Together, they define groupings of buildings that are
geographically close to each other.

Choosing an appropriate texture atlas size is also a challenge.
Large atlases require fewer disk I/O operations and can make more
efficient use of space, but we found the lower runtime texture mem-
ory needed for small atlases to be worth the tradeoff. In the Char-
lotte dataset, we use texture atlases of 256x256, and create a cut of
approximately 12,220 groups.

During runtime, the geometries of the model are left in-core.
However, to ensure that there is enough memory for the textures
during runtime, we implement a simple priority queue in which the
least recently used texture is swapped out when memory becomes
a constraint.

9 RESULTS AND ANALYSIS

All graphs shown in this section are generated using a fly-through
of the Charlotte model which contains 369,929 buildings and
4,088,254 polygons (with the parameters ε = 100 and α = 2). To
showcase our system’s speed and efficiency from all levels of de-
tail, the camera’s fly path starts zoomed-in locally on a number of
buildings at the ground level, and then zooms out and up slowly
until the entire city is in view from above. Note that the Charlotte
model does not contain accurate height information or textures.

The computer used in generating the following statistics is a Pen-
tium 4 3.0Ghz desktop with 2GB of RAM and an nVidia 7950
graphics card with 512MB of memory running Windows XP Pro-
fessional.

Polygon Count We demonstrate that our algorithm drastically
reduces the number of polygons rendered during a fly-through in
our Charlotte model. Figure 10 shows that the number of polygons
rendered ranges between 1% to 8% of the total polygons.



Frame Rate Figure 10 shows the frame rate of the fly-through
of Charlotte using our algorithm (shown in blue) compared to the
rendering of each building individually (shown in magenta). Both
implementations use OpenGL Vertex Buffer Objects (VBO). How-
ever, our algorithm takes advantage of hierarchical frustum culling
in removing clusters outside of the view frustum, whereas the im-
plementation of rendering individual buildings does not cull build-
ings outside of view.

Figure 10: Top: The polygon count and the percentages of the to-
tal number of polygons of the original Charlotte model during a fly-
through. Compared to the unsimplified Charlotte model (4 million
polygons), our algorithm drastically reduces the polygon count to less
than 9% from all view distances and angles during the fly-through.
Bottom: The frame rate of the fly-through of Charlotte. The blue dots
show the frame rate using our algorithm, and the magenta dots show
the frame rate if every building is drawn individually in every frame.
Note that the fluctuations in our frame rate correspond to the frames
in which textures are loaded from file.

The fluctuations in the frame rate correspond to the frames in
which the system fetches the needed textures from the file sys-
tem. Our current implementation of texture-loading does not in-
clude pre-fetching of textures, so textures are loaded from file on
an as-needed basis. While pre-fetching is a well-studied technique,
we note that adding pre-fetching into our system is not a trivial task
due to the already large memory requirement when viewing a tex-
tured, city-sized urban model. Because of the memory constraints,
correctly identifying the needed textures for pre-fetching is a dif-
ficult problem that is outside the scope of this paper and requires
further investigation.

Preprocessing Time Table 1 shows the amount of time re-
quired for each stage of pre-processing. Although the computa-
tion can be performed in parallel, for consistency’s sake, all pre-
processing is done on a single computer. Note that the large differ-
ence in clustering times between the two datasets is due to the fact
that the distance metric of the clustering algorithm is based on dis-
tances between vertices. Therefore, the more detailed the buildings
are, the longer it takes to calculate the minimum distance between
them.

Xinxiang Charlotte
Number of Buildings 95,042 369,929
Number of Polygons 814,592 4,088,254
Number of Ground Vertices 502,336 2,414,056
Clustering 8 mins 102 mins
Merging and Simplification 3 mins 15 mins

Table 1: Statistics and preprocessing times for the Xinxiang dataset
and the Charlotte dataset.

10 DISCUSSION

Evaluation of the legibility of a simplified city model remains an
open problem, as it is difficult to quantify a person’s sense of spa-
tial awareness in an urban environment. While spatial cognition is
an active field, it has not often been related to the analysis of urban
legibility, as defined by Lynch, in the context of urban visualization.
As noted in Section 2, some researchers have tried to understand
legibility via user studies [3], while others attempted to quantify it
mathematically, but so far there has not been a generalized rule that
can be applied to evaluate urban legibility. One promising direc-
tion is to develop benchmark localization and navigation tasks to
evaluate user performance through user studies [3].

We have performed an informal expert evaluation on an ex-
ploratory system built on our simplification method called Urban-
Vis [2], which examines Census information within an urban en-
vironment. The system was evaluated by surveying 14 experts
with disparate backgrounds including geographic information sys-
tem (GIS) experts, city planners in local government, school district
planners, population experts in academia, and commercial real es-
tate developers. The experts were given some time to familiarize
themselves with the system, then asked for subjective feedback on
the potential usefulness of the system in their daily tasks as well as
any suggestions on future improvements. The results of the survey
indicate that for the purposes of navigation and spatial awareness
and understanding, urban models created based on our simplifica-
tion algorithm remain legible at all levels of simplification, even in
the most extreme cases.

This finding is significant in two ways. First of all, it suggests
that the legibility elements introduced by Kevin Lynch do indeed
form a basis for most people’s mental understanding of an envi-
ronment. This is interesting because an individual’s concept of a
“legible” environment is inherently subjective; how a person ori-
ents himself often depends on his familiarity with the surround-
ings. A long-time resident of a city could use a local restaurant
as a landmark, whereas tourists might rely on skyscrapers and ma-
jor roads for orientation. However, based on our survey results,
Lynch’s legibility elements may serve as a common ground be-
tween each person’s mental image of the urban environment. All
participants of our survey, with their disparate backgrounds, un-
derstood and oriented themselves successfully using the simplified
urban model generated with our algorithm.

More importantly, the results of the survey strengthen the argu-
ment presented in Section 3 that pixel-level accuracy in simplifi-
cation is often not the most important measurement in evaluating
urban simplification algorithms. As Figure 3 shows, qualitatively
different urban models can produce similar quantitative pixel er-
rors. Our evaluation reinforces this point by demonstrating that
even with an aggressive amount of simplification, the user retains
spatial awareness of the environment. This indicates that if the sim-
plified model resembles the user’s mental image of the urban envi-
ronment, the user can successfully orient himself and navigate the
environment effectively.



11 CONCLUSION

In this paper, we introduce a method for simplifying large urban
models while retaining their legibility. We show that simplification
of urban models should not be done solely using traditional ver-
tex, edge, or polygon removal strategies. Employing such strategies
may produce quantitatively acceptable models, but not models that
are understandable or legible.

Instead, we contribute the concept of simplification through
merger of 3D urban models in which geometries and textures of
buildings are merged together to create new models. We argue that
the resulting simplified models, although not quantitatively better
than models created using traditional simplification methods, are
more understandable and legible to the user.

This is particularly true when the merger is guided by the con-
cept of urban legibility as described by architects and urban plan-
ners. Each step of our simplification process seeks to retain or cre-
ate elements of legibility. Single-link clustering groups buildings
into clusters that adhere to the boundaries of paths and edges; clus-
ter merging creates logical districts; polyline simplification main-
tains paths, edges, nodes, and districts while reducing the model’s
complexity; and the runtime LOD process renders only visually ap-
propriate models while preserving the skyline by identifying land-
marks. Finally, analytically determining the necessary amount of
texture and applying it hierarchically to the models strengthens the
visual fidelity of the urban scene.

Finally, our quantitative and qualitative evaluations indicate that
our method not only reduces the geometry of complex urban mod-
els, but successfully preserves the legibility of the environment on
all scales. The resulting simplified models are faster to render and
still effective in a user’s navigation and orientation of the urban en-
vironment.

12 FUTURE WORK

There are a number of opportunities for improving our algorithm.
Currently, the clustering process merges clusters based on Eu-
clidean distances between vertices of buildings, but we could also
include other attributes such as buildings’ colors, textures, sizes,
and shapes in the distance function. Furthermore, it would greatly
generalize our algorithm to integrate mesh decimation techniques
in the pre-processing step so that we can accept true 3D building
models of arbitrary geometric complexity. This extension along
with improving the texture loading process to incorporate concepts
such as pre-fetching will enable us to address a challenging prob-
lem in urban rendering, namely, flying freely over very large urban
scenes at a birds-eye view and then diving in at any time for detailed
close-ups of any building, with everything unfolding smoothly and
naturally.

In the rendering aspect, we acknowledge that our system does
not utilize OpenGL’s Vertex Buffer Object (VBO) to its full poten-
tial, which limits the frame rates shown in the Results and Anal-
ysis section (Section 9). Two limitations prohibit the rendering
engine from reaching ideal frame rates; first, OpenGL’s current im-
plementation of VBO limits each vertex to one surface normal. Un-
fortunately, in the case of 2.5D models, each vertex needs to rep-
resent two surfaces with different surface normals that cannot be
blended. In order to render each face of a building with a different
surface normal, we render each face independently after setting its
surface normal (using GL QUADS instead of GL QUAD STRIP).
The second limitation of the rendering engine is due to updating
the VBO on every frame. In our implementation, ground vertices
and roof vertices share the same (x, y) coordinates and are stored
in the same VBO. During runtime, however, the z value (height
value) of the roof vertices need to be updated every frame based on
their corresponding cluster meshes. Although no new vertices are
introduced into the VBO, the z coordinate updates still slow down
the rendering speed. Overall, our evaluation suggests that the bot-

tleneck in our rendering system is not in the graphics card, but is
instead in the data transfer between the CPU and the GPU. We be-
lieve that if these two issues can be resolved, the rendering speed
should increase significantly.

Lastly, we are very interested in furthering the evaluation of how
individuals understand their surroundings in an urban environment.
We would like to examine through user studies how the first three
images in Figure 1 differ perceptually and cognitively. If we can
understand better the way mental images of urban surroundings are
formed, we believe we can apply those concepts and create more
simplified, yet more legible urban models.

ACKNOWLEDGEMENTS

The authors wish to thank Eric Sauda and Jose Gamez of the UNC
Charlotte College of Architecture for sharing their expertise on ur-
ban legibility; to Sonia Leach for her introduction on single-link
clustering; to Hunter Hale for preparing the Charlotte dataset; and
to the group at Google Earth for their encouragement and feedback.

REFERENCES

[1] K.-H. Anders. Level of detail generation of 3d building groups by ag-
gregation and typification. In International Cartographic Conference,
2005.

[2] R. Chang, G. Wessel, R. Kosara, E. Sauda, and W. Ribarsky. Legible
cities: Focus-dependent multi-resolution visualization of urban rela-
tionships. In Transactions on Visualization and Computer Graphics,
volume 13, pages 1169–1175. IEEE Computer Society, 2007.

[3] R. C. Dalton. Is spatial intelligibility critical to the design of large-
scale virtual environments? In Journal of Design Computing 4. Spe-
cial Issue on Designing Virtual Worlds, 2002.

[4] M. Garland and P. Heckbert. Surface simplification using quadric error
metrics. In Proceedings of SIGGRAPH 1997, pages 209–216. ACM,
1997.

[5] H. Haken and J. Portugali. Legiblethe face of the city is its infor-
mation. In Journal of Environmental Psychology, volume 23, pages
385–408. Elsevier, 2003.

[6] J. Jang, P. Wonka, W. Ribarsky, and C. Shaw. Punctuated simplifica-
tion of man-made objects. In The Visual Computer, volume 22, pages
136–145, 2006.

[7] M. Kada and F. Luo. Generalisation of building ground plans using
half-spaces. In International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, volume 36, 2006.

[8] F. Losasso and H. Hoppe. Geometry clipmaps: Terrain rendering us-
ing nested regular grids. In Proceedings of SIGGRAPH 2004, pages
769–776. ACM, 2004.

[9] D. Luebke. A developer’s survey of polygonal simplification algo-
rithms. In IEEE Computer Graphics and Applications (May/June),
pages 24–35, May 2001.

[10] K. Lynch. The Image of the City. The MIT Press, 1960.
[11] S. M. Shalabi. Analysis of urban morphology for real time visual-

ization of urban scenes. Master’s thesis, Massachusetts Institute of
Technology, May 1998.

[12] G. Toussaint. Anthropomorphic polygons. In American Mathematical
Monthly, pages 31–35, 1991.


