
To appear in the ACM SIGGRAPH 2003 conference proceedings

Efficient Synthesis of Physically Valid Human Motion

Anthony C. Fang Nancy S. Pollard

Department of Computer Science
Brown University∗

Abstract

Optimization is a promising way to generate new animations from
a minimal amount of input data. Physically based optimization
techniques, however, are difficult to scale to complex animated
characters, in part because evaluating and differentiating physical
quantities becomes prohibitively slow. Traditional approaches of-
ten require optimizing or constraining parameters involving joint
torques; obtaining first derivatives for these parameters is generally
an O(D2) process, where D is the number of degrees of freedom
of the character. In this paper, we describe a set of objective func-
tions and constraints that lead to linear time analytical first deriva-
tives. The surprising finding is that this set includes constraints on
physical validity, such as ground contact constraints. Considering
only constraints and objective functions that lead to linear time first
derivatives results in fast per-iteration computation times and an
optimization problem that appears to scale well to more complex
characters. We show that qualities such as squash-and-stretch that
are expected from physically based optimization result from our
approach. Our animation system is particularly useful for synthe-
sizing highly dynamic motions, and we show examples of swinging
and leaping motions for characters having from 7 to 22 degrees of
freedom.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation G.1.6 [Numerical Analysis]:
Optimization—Constrained Optimization

Keywords: animation, physically based animation

1 Introduction

One appealing vision in animation is that the animator should be
able to create and edit motion by defining and adjusting a small
number of keyframes and constraints—and that the resulting mo-
tion should remain optimal in some way. An optimization approach
to animation has proven useful for editing human motion capture
data, refining a “sketched” version of an animation, and for creat-
ing entirely new motions for simple characters or short segments.

Several challenges remain, however, to achieving fast, flexible,
and realistic optimization of human motion. One challenge is in-
corporating physics into an interactive animation system. Despite
impressive results obtained from physically based optimization,

∗Providence, RI 02912, [acf|nsp]@cs.brown.edu

Figure 1: A single-flip dismount from a high-bar. (Top) Initial
guess. (Middle) Flight duration is 0.6 seconds; Flip posture is tight
and maximum height is below high-bar. (Bottom) Flight duration
increased to 0.8 seconds. Flip posture is relaxed, and maximum
height exceeds high-bar.

constraints and objective functions that require computing physi-
cal quantities such as momentum, force, and torque are typically
viewed as slow, cumbersome, and difficult to control, especially
for complex humanlike characters. As a result, physical validity
is often sacrificed for performance. Physical validity is important,
however, in situations such as those shown in Figure 1. Kinematic
optimization alone is unlikely to capture the coordination of differ-
ent parts of the body that is required to perform this task, such as
the preparatory back swing, the tuck, or the motion of the legs to
drive the character upward that is shown in the bottom row of the
figure.

This paper presents an approach to physically based optimization
that is efficient and appears to scale well to more complex charac-
ters. We use a standard problem formulation—iteratively adjust
character motion to meet animator constraints and minimize an ob-
jective function. Our approach is based on restricting the definition
of this optimization problem to constraints and objective functions
that can be differentiated in time linear in the degrees of freedom of
the character. The motivation for this approach is that solution tech-
niques for nonlinear constrained optimization problems (e.g. SQP)
typically require either analytical or numerical derivatives. Obtain-
ing these derivatives is a computational bottleneck, and complex
derivatives can lead to poor optimization performance and problems
with local minima. Kinematic optimization [Gleicher 1997], which
has been shown to be successful for complex characters, depends on
constraints and objective functions for which first derivatives can be
computed in linear time. We have found that constraints on physics
that can be derived from the aggregate force and torque applied
to the character can also be differentiated in linear time. This set
includes most common constraints required for physically correct
animation, such as conserving linear and angular momentum dur-
ing flight, ensuring that ground contact forces can be explained by

1

To appear in the ACM SIGGRAPH 2003 conference proceedings

foot placement, constraining torque applied about an axis (e.g. the
high bar in Figure 1), and limiting the coefficient of friction at any
contact with the environment.

Linear time derivatives for physics constraints do not result
from direct differentiation of the equations of motion in either the
Newton-Euler or the Lagrangian formulation; in either case, sym-
bolic differentiation would result in a quadratic time algorithm. In
this paper, we describe how the Newton-Euler equations of mo-
tion can be rewritten to allow first derivatives of aggregate forces
and torques to be computed in linear time. We note that it is not
possible to compute derivatives for torques at all of the characters
joints in linear time. Intuitively, quadratic time is required because
motion at any joint affects torque at all joints. As a result, typi-
cal objective functions such as minimizing the sum of squared joint
torques are excluded from our restricted problem setup. Our results
suggest, however, that physics constraints and a kinematic measure
of smooth motion such as minimizing the sum of squared joint ac-
celerations are sufficient to capture dynamic effects such as squash-
and-stretch and tucking for faster rotation, as shown in Figure 1.

While animator constraints such as key poses or an objective
based on proximity to a reference motion can easily be incorpo-
rated into the system, no motion capture data is used in our exam-
ples, and user-supplied constraints are minimal (e.g., see Figure 7).
The characteristics of the final motions fall out of the requirements
of physical validity, a simple kinematic optimization function, and
timing values selected for each phase of the motion.

2 Background

Constrained optimization techniques were introduced to the graph-
ics community by Witkin and Kass [1988], who created a variety
of animations involving a jumping Luxo lamp from simple descrip-
tions including start pose, end pose, and a physically based objec-
tive function. Optimization approaches with physically based ob-
jective functions have proven difficult to extend to complex articu-
lated characters, however, and much research has been focused on
this problem. Cohen and his colleagues [Cohen 1992] [Liu et al.
1994] introduced techniques to give the user more control, includ-
ing an ability to focus on windows in time, and employed a hier-
archical wavelet description to allow incremental changes to affect
the motion at different time scales. In his dissertation, Liu [1996]
also describes how symbolic differentiation of the equations of mo-
tion can be made efficient (although still quadratic time) by cleverly
aggregating terms. Grzeszczuk, Terzopoulos, and Hinton [1998]
developed a neural network approximation of dynamics so that gra-
dient search could be performed on this neural network, resulting
in faster convergence to a solution.

The mix of animator control and physics present in Witkin and
Kass [1988] has been expanded upon in interactive techniques de-
veloped to control physical simulations of rigid bodies [Popović
et al. 2000], and a number of researchers have shown that the
freefall portion of a dive can be efficiently optimized for a simpli-
fied character [Liu and Cohen 1994][Crawford 1998][Albro et al.
2000], as can motions such as weight lifting and pushups [Lo
and Metaxas 1999]. Optimal control techniques, introduced to the
graphics community by Brotman and Netravali [1988], have been
used with success by Pandy and Anderson [2000] for simulating
human lower body motions such as optimal height jumping and
walking. Running times were far from interactive, but show that
optimization techniques can produce realistic motion for systems
of human-level complexity.

Preexisting motion data can simplify the optimization process.
Full scale human motion can be optimized when closely spaced
keyframes are available [Liu and Cohen 1995] or when only transi-
tions between existing motion segments are required [Rose et al.
1996]. Popović and Witkin [1999] have shown that significant

view / edit

h, C
dh/dx
dC/dx

numerical
optimizer

compute
objective
function and
derivativesfinal motion

problem desc.

x

free parameters x
in

x
out

objectives
constraints

initial motion

Figure 2: Optimizing motion synthesis or editing system. Parame-
ter h is the objective function, and C are the constraint errors. This
paper discusses efficient computation of the objective function, con-
straint errors, and their derivatives.

changes to motion capture data can be made by optimizing with
a physically based objective function when the character is reduced
to the degrees of freedom most important for the task. When
physics does not dominate the motion, kinematic techniques can
give the animator interactive control for motion editing (e.g., [Gle-
icher 1997] [Lee and Shin 1999] [Arikan and Forsyth 2002]).

The idea of physically valid motion has appeared in both graph-
ics and robotics. Dynamic filters have been developed for pro-
cessing motion capture data for physical correctness [Yamane and
Nakamura 2000] [Dasgupta and Nakamura 1999] [Pollard and Re-
itsma 2001]. Physics constraints have been used to plan biped walk-
ing motions, exploiting the idea that dynamic equilibrium can be
maintained by ensuring that the zero moment point (ZMP)—the
point on the ground at which ground reaction moments about hor-
izontal axes are zero—lies within the support polygon of the feet
[Vukobratović 1970] [Takanishi et al. 1985] [Nagasaka et al. 1999].
Similar ideas have also been developed in graphics by [Ko and
Badler 1996], who bend the torso of a character to reduce torques at
the desired ZMP, and [van de Panne 1997] who ensure that reason-
able forces are available to accelerate the center of mass without
creating angular acceleration. Liu and Popović [2002] show that
some dynamic effects can be preserved by enforcing patterns of
linear and angular momentum, which does not require computation
of dynamic parameters such as contact forces and joint torques. We
add to this body of work the insight that it is possible to incorporate
constraints on physics as efficiently as constraints on kinematic pa-
rameters and an O(D) algorithm for computing first derivatives of
a broad range of physics constraints for improved performance in a
optimization context.

3 Constrained Optimization

Constrained optimization has been shown to be a very powerful ap-
proach for obtaining appealing dynamic motions from a minimal
amount of input information. The user adjusts the problem descrip-
tion in the form of keyframes, constraints, and objectives; an opti-
mizer computes an optimal animation given this problem descrip-
tion; and the process repeats until the user obtains a final animation
(Figure 2).

We state the optimization problem solved at each stage in the
following form:

min
x

h(B(t)x) subject to c(ti) = 0, i = 1..m, ti ∈ [ts, t f]

where h is the optimization function; B(t) is a set of basis functions;
x are the coefficients, the free parameters of the optimization; and
c(ti) are the constraints. We use cubic B-splines as basis functions
and follow the standard approach of enforcing constraints at a fixed

2

To appear in the ACM SIGGRAPH 2003 conference proceedings

set of points in time (ti). Enforcing physics constraints or minimiz-
ing a dynamic property such as sum squared joint torques requires
an inverse dynamics computation at each time ti.

Although the inverse dynamics computation is relatively expen-
sive, many efficient algorithms exist, and the process is well known
to require time linear in the number of degrees of freedom of the
character. However, typical choices for the numerical optimizer in
Figure 2 also require derivatives of the constraints and objective
function. For example, the sequential quadratic programming algo-
rithm used in [Witkin and Kass 1988] makes use of first derivatives
of the constraints (the constraint Jacobian) and both first and second
derivatives of the objective function (the Jacobian and the Hessian).

This paper describes how a broad range of physics constraints
can be expressed based on aggregate forces and torques applied to
the character, and how expressing physics constraints in this way
allows us to compute the constraint Jacobian in linear time (Sec-
tion 4). Objective functions are compared for efficiency in Sec-
tion 5. We used an objective function that enforces smooth motion,
with a linear time Jacobian computation and a constant Hessian.
With this objective function and our linear time algorithm for com-
puting the constraint Jacobian, we are able to show that physically
based optimization can be performed for a 22 degree of freedom
character at interactive speeds.

4 Efficient Physics Constraints

Constraints that enforce physical validity can be formulated as lin-
ear equality or inequality constraints on aggregate force. The ag-
gregate force is a representation of all external forces and torques
(excluding gravity) that would have to be applied to the character
root to explain the character’s motion. We classify the physics con-
straints for the motions in our examples into the categories of flight,
bar contact, and ground contact.

Flight. One way of enforcing correct physics during flight is to
ensure that the aggregate momentum of the body remains constant
throughout the flight phase. Unfortunately, the constraint Jacobian
that results from constraining momenta is denser than necessary as
the control points that determine take-off affect all constraint equa-
tions governing the flight phase.

A more elegant solution is to restrict illegal forces during flight.
During flight, no forces, with the exception of gravity, may be de-
rived from the environment. In our system, gravity is simulated by
adding an acceleration of −G to the root, where G is the accelera-
tion due to gravity (See Appendix B). When gravity is simulated
in this manner, the aggregate forces computed by the dynamics
equations are the sum of forces acting on the body in excess of
the gravitational forces. Let the aggregate force be denoted by f0.
(In the spatial notation used here, f0 contains both linear forces and
torques.) The flight constraint is thus f0 = 0.

Bar contact. When the character is swinging on a high bar or mon-
key bars, the amount of torque that can be applied about the bar axis
is constrained. Let aggregate force f0 be represented as

f0 =

[
fa
0

fb
0

]
(1)

where fa
0 is linear force and fb

0 is torque about the world origin.
Aggregate force is translated to a constraint point c as follows:

fc =

[
fa
c

fb
c

]
=

[
fa
0

fb
0− c0× fa

0

]
(2)

where c0 is the world vector from the base of the articulation to c.

The bar contact constraint can then be expressed as

−τmax < sbar · fb
c < τmax (3)

where τmax is the scalar torque limit, sbar is the bar axis, and sbar · fb
c

is a projection operation that results in torque about the bar axis.

Ground contact. During ground contact, the feet can only push,
not pull on the ground, contact forces should not require an un-
reasonable amount of friction, and the center of pressure must fall
within the support polygon of the feet. These effects can be mod-
eled with equations that constrain the linear and angular forces sep-
arately.

We constrain the linear force using Coulomb’s contact model.
Coulomb’s model dictates that the linear reaction force must fall
within a friction cone oriented along the contact normal with angu-
lar half-width tan−1 µ , where µ is the coefficient of friction. The
inequality constraint for the linear aggregate force is therefore

cos−1
(

N · fa
0

|fa
0|

)
< tan−1 µ (4)

where N is the unit contact normal. Equivalently, the constraint
without the inverse trigonometric functions is:

N · fa
0

|fa
0|

>
1√

(µ2 + 1)
(5)

The magnitude of the normal force can be constrained as follows:

0≤ fa
0 ·N≤ K f orce (6)

Contact torques are constrained by geometrically confining the
center of pressure to the support area. In the simplified case
of a rectangular support area (or a linear support area in a two-
dimensional set up), the aggregate torques may be constrained di-
rectly as follows: Translate f0 to the center c of the support as in
Equation 2. Let Tx and Ty be orthogonal vectors spanning the rect-
angular support, and let δx and δy be the distances from c to the
edge of the support along along Tx and Ty respectively. The torques
about Tx and Ty may be constrained as:

−δy (N · fa
0)< fb

c ·Tx < δy (N · fa
0) (7)

−δx (N · fa
0)< fb

c ·Ty < δx (N · fa
0) (8)

The magnitude of the twist force is constrained as follows:

−Ktwist (N · fa
0)< fb

c ·N< Ktwist (N · fa
0) (9)

All physics constraints. Once all physics constraints have been
expressed as constraints on aggregate force, computing derivatives
on the physics constraints becomes a problem of differentiating ag-
gregate force with respect to the free parameters of the problem. At
any time t, character position q, velocity q̇, and acceleration q̈ are
known. The derivative of interest can be expressed in terms of q, q̇,
and q̈ using the chain rule:

∂ f0
∂x

=
∂ f0
∂q

∂q
∂x

+
∂ f0
∂ q̇

∂ q̇
∂x

+
∂ f0
∂ q̈

∂ q̈
∂x

(10)

where terms ∂q/∂x, ∂ q̇/∂x, and ∂ q̈/∂x are available trivially from
the equations expressing joint degrees of freedom q as a function
of B-spline coefficients x. The term ∂ f0/∂q, which we will refer
to as the force Jacobian, is the most difficult term in this expres-
sion. The main point of the paragraphs below is to show how the

3

To appear in the ACM SIGGRAPH 2003 conference proceedings

0p

iq
p

v

are affected by q
all parameters

i

Figure 3: The effect of parameter qi is propagated up the tree with
velocities v and back down the tree with momentum terms p. Com-
puting ∂p0/∂qi requires O(D) time and results in an O(D2) algo-
rithm for computing the momentum Jacobian.

force Jacobian can be computed efficiently.1 We show that straight-
forward analytical computation of the force Jacobian would require
time quadratic in the number of degrees of freedom of the charac-
ter. However, if joint torques are not required, then this value and
first derivatives for constraints based on this value can be computed
in linear time. To our knowledge, our paper is the first to present a
linear time algorithm for computing the force Jacobian for an artic-
ulated character or robot.

4.1 Notation

Our argument and implementation is constructed around a Newton-
Euler formulation of inverse dynamics. We use spatial notation as
in Featherstone [1987] for conciseness. Spatial notation involves
6-dimensional vectors, 6x6 coordinate transformations, and 6x6 in-
ertia tensors. It combines linear and angular quantities such as force
and torque or linear and angular velocity into single vectors, as
shown in Equations 1 through 3. An overview of spatial notation is
given in Appendix A, and terms are summarized here for reference.

D Degrees of freedom of the articulated figure
qi Scalar position of link i, from motion curves (DOF i)
q̇i Scalar velocity of link i, from motion curves
q̈i Scalar acceleration of link i, from motion curves
X j

i
Spatial transform from frame i to frame j

X0
i Spatial transform from frame i to world frame

s′i Joint axis of link i (frame i)
v′i Local velocity of link i (frame i)
vi Global velocity of link i (frame i)
a′i Local acceleration of link i (frame i)
ai Global acceleration of link i (frame i)
I′i Spatial inertia of link i (frame i)
p0 Aggregate momentum of articulated figure (world frame)
f0 Aggregate force of articulated figure (world frame)

4.2 Linear Time Momentum Jacobian

Efficiently computing ∂ f0/∂q, the force Jacobian, requires effi-
ciently computing ∂p0/∂q, the momentum Jacobian, because ag-
gregate force f0 is the time derivative of aggregate momentum p0.
We begin with a discussion of the momentum equations and present
an argument that the momentum Jacobian can be computed in lin-
ear time. Section 4.3 extends this linear time result to the force

1Final expressions for the force Jacobian and other terms of Equation 10
are summarized in Appendix B.

iq
*p

*I

0p

parameters from link i to
the base are affected by q i

Figure 4: The effect of rewriting the recursion is to limit the effect
of qi to parameters collected at joints between i and 0. Terms re-
quired for the momentum Jacobian are accumulated in a single pass
from leaf to base, and the momentum Jacobian can be computed in
linear time.

Jacobian, the quantity required to compute derivatives of physics
constraints.

The usual way to compute aggregate momentum is to formulate
the following recursion:

vi = Xi
i−1vi−1 + s′iq̇i (11)

pi = Xi
i+1pi+1 + I′ivi (12)

where p0 is the desired result.
Velocities vi are propagated from base to leaf, and momentum

pi is propagated from leaf to base. Figure 3 shows this process.
Parameter qi appears in the coordinate transforms Xi

i+1 and Xi+1
i ,

and so every v j for j > i depends on qi, and every p j for j ≥ 0
depends on qi. Unrolling the recursion to collect terms for ∂p0/∂qi
requires O(D) time. There are D terms qi, and this approach will
lead to an O(D2) computation for the momentum Jacobian. There
is no clever way to simplify the calculation by aggregating terms
when it is presented in this form.

We observe that rewriting the recursion solves this dilemma:

I∗i = Xi
i+1I∗i+1Xi+1

i + I′i (13)

p∗i = Xi
i+1p∗i+1 + I∗i v′i (14)

p0 = p∗0 (15)

The key thing to notice here is that p∗i is expressed as a function of
v′i, which is a local variable at link i. As a result, only propagation
from leaf to base is required, and each parameter q j does not affect
terms computed for joints j + 1 and beyond (Figure 4). Also note
that p∗i is in general not equal to pi if i 6= 0. A term superscripted
with an asterix should be treated only as an intermediary quantity,
unless its subscript is zero in which case it is the desired aggregate
result.

A linear time expression for the momentum Jacobian can be de-
rived in a straightforward manner based on this form of the recur-
sion. The results of this calculation are presented in Appendix B.
Note that we are not simplifying or changing the outcome of the
dynamics computation, only changing the order in which terms are
computed. Aggregate momentum p0 and the momentum Jacobian
are exactly the same in both formulations.

4.3 Linear Time Force Jacobian

In a traditional inverse dynamics formulation, accelerations and
forces are expressed as the time derivatives of Equations 11 and 12:

ai = Xi
i−1ai−1 + s′iq̈i + vi×̂s′iq̇i (16)

fi = Xi
i+1fi+1 + I′iai + vi×̂I′ivi (17)

4

To appear in the ACM SIGGRAPH 2003 conference proceedings

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

DOF

S
ec

on
ds

Timings for 500 computations of the aggregate force Jacobian of a serial chain

Direct differentiation
Aggregate differentiation

Figure 5: Timing of 500 computations of the Jacobian of the aggre-
gate force by direct analytical differentiation and by our linear time
analytical method.

where the symbol ×̂ is the cross product operator for spatial vectors
(Appendix A). As with momentum, this form results in an expres-
sion for the force Jacobian that requires O(D2) time to compute.
For fast computation, we instead take the time derivative of Equa-
tion 14, which results in

f∗i = Xi
i+1f∗i+1 + v′i×̂p∗i + I∗i a′i + İ∗i v′i (18)

This equation has the properties we are looking for. Velocity v′i and
acceleration a′i are local to link i, and terms are propagated from
leaf to base only. Note that as with aggregate momentum, f∗i is in
general different from the actual joint force fi if i 6= 0.

Differentiating Equation 18 and accumulating the coefficients of
derivative elements results in the simplified form as given in Ap-
pendix B. Each partial derivative of the aggregate force with respect
to joint positions, velocities, and accelerations may be obtained in
constant time, and hence the full Jacobian may be obtained in linear
time.

4.4 Benchmarking

Figure 5 shows timing results for computation of all partial deriva-
tives of the aggregate force by the proposed method and by direct
differentiation of the Newton-Euler equations of motion. Numeri-
cally the partial derivatives are identical. The articulated model is a
serial chain ranging from 3 to 50 links. As expected, the proposed
method is linear in the degrees of freedom, while direct differenti-
ation shows quadratic growth. It is also observed that despite over-
heads in computing aggregate intermediate terms, the linear time
method shows a computational advantage with as few as 5 degrees
of freedom.

4.5 The Cost of a Linear Time Algorithm

One obvious question is why has this technique of rewriting the
recursion for fast computation not been explored in the robotics
community? One possible reason is that there is a cost to this ap-
proach that may be higher for robotics applications than for graph-
ics applications. In a standard Newton-Euler formulation, force pa-
rameter fi (Equation 17) contains all of the joint force information
for joint i, in particular forces in the actuated directions of motion
(joint torques). In robotics, this information must be computed be-
cause it corresponds to signals sent to the motors of the robot. It
must in general also be part of optimization routines, because en-

ergy consumption and joint torque limits are of particular concern
when operating a robot, and none of the joints can be ignored.

In contrast, we argue that for animation of human motion, many
of the effects we expect to see in physically based optimization do
not depend on joint torques. We believe that physical correctness
and optimization functions enforcing smooth motion are sufficient
to obtain many natural characteristics of human motion.

If some torques (e.g. torques at the hip joints) are found to be
important, it seems quite certain that many others (e.g. torques at
the fingers) can be ignored for many motions. If a subset of K
torques are required, it is straightforward to extend our approach to
measure torques at these joints in O(KD) time.

5 Optimization Criteria

We now return to a discussion about the objective function, h(x).
One traditional approach is to use the integral of the sum of squared
joint torques to produce a motion that approximately minimizes en-
ergy expenditure:

h(x) =
∫ t f

t=ts

(
D

∑
i=1

τ2
i (x, t)

)
dt (19)

This function is expensive because computing its gradient requires
O(D2) work. Adopting this function would negate our effort in
constructing efficient physics constraints.

An objective function that we have found to work well is to min-
imize the integral of the sum of squared, weighted joint accelera-
tions:

h(x) =
∫ t f

t=ts

(
D

∑
i=1

(
wiq̈i(x, t)

)2
)

dt (20)

where wi is aggregate mass subtended at joint i with respect to the
effective root. For example, the weight for the left-knee during a
left-legged support is the entire body mass minus the left lower-
leg. Parameters q̈i do not include translational or rotational accel-
eration of the character root. Note that the analytical Hessian for
this objective function is constant, symmetric, positive definite, and
band-diagonal.

Where a reference motion qR(t) is available, a simple objective
function with low cost is to simply minimize the distance from the
reference motion:

h(x) =
∫ t f

t=ts
(q(x, t)−qR(t))2 dt (21)

This objective function is similar to the one used in Gleicher [1997].
Other objective functions we have attempted include an integral

of squared contact forces:

h(x) =
∫ t f

t=ts
f 2
c (t) dt (22)

The Jacobian of this function is computable in linear time; our
physics constraints are based upon it. Gaits generated using this
function have a certain ‘tip-toe’ quality to them, as the function
minimizes the amount of reaction force derived from the contacts.

Minimizing contact jerk (the time derivative of force) can be
achieved using forward differences:

h(x) =
m−1

∑
i=1

(fc(ti)− fc(ti+1))2 (23)

5

To appear in the ACM SIGGRAPH 2003 conference proceedings

Figure 6: Samples of our results. Rows 1, 4, and 6 are initial motions. Details on the experiments are given in the text of Section 6.

6

To appear in the ACM SIGGRAPH 2003 conference proceedings

Swing Setup Information
DOF 7 (5 rotational, 2 translational)
2D/3D 2D
Number of variables 105
Implicit constraints Hand contact during swing

Feet contact during landing
Swing time 0.9s, Flight time 0.6s, 0.8s

Explicit constraints Initial COM velocity zero
Fixed final pose, final joint velocity zero

Number of iterations 650
Time per iteration 0.04s
Total time 0.43min

Figure 7: All setup information for the swing example.

6 Results

Optimal Motions. Figure 6 shows a sampling of our results. The
first three rows show a dismount. From top to bottom: initial mo-
tion, results with a flight time of 0.6s, and results with a flight time
of 0.8s. Note the looser tuck and the higher flight trajectory in
the 0.8s motion. The initial motion (shown in the top row of Fig-
ure 6) appears very unstable at landing. The character would fall
over. This effect is eliminated in the optimization by enforcing the
physics constraints of ground contact. Details of the optimization
setup are in Figure 7. All timing information is for a 750 MHz
Pentium 3 computer.

Rows 4 and 5 of Figure 6 show initial and final motion for a
monkey bars example. Details are in Figure 8. Rows 6, 7, and
8 show initial and final results for a leaping character, with setup
information in Figure 9. In row 7, ground penetration constraints
are enforced. In row 8, they are not; the character is leaping from
peg to peg. No touch-up was done on the results. In particular, the
geometry of the monkey bars and the pegs was not modeled. In
these examples, notice the swinging of the legs and arms, as well
as body roll, pitch, and yaw. All of these effects are obtained as
a result of the optimization process. In these examples, the initial
motion is rigid translation of the entire character.

Our goal was to require a minimal amount of information from
the animator. To set up these examples, we used 15-30 control
points per degree of freedom. We found that a number of time
slices (for constraint evaluation) equal to the number of control
points produced good results and did not need to adjust this value
for individual motions. Finer time slices would overly constrain the
system, and sparser time slices allowed too much freedom for er-
ror. Each motion was set up using a constraint configuration file
containing the information listed in the tables. In general, the ini-
tial motion was determined directly from constraints, with no ad-
ditional user input, using linear interpolation between constrained
poses. The exception was initial control points for the character
root in the first example, which were set to create the overall body
rotation required for the backflip. To automatically compute initial
motion in a constrained pose, all joints are set at zero angle, the
character is in a vertical posture, and the relevant end effector is
placed at a user-specified point (e.g. hand at a specific point on the
monkey bars). The vertical ”zero posture” had arms up for the bar
swings, legs out for the monkey bars, and arms down for the ground
motions. The high bar final pose was the only pose provided as a
constraint in these examples.

Timing. To empirically test the advantage of our method for fast
derivative computation, we ran the peg example (bottom row of Fig-
ure 6) 5 times, each time with the identical setup except that a dif-
ferent technique was used to compute all required first derivatives.
Figure 10 summarizes the results. The differentiation techniques

Monkey Bar Setup Information
DOF 22 (19 rotational, 3 translational)
2D/3D 3D
Number of variables 532
Implicit constraints Hand contact during support

Support time 0.7s, Zero flight time
Explicit constraints none
Number of iterations 1330
Time per iteration 0.11s
Total time 2.4min

Figure 8: All setup information for the monkey bar example.

Leap Setup Information
DOF 22 (19 rotational, 3 translational)
2D/3D 3D
Number of variables 532
Implicit constraints Foot contact during support

Support time 0.35s, Flight time 0.4s
Explicit constraints none
Number of iterations 2213
Time per iteration 0.11s
Total time 4.0min

Figure 9: All setup information for the leap example.

tested were:

• Our method. Analytical gradient computation using our ap-
proach.

• Direct method. Analytical gradient obtained by direct differ-
entiation of the equations of motion.

• NR1. Numerical differentiation by ordinary forward differ-
ences.

• NR2. Numerical differentiation by central differences.

• NR3. Richardson-extrapolation of order 6.

Implementation Issues. Two implementation issues were espe-
cially important for achieving the results described in this paper.
First, we note that if the basis functions have local influence, the
vector and matrix quantities computed during optimization are very
sparse. We use the publicly-available Lancelot optimization pack-
age [Conn et al. 1992] where sparsity is accounted for by group-
separability.

Second, we outline the issue of rerooting. Implementing any in-
verse dynamics algorithm requires selecting a character root. An
ability to move the effective root to different parts of the charac-
ter is very convenient. For example, when there is a single point
of constraint between the character and the environment, and that
point has a known and fixed trajectory, it is convenient to place the

Technique Time per iteration Average % error
Our method 0.11s 0
Direct method 0.62s 0
NR1 0.97s 0.10
NR2 1.92s 1.0e-04
NR3 5.73s 1.5e-06

Figure 10: Time required for one iteration of the peg example using
a variety of differentiation techniques.

7

To appear in the ACM SIGGRAPH 2003 conference proceedings

character root at that point. In the swing example of Figure 1, it
may be convenient to root the character at the hands for the swing,
at the center of mass for flight, and at the feet for landing. In a
Newton-Euler inverse dynamics formulation, rerooting is typically
done by changing parent / child relationships, which requires in-
verting joint angles and transforms at each joint and altering the
flow of dynamic terms from leaves to root. Both of these changes
complicate the problem description presented to the optimizer.

The effective root can be relocated more easily, however, by leav-
ing the actual root and the flow of the dynamics computation fixed
and computing velocities and accelerations at the root to maintain
the desired constraint. Details are given in Appendix C.

7 Discussion

This paper contributes to physically based optimization by defin-
ing and exploring a restricted class of optimization problems where
physics constraints are included and first derivatives of constraints
and objective functions can be computed in linear time. The fact
that first derivatives can be computed in linear time instead of
quadratic time suggests that our problem is simpler than previ-
ous physically based approaches and similar in complexity to very
successful kinematic approaches such as minimizing distance to a
reference motion. We suspect that our solution landscape will be
smoother than previous physically based optimization approaches,
making it feasible to handle more complex characters.

When the optimization does not converge, we can usually trace it
back to the problem setup. Sometimes it is due to overconstrained
equations (setup error). But often it is due to overly restrictive pa-
rameters, such as friction coefficients, joint limits, poor selection of
timings, etc. At present, timings are set by the user and their values
need to be reasonable (e.g., the character cannot leap too far in too
short a time). Any optimization technique that makes use of local
derivatives has potential problems with local minima. Our expe-
rience, however, was that as long as an expected motion sequence
could be thought of as motion about some neutral position, then
when the character was started in that neutral position there was no
problem descending toward the expected minimum.

We were able to create a jumping Luxo and highly dynamic
human motions with good success. For less dynamic activities,
our system would require additional input; physics constraints plus
smooth motion would not in general produce the desired results.
An extreme example is “stand for 5 seconds.” Given this problem
definition, our system would identify a static pose near the initial
guess where the projection of the center of mass is in support area.
Additional information would be required to fill in the details of the
standing motion.

For activities where joint torque limits are important, this torque
information must be taken into account to produce good results. An
extreme example of this situation is the passive swing of a multi-
link chain. Minimizing accelerations while maintaining physics
constraints would produce a result that was valid for the body
as a whole but would require non-zero torques at the joints—no
whipping motion would be seen. Minimizing sum squared torques
would produce the desired results. (Of course, truly passive motion
can be created much more easily using forward dynamic simula-
tion.)

More commonly, a limited set of torques or energy terms may
be important. For example, the peg running motion appears very
athletic because it would require high torques at the knee and hip
joints. When physical parameters at certain joints are identified as
important, our method can be extended to provide and differenti-
ate these parameters for any K joints with running times of O(KD),
reaching the expected bound of O(D2) when all joint torques are
required. An interesting research problem is to determine automat-
ically when torques at a given joint should be considered.

Running on flat ground shows a combination of difficulties. To
make this motion appear more natural, we would need to consider
proper timing for the running stride, a more accurate foot model,
torques at some of the joints, and perhaps also aspects of style that
are not driven by physics or energy.

Complexity in the number of degrees of freedom of the charac-
ter is not the only concern in physically based optimization. The
number of free parameters of the optimization problem also grows
linearly with total time allotted for the animation. We have not yet
attempted any long motion sequences, but we note that Liu, Gortler,
and Cohen [Liu et al. 1994] have shown that time complexity can
be effectively managed in an optimization context, in part because
the influence of any one parameter is localized in time.

It is interesting to compare our approach to that of Liu and
Popović [2002]. Their paper describes the power of patterns (e.g.,
momentum patterns) in creating desirable animation effects, and
their approach could be adapted easily to obtain linear time perfor-
mance by rewriting the momentum equations as described in Sec-
tion 4.2 of this paper. The idea of dynamic patterns is an exciting
one. However, relying on momentum patterns without computing
interaction forces between the character and the environment may
result in problems with certain types of physics constraints (e.g.,
keeping forces within a friction cone) when the initial motion is not
favorable. In the present paper, we show that it is possible to opti-
mize motion with physics constraints in an efficient manner, so that
reasonable friction conditions, for example, can be easily enforced.
We believe the combination of correct physics and knowledge of
natural dynamic patterns of human motion such as momentum or
movement of the center of pressure in the roll of the foot on the
ground could be very powerful.

Finally, we would like to emphasize that the main advantage of
our approach may be as part of a more complete animation sys-
tem. Our vision is that the ability to enforce physics constraints
efficiently should be just one of the tools available to the anima-
tor. Details of the desired motion could be fleshed out using mo-
tion capture data, procedural techniques, keyframes, and/or objec-
tive functions appropriate to the specific task. We have shown that
physics constraints can be enforced in an efficient manner. Incor-
porating physics constraints into traditionally kinematic animation
approaches is one direction of future work.

Acknowledgments

We would like to thank Chris Atkeson for discussions and com-
ments on the presentation of this paper. Thanks also to Jessica
Hodgins and John Hughes for many helpful suggestions during the
course of this project. This work was supported in part by NSF
CAREER award CCR-0093072.

References

ALBRO, J. V., SOHL, G. A., AND BOBROW, J. E. 2000. On the computa-
tion of optimal high-dives. In Proc. IEEE Intl. Conference on Robotics
and Automation.

ARIKAN, O., AND FORSYTH, D. A. 2002. Interactive motion generation
from examples. ACM Transactions on Graphics 21, 3 (July), 483–490.

BROTMAN, L. S., AND NETRAVALI, A. N. 1988. Motion interpolation
by optimal control. In Computer Graphics (Proceedings of SIGGRAPH
88), vol. 22, 309–315.

COHEN, M. F. 1992. Interactive spacetime control for animation. In Com-
puter Graphics (Proceedings of SIGGRAPH 92), vol. 26, 293–302.

CONN, A. R., GOULD, N. I. M., AND TOINT, P. L. 1992. LANCELOT:
a Fortran package for large-scale nonlinear optimization (Release A).
No. 17 in Springer Series in Computational Mathematics. Springer Ver-
lag, Heidelberg, Berlin, New York.

8

To appear in the ACM SIGGRAPH 2003 conference proceedings

CRAWFORD, L. S. 1998. Learning Control of Complex Skills. PhD Thesis,
UC Berkeley.

DASGUPTA, A., AND NAKAMURA, Y. 1999. Making feasible walking
motion of humanoid robots from human motion capture data. In Proc.
IEEE Intl. Conference on Robotics and Automation.

FEATHERSTONE, R. 1987. Robot Dynamics Algorithms. Kluwer Academic
Publishers, Boston, MA.

GLEICHER, M. 1997. Motion editing with spacetime constraints. In Pro-
ceedings of the 1997 Symposium on Interactive 3D Graphics, 139–148.

GRZESZCZUK, R., TERZOPOULOS, D., AND HINTON, G. 1998. Neu-
roanimator: Fast neural network emulation and control of physics-based
models. In Proceedings of SIGGRAPH 98, Computer Graphics Proceed-
ings, Annual Conference Series, 9–20.

KO, H., AND BADLER, N. I. 1996. Animating human locomotion with
inverse dynamics. IEEE Computer Graphics and Applications (March),
50–59.

LEE, J., AND SHIN, S. Y. 1999. A hierarchical approach to interactive
motion editing for human-like figures. In Proceedings of SIGGRAPH
99, Computer Graphics Proceedings, Annual Conference Series, 39–48.

LIU, Z., AND COHEN, M. 1994. Decomposition of linked figure motion:
Diving. In 5th Eurographics Workshop on Animation and Simulation.

LIU, Z., AND COHEN, M. F. 1995. Keyframe motion optimization by
relaxing speed and timing. In 6th Eurographics Workshop on Animation
and Simulation.

LIU, C. K., AND POPOVIĆ, Z. 2002. Synthesis of complex dynamic char-
acter motion from simple animations. ACM Transactions on Graphics
21, 3 (July), 408–416.

LIU, Z., GORTLER, S. J., AND COHEN, M. F. 1994. Hierarchical space-
time control. In Proceedings of SIGGRAPH 94, Computer Graphics Pro-
ceedings, Annual Conference Series, 35–42.

LIU, Z. 1996. Efficient Animation Techniques Balancing Both User Control
and Physical Realism. PhD thesis, Princeton University.

LO, J., AND METAXAS, D. 1999. Recursive dynamics and optimal control
techniques for human motion planning. In Proceedings of Computer
Animation ’99, 220–234.

NAGASAKA, K., INOUE, H., AND INABA, M. 1999. Dynamic walking pat-
tern generation for a humanoid robot based on optimal gradient method.
In Proc. IEEE Intl. Conference on Systems, Man, and Cybernetics, 908–
913.

PANDY, M. G., AND ANDERSON, F. C. 2000. Dynamic simulation of
human movement using large-scale models of the body. In Proc. IEEE
Intl. Conference on Robotics and Automation.

POLLARD, N. S., AND REITSMA, P. S. A. 2001. Animation of humanlike
characters: Dynamic motion filtering with a physically plausible contact
model. In Yale Workshop on Adaptive and Learning Systems.

POPOVIĆ, Z., AND WITKIN, A. P. 1999. Physically based motion trans-
formation. In Proceedings of SIGGRAPH 99, Computer Graphics Pro-
ceedings, Annual Conference Series, 11–20.

POPOVIĆ, J., SEITZ, S. M., ERDMANN, M., POPOVIĆ, Z., AND WITKIN,
A. P. 2000. Interactive manipulation of rigid body simulations. In
Proceedings of SIGGRAPH 00, Computer Graphics Proceedings, Annual
Conference Series, 209–218.

ROSE, C. F., GUENTER, B., BODENHEIMER, B., AND COHEN, M. F.
1996. Efficient generation of motion transitions using spacetime con-
straints. In Proceedings of SIGGRAPH 96, Computer Graphics Proceed-
ings, Annual Conference Series, 147–154.

TAKANISHI, A., ISHIDA, M., YAMAZAKI, Y., AND KATO, I. 1985. The
realization of dynamic walking by the biped walking robot WL-10RD.
In Proc. Intl. Conference on Advanced Robotics, 459–466.

VAN DE PANNE, M. 1997. From footprints to animation. Computer Graph-
ics Forum 16, 4 (Oct.), 211–223.

VUKOBRATOVIĆ, M. 1970. On the stability of biped locomotion. IEEE
Trans. Biomedical Engineering 17, 1, 25–36.

WITKIN, A., AND KASS, M. 1988. Spacetime constraints. In Computer
Graphics (Proceedings of SIGGRAPH 88), vol. 22, 159–168.

YAMANE, K., AND NAKAMURA, Y. 2000. Dynamics filter – concept and
implementation of on-line motion generator for human figures. In Proc.
IEEE Intl. Conference on Robotics and Automation.

Appendix A: Overview of Spatial Notation

For rotational joints, joint axis s′i is represented as follows:

s′i =

[
α i

ri×α i

]
(24)

where α i is the axis of rotation and ri is the point about which the
joint rotates. Both terms are expressed in the body i local frame, and
the superscript ′ on s′i indicates that the spatial vector is expressed in
body i local frame coordinates. For prismatic (translational) joints,

s′i =

[
0
α i

]
(25)

where α i is the axis of translation. We represent multiple degree
of freedom joints as sequences of single degree of freedom joints,
connected by massless and inertialess bodies.

Spatial velocity and acceleration are represented as:

v′i = q̇is
′
i, a′i = q̈is

′
i (26)

where q̇ and q̈ are the scalar velocity and acceleration of degree of
freedom i—angular velocity and acceleration for rotational joints
and linear velocity and acceleration for prismatic joints.

Spatial force also combines linear and angular quantities:

fi =

[
fa
i

fb
i

]
(27)

where fa
i is linear force and fb

i is torque.
Spatial transform X j

i
takes spatial quantities from frame i to

frame j:

X j
i =

[
R j

i 0
r j
i
×R j

i R j
i

]
(28)

where R j
i is the 3x3 matrix rotating vectors from frame i to frame

j, and r j
i

is the position of frame j expressed in frame i.
Spatial inertia represents both body mass and rotational inertia:

I
′
i =

[
−mici× mi

Ii−mici× ci× mici×

]
=

[
−mic̃i mi

Ii−mic̃ic̃i mic̃i

]
(29)

where ci is the vector to the body i center of mass in frame i, c̃i is
that same vector expressed as a cross product matrix, mi is the mass
of body i, and Ii is the rotational inertia of body i about its center of
mass, expressed in frame i.

The spatial cross product ×̂ is expressed in matrix form as fol-
lows:

z̃ =

[
za

zb

]
×̂=

[
za× 0
zb× za×

]
=

[
z̃a 0
z̃b z̃a

]
(30)

The spatial transpose is

zS =

[
za

zb

]S
=
[

(zb)T (za)T
]

(31)

where superscript S indicates a spatial transpose and superscript T
indicates an ordinary 3-vector transpose.

9

To appear in the ACM SIGGRAPH 2003 conference proceedings

Appendix B: First Derivative Expressions

Conventions. For clarity, we assume a serial chain composed
of of L single degree of freedom links numbered 1,2, ...,L. The
subscript zero is reserved for the quantities representing the entire
multibody. Where superscripted with an asterix (e.g., I∗i) the quan-
tity represents aggregated information accumulated from L to i.

Newton-Euler equations of motion. The equations of motion
of a serial multibody chain are compactly expressed in recursive
form as follows:

vi = Xi
i−1vi−1 + s′iq̇i (32)

ai = Xi
i−1ai−1 + s′iq̈i + vi×̂s′iq̇i (33)

pi = Xi
i+1pi+1 + I′ivi (34)

fi = Xi
i+1fi+1 + I′iai + vi×̂I′ivi (35)

where the second and fourth equations are the time derivatives of
the first and third equations respectively. For a multibody rooted at
its base joint, the following end condition for simulating gravity is
used:

a0 =−G , v0 = 0 , pL+1 = 0 , fL+1 = 0 (36)

The Newton-Euler equations propagate quantities in two direc-
tions. To compute aggregate quantities and their derivatives effi-
ciently, rewrite the dynamics equations as follows:

Aggregate equations — momentum. Compute:

I∗i = Xi
i+1I∗i+1Xi+1

i + I′i (37)

p∗i = Xi
i+1p∗i+1 + I∗i s′iq̇i (38)

where body inertias and momenta propagate from the leaf to the
base. I∗0 and p∗0 are the aggregate inertia and momentum of the entire
body, and p∗0 is equal to p0 computed from the previous Newton-
Euler recursive equations. However, p∗i is in general not equal to pi
where i 6= 0 and should only be used as an intermediary quantity in
computing the aggregates.

Aggregate equations — force. Compute:

İ∗i = Xi
i+1 İ∗i+1Xi+1

i + (s̃′iI
∗
i − I∗i s̃′i)q̇i (39)

f∗i = Xi
i+1f∗i+1 + s′iq̇i×̂p∗i + I∗i s′iq̈i + İ∗i s′iq̇i (40)

where f∗0 is the aggregate force applied to the entire body, equal to
f0 computed previously. As before, f∗i is in general not equal to fi
where i 6= 0.

First derivatives – Aggregate equations. The Jacobian may
be constructed in time linear in the number of degrees of freedom
as follows. All partial derivatives are expressed in frame i.2

∂ I∗0
∂qi

= (s̃′iI
∗
i − I∗i s̃′i) (41)

∂p∗0
∂ q̇i

= I∗i s′i (42)

∂p∗0
∂qi

=
∂ I∗0
∂qi

vi
i−1 + s′i×̂p∗i (43)

2When implementing these expressions, we found it essential to com-
pare the numerical values of these derivatives to the identical derivatives
obtained from an alternative technique such as numerical differentiation.

∂ f∗0
∂ q̈i

=
∂p∗0
∂ q̇i

(44)

∂ f∗0
∂ q̇i

=
∂p∗0
∂qi

+ İ∗i s′i + vi×̂
∂p∗0
∂ q̇i

(45)

∂ f∗0
∂qi

= s′i×̂f∗i

+
∂ I∗0
∂qi

ai
i−1

+ vi
i−1×̂(s′i×̂p∗i +

∂ I∗0
∂qi

vi
i−1)

+ (s̃′i İ
∗
i − İ∗i s̃′i)vi

i−1 (46)

where

vi
i−1 = (Xi

i−1vi−1) (47)

ai
i−1 = (Xi

i−1ai−1) (48)

Appendix C: Changing the Effective Root

Suppose we wish to place the effective root of the character at the
point on body i that is located at point r′ in body i coordinates. We
wish this point to have linear velocity br,des and linear acceleration
ḃr,des, expressed in the world coordinate frame. The current veloc-
ity of body i in the body i frame is v′i.

v′i =

[
va

i
vb

i

]
(49)

The velocity of point r′ on body i is computed in the body i frame
as

v′r =

[
va

i
vb

i − r′×va
i

]
(50)

and transformed to the world frame as follows:

vr = X0
i v′r =

[
va

r
vb

r

]
(51)

In Equation 51, vb
r is the linear velocity of the effective root ex-

pressed in world coordinates. This velocity should be br,des . To
obtain the correct velocity at the effective root, simply add the de-
sired correction (br,des−vb

r) to the reference frame velocity:

v0 =

[
0

br,des−vb
r

]
(52)

The adjustment to a0 is derived using similar reasoning.
When these changes are made, the actual character root can re-

main at the pelvis, for example, while the effective root is moved
from hand to pelvis to foot or other bodies as needed. The effective
root can even be set to the center of mass to obtain correct ballistic
motion during flight. Derivatives of all equations with respect to
parameters describing the motion can be computed in O(D) time.

10

