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Abstract. Captured human motion data can provide a rich source of examples of
successful manipulation strategies. General techniques for adapting these examples
for use in robotics are not yet available, however, in part because the problem to be
solved by the robot will rarely be the same as that in the human demonstration. This
paper considers the problem of adapting a human demonstration of a quasistatic
manipulation task to new objects and friction conditions (Figure 1). We argue
that a manipulation plan is similar to a demonstration if it involves the identical
number of contacts and if the applied contact wrenches follow similar trajectories.
Based on this notion of similarity, we present an algorithm that uses the human
demonstration to constrain the solution space to a set of manipulation plans similar
to the demonstration. Our algorithm provides guarantees on maximum task forces
and flexibility in contact placement. Results for the task of tumbling large, heavy
objects show that manipulation plans similar to a demonstration can be synthesized
for a variety of object sizes, shapes, and coefficients of friction. Experimental results
with a humanoid robot show that the approach produces natural-looking motion
in addition to effective manipulation plans.

Fig. 1. (Top) Human demonstration of a tumbling task. (Bottom) The demonstra-
tion has been adapted to a new object geometry and to the robot kinematics.
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Fig. 2. Demonstration is a straightforward way to indicate how a task should be
performed. Even for a task as simple as tumbling an object from one face to another,
a variety of strategies can be observed. These subjects and the subject in Figure 1
have placed their hands very differently while performing this task. All objects are
being tumbled from the right to the left.

1 Introduction

Developing robot manipulation skills from human demonstrations is appeal-
ing because of the variety of strategies that can be observed in human motion
and the ease of conveying a strategy through demonstration (Figure 2). To
make human demonstrations a practical way of describing new robot skills,
however, we would like to have a system that can take as input a single ex-
ample and generate behavior similar to that example, gracefully managing
differences between the task that was demonstrated and task that the robot
must actually perform. Figure 1 shows the type of situation we would like
to handle; a significant difference exists between the geometry of the object
manipulated by the human demonstrator and the geometry of the object
manipulated by the robot.

For quasistatic manipulation tasks, both contact positions and applied
forces are important. For this type of task we propose that similarity between
a manipulation plan and an example should be based on contact wrenches,
i.e., the forces and torques applied to the object at the contact points during
the task. In this paper, a demonstration is used to constrain the solution
space so that a planner considers only solutions that are similar to that
demonstration. Figure 3 shows some results. Compare the contact wrenches
applied to the different objects at any instant in time.

The main idea is to use an example to define the number of contacts
required for the task and to constrain the roles of those contacts. These
constraints can be powerful, and we show how they can be used to define
equivalence classes of manipulation plans. Our approach is first to convert the
manipulation-planning problem into a set of grasp-planning problems whose
solution is a sufficient condition for a manipulation plan to exist. An example-
based algorithm is presented to solve this set of grasp-planning problems and
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Fig. 3. (Top) The human demonstration is abstracted as an object trajectory and
a sequence of contact points. A plausible contact force trajectory is estimated from
this information. Snapshots are at intervals of 0.33s. (Middle, Bottom) Our paper
presents an algorithm for adapting an example to new objects with known geome-
tries. One goal is that contact wrenches in the new manipulation plans should be
similar to those in the example.

select contact points. Given these contact points, a manipulation plan is
produced by computing target forces to be applied at the selected contact
points over time. Figure 4 shows a block diagram of this approach. Features
of this approach include the following:

• Computational efficiency. Each step in the process is polynomial in
all parameters, including the number of contacts.

• Task flexibility. Significant variation in object geometry and friction
conditions can be supported.

• Flexibility in contact placement. Given the geometry of an object
to be manipulated, independent regions of contact are identified so that
placing one contact somewhere within each region is sufficient to guaran-
tee that a manipulation plan exists. Examples of such regions are shown
in Figure 8.

• Preservation of force-related features of the example. Contact
wrenches are constrained to a region that contains the example (Figure 3).

• Quality guarantees. The regions in Figure 8, for example, were pro-
duced with the requirement that the maximum sum of contact normal
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Fig. 4. Block diagram of the planner described in Section 3. The planner takes
as input a manipulation demonstration and new object geometry. Contact selec-
tion is treated as an example-based grasp-planning problem. A trajectory for the
new object is computed from the demonstration. Force computation for the new
manipulation plan is accomplished by time sampling and optimization.

forces for manipulating the object should never be greater than twice
that required for the example.

• For a humanoid robot, much of the character of the original human
motion can also be preserved to create a natural-looking appearance
(Figure 1).

This approach is suitable for manipulation tasks where the motion is not
highly dynamic and where contacts with the object can be abstracted as
non-sliding point contacts with friction. The active set of contacts may vary
over the course of the motion.

2 Background

This paper draws from research in manipulation, manipulation planning, and
grasp planning. Tasks such as tumbling [21] and pivoting [1] have been demon-
strated for robot hands, and a number of researchers have explored manip-
ulation planning for tasks similar to tumbling (e.g. [24] [7] [28] [13] [12] [29]
[27]). Bicchi [4] provides an overview of grasp-planning research.

Of particular interest here is classification of contact regions. Trinkle and
Paul [24] classify contact regions based on object response to squeezing and
use these to plan motion to lift an object into a grasp, and Lynch [12] identifies
regions where a contact point can be placed so that an object will be toppled
by a moving fence. In the work closest to ours, Nguyen [14], Ponce and
his colleagues [19] [18] [20] and Chen and Burdick [5] describe algorithms for
computing independent contact regions for two-to-four-fingered grasps so that
as long as one contact can be placed within each region, a force-closure grasp
can be found. van der Stappen et al. [25] and Liu [11] describe how all force
closure grasps can be computed for 2D grasps. Independent contact regions
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could be extracted from the results of their algorithms. Our paper builds on
many of these ideas to show how contact regions can be constructed, not from
scratch as in previous work, but from an example, so that the contact regions
represent a subclass of grasps similar to that example. The key algorithm
is an adaptation of Pollard [16] from grasps to manipulation strategies and
from frictionless contacts to contacts with friction.

Our work also draws on research in learning from demonstration. Previous
work has used one or a combination of two basic approaches. The first is to
extract a policy or control strategy directly from the demonstration [2] [10].
The second is to extract enough information about the goal and/or task that
a planner or learning algorithm can compute such a policy [9] [8] [26] [22].
The two approaches can be combined. In this case, the planner somehow
makes use of the detailed information observed in the human demonstration.
For example, in learning a pendulum swingup task, Atkeson and Schaal [3]
begin by tracking the hand trajectory of the human demonstrator. They
note that merely tracking observed motion was not effective and present an
iterative learning algorithm to successfully duplicate pendulum motion from
the demonstration.

Our paper relies on a combined approach. In our case, the object trajec-
tory and a set of contact points are extracted from the human demonstration.
The example cannot be applied directly to a new object, because identical
contact points may not be available; a new set of contact points must be
found that are appropriate for the new object. Our approach differs from
previous work in that the demonstration is not modified in a local way as
in [3], but instead it is used to constrain the space of solutions considered
by a global planner. This tactic is practical for tasks that are not highly
dynamic. Our approach gives us many of the advantages of a global planner
while keeping the results tied to an example and leading to a computationally
efficient algorithm.

3 Generalizing a Manipulation Example

An example contains a trajectory for the manipulated object and a trajectory
for each contact (Figure 3, top). Our problem is to adapt the example to a new
object with known geometry, which requires identifying contact points and
solving for contact force targets on the new object. The main idea pursued
here is to convert the manipulation problem into a grasp-planning problem
such that a solution to the latter is a sufficient condition for a solution to
the former to exist. Section 3.1 describes how a manipulation problem is
converted to a grasp-planning problem; Sections 3.2 and 3.3 describe how
this problem is solved. The frictionless case is presented first, followed by an
extension to contacts with friction. Section 3.4 details how these results are
converted to a manipulation plan.
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Fig. 5. Grasp-planning problem. Given new object geometry, task wrenches, and
a pivot point, shown on the left, find contact points on the new object such that
both grasps on the right can achieve all task wrenches. The small insets show the
example grasps used as a reference.

3.1 From Manipulation Problem to Grasp-Planning Problem

We wish to convert a manipulation problem where the task is a function of
time to a grasp-planning problem where time is not relevant. A first step
is to model the task. For the quasistatic problem of tumbling the object 90
degrees to the left, task wrenches are pure forces through the object’s center
of mass, spanning a 90 degree range as shown in Figure 5.

The next step is to solve for a grasp that can resist these task wrenches.
For tumbling, the ground contact at the pivot point can be used as one
contact; however, the range of forces available at the ground contact changes
with time. If we consider this problem to be two-dimensional, then the ground
contact is an edge-vertex contact. Friction cone constraints at this contact
are a linear combination of the two extremes at the start and end of the
motion. An example of friction cones available at extremes of a tumbling
task is shown in Figure 5, left. A sufficient condition for a manipulation plan
to exist is to find a set of contact points which, when combined with either
extreme ground friction cone, will produce a grasp capable of resisting all
task wrenches (Figure 5, right). If the same set of contact points works for
each extreme separately, it will also work for intermediate configurations of
the ground contact.

To solve the grasp-planning problem posed in Figure 5, we need to find
a set of contact points that, for example, produces a force closure grasp
with each of the two ground friction cones. If this were the only goal, the
demonstration would be unnecessary. The goal that we have, however, is
different; we wish contact wrench profiles in the new manipulation plan to
be similar to those estimated from the demonstration.

Example grasps extracted from the demonstration can be used to con-
strain the search for grasps that achieve this goal. The example grasps are
created by collecting all contact points observed in the manipulation example
and creating grasps from these contact points plus the two extreme ground
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friction cones. Example grasps for the demonstration explored in this paper
are shown as insets in Figure 5. Each of these grasps is capable of achieving
all required task wrenches. If this were not true, the task would have to be
segmented into subtasks, each covering a smaller range of object motion.

3.2 Placement of Frictionless Contacts

The grasp-planning problem illustrated in Figure 5 must be solved to select
a discrete set of contact points. Solving this problem requires several steps.
First, independent contact regions are computed for each extreme ground
friction cone. Second, these regions are intersected to create independent
contact regions that will work for either grasp. Third, discrete contact points
are chosen within the regions. After regions have been identified, intersecting
them is trivial, and contact points can be selected as desired by the user
(e.g., in the centers of the largest connected region or to achieve a kinematic
goal such as similarity to the original human motion). The difficult part of
the problem is to identify a set of independent contact regions. This section
describes how regions are computed for a given ground contact friction cone
extreme.

When the grasp is frictionless, the algorithm from Pollard [16] can be used
to adapt a grasp to new object geometries by designing wrench space regions
around the contact wrenches of the example grasp and then projecting these
regions onto a new object. This approach is reviewed below, and Section 3.3
describes how it can be extended to contacts with friction.

Equivalence Classes of Contact Configurations. From a given example
grasp, we wish to define equivalence classes of contact configurations on a new
object. The information extracted from the example grasp is the particular
role ascribed to each contact within that grasp. The idea is that if contacts on
a new object can be found to play the same roles, the new grasp is in a way
“the same as” the example. This idea can be quantified with the following
construction.

Let gi = [f̂i γ(ri× f̂i)]T be the set of contact wrenches for each contact i

of the example grasp, formed from unit normal contact forces f̂i and resulting
torque about the object’s center of mass, (ri× f̂i), where ri is the vector from
object’s center of mass to the contact point. Torque is scaled by some suitable
factor γ, for example the distance from the object center of mass to the pivot
point.

Form the convex hull of gi and the zero wrench. Represent it as a collection
of hyperplanes, each expressed as an outward pointing normal nj and distance
from the wrench space origin dj :

{ [n1, d1], [n2, d2], . . . , [nH , dH ] } = CH{ 0,g1,g2, . . . ,gN} (1)

There are N contact points in the example grasp and H facets in the convex
hull. An example set of contact points and the convex hull of those points in
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Fig. 6. An example isolates roles of the individual contacts as regions in wrench
space. This example corresponds to a frictionless grasp of a circular disc with four
evenly spaced contacts. (Left) Contact wrenches gi and the convex hull formed
from those wrenches. (Center) Move hyperplanes so that they just contain the
task wrench space, which is the black shaded area in the figure, oriented toward
forces in the y direction. (Right) Scale hyperplanes by β/Fmax, and highlight unit
force wrench space regions that satisfy Equation 5. The bottom two contacts are
associated with larger regions due to the anisotropy of the task.

a two-dimensional wrench space (a frictionless grasp of a 2D circular disc) is
shown in Figure 6, left.

Index set ρi identifies hyperplanes associated with contact i:

ρi = {j : (gi · nj) = dj} (2)

For example, in Figure 6 left, ρ1 = {1, 2}, because g1 is contained in hyper-
planes 1 and 2.

Adjust each hyperplane along its normal until it just contains all wrenches
required for the given task. For a task that can be represented as a collection
of points sk in wrench space:

d
′
j = max

(
0, max

k
(sk · nj)

)
(3)

where (sk · nj) is the inner product of wrench space vectors sk and nj . An
example of this construction is shown in Figure 6 center. The task is the black
shaded area, dominated by a range of forces in the positive y direction.

The maximum sum of contact normal forces required for this task, Fmax,
is then:

Fmax =
H

max
j=1

d
′
j

dj
(4)

The value of Fmax is 1.41 in the example of Figure 6, because the topmost
hyperplane must be scaled by this factor to contain the entire set of task
wrenches within its interior.
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Any new grasp, defined as the set of contact wrenches g
′
i, is in equivalence

class β if it satisfies the following collection of inequalities for each contact i:
(
g
′
i · nj

)
≥ β

Fmax
d
′
j ∀j ∈ ρi (5)

This equation states that wrench g
′
i is in the exterior or exactly on all of

the hyperplanes that contained point gi in the convex hull formed from the
example grasp, after these hyperplanes have been adjusted to fit the task
and scaled by β/Fmax. Contact wrench g

′
i is meant to correspond directly to

original contact wrench gi. In other words, the two contacts are intended to
play the same roles in their respective grasps. Parameter β allows limits to
be placed on the sum of contact normal forces. Setting β to 0.5, for example,
guarantees that in the new grasp the sum of contact normal forces will never
be greater than twice that required in the example if the task wrenches are
the same as those in the example [15]. Figure 6 right shows an example where
β is 0.5.

Valid contact regions can now be “painted” onto a new object by sam-
pling the object surface, computing the contact wrench associated with each
surface point and testing whether Equation 5 holds. A different region will
be computed for each contact of the original grasp. These regions are inde-
pendent. As long as the new grasp has one contact in each region, we can
guarantee that the grasp can exert the task wrenches with a sum of contact
normal forces no greater than 1/β times those of the example grasp. Practi-
cally this guarantee is useful for keeping robot joint torques within reasonable
limits.

Figure 7 shows an example of a 2D, four-contact, frictionless grasp with
a 3D wrench space. The task is to slowly rotate the object 90 degrees to
the left, and wrenches required to support the object during this task are
pure forces through the object’s center of mass spanning a 90 degree range.
After the grasp is processed as described in Equations 1 through 4, the set
of valid wrenches for each contact, which is defined by Equation 5, can be
computed and displayed. Contact force magnitude is arbitrary, and so it is
restricted to one to allow contact wrenches to be plotted in a 2D space of force
angle vs. torque in the center plots. Wrenches corresponding to frictionless
point contact on the edges of any new object can be plotted in this same
space. They appear as vertical lines, because force angle does not change as
the contact point moves along the edge. Valid contact regions on the object
occur when these vertical lines intersect the contact regions. The figures on
the right show contact regions for the example object and an object with
more complex geometry.

3.3 Placement of Contacts with Friction

The approach just described is not adequate for the example shown in Fig-
ure 1, or for the large majority of manipulation tasks because friction is
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Fig. 7. Results of generalizing a four contact grasp in the frictionless case. (Left)
The example grasp. (Middle) Valid wrenches for each contact, along with the verti-
cal lines corresponding to frictionless point contact on the edges of the new object.
(Right) Independent contact regions on the new object. Parameter β is 0.5 for these
examples. The box is 0.32m×0.44m, γ is 1, the second object is approximately the
same size as the box.

important to the success of the strategy. With friction, what is required is
that for each extreme of the original friction cone, some wrench within the
new friction cone can be constructed to play the same role in the grasp. This
problem can be solved using linear optimization as follows.

A friction pyramid approximation represents contact wrench gi as a lin-
ear combination of L extremes, where gi and its extremes gi,l all have unit
magnitude force components in the direction of the contact normal.

gi =

L∑

l=1

αl gi,l,

L∑

l=1

αl = 1, αl ≥ 0, l = 1, . . . , L (6)

Form the convex hull of all extreme contact wrenches gi,l and the zero wrench,
and express this hull as a set of hyperplanes [nj , dj ] as in the frictionless case:

{ [n1, d1], [n2, d2], . . . , [nH , dH ] } = CH{ 0,g1,1, . . . ,gN,L} (7)

Let index set ρi,l be defined as follows:

ρi,l = {j : (gi,l · nj) = dj} (8)

Note that ρ has two indices: i indexes the original contact, and l indexes one
of the samples of the friction pyramid at that contact.

Find d
′
j and Fmax as in Equations 3 and 4. Any new grasp, defined as a set

of contact wrenches g
′
i, with friction pyramid samples g

′
i,m is in equivalence
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class β if the following set of expressions can be solved for all combinations
of contacts i = 1, . . . , N and friction cone extremes l = 1, . . . , L:

[(
L∑

m=1

αm g
′
i,m

)
· nj
]
≥ β

Fmax
d
′
j ∀j ∈ ρi,l (9)

L∑

m=1

αm = 1 (10)

αm ≥ 0, m = 1, . . . , L (11)

The first expression states that for contact i in the example grasp, for each
friction cone extreme l, proposed contact i on the new object must be able
to generate a wrench that plays the same role in the grasp. The second
expression maintains unit magnitude for the force component of g

′
i in the

normal direction, and the third expression keeps all g
′
i within their friction

cones.

For example, a proposed new grasp can be tested for membership in equiv-
alence class β by solving this linear system using the simplex method. To do
this, replace β with unknown parameter βi,l and maximize βi,l for each com-
bination of indices i and l. The proposed grasp is in equivalence class β if:

N
min
i=1

(
L

min
l=1

βi,l

)
≥ β (12)

As in the frictionless case, valid contact regions can be “painted” on the
new object by sampling the object surface, attempting to solve the system in
Equations 9 through 11 for a single contact i, for all friction cone extremes
l, and checking that

∑
l βi,l ≥ β. All of the examples in Section 4 use this

algorithm.

3.4 From Grasp-Planning Results to Manipulation Results

Finally, the manipulation strategy must be extracted from the grasp repre-
sentation of the problem. Timing is obtained for the new motion by reusing
the joint angle trajectories captured from the human actor at their origi-
nal speed. This decision preserves the dynamics of the robot motion at the
possible expense of the dynamics of the manipulated object.

The orientation trajectory of the new object, θ
′
(t), can be derived from the

orientation trajectory of the example object, θ(t). Our goal was to duplicate
orientation of the example as much as possible, while ensuring that the critical
point where the object’s center of mass is just above the pivot occurs at the
same time in each motion. This critical point is important because it is the
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Fig. 8. (Left) Valid aspect ratios for two new objects are represented by a range
of angles from pivot point to center of mass. (Right) The pivot point is marked
with a solid triangle, and valid independent contact regions for the two contacts
are shown. The hand/object coefficient of friction was set to 0.5, and object/ground
coefficient of friction was set to 6. (The table was covered with foam, producing
a high coefficient of friction.) Quality parameter β was set to 0.5. Note that these
results are independent of scale. Length parameter L in the left hand diagram can
be set to any value to reflect the actual size of the object to be manipulated.

point at which applied torque about the pivot point changes direction. The
following expression is used:

θ
′
(t) =

[
ψ +

t

T
(φ− ψ)

](
θ(t)− π

2

)
+
π

2
(13)

where angle θ is measured as the angle from horizontal of the vector from the
pivot point to the object’s center of mass so that the critical point occurs at
θ = π/2. Parameters ψ and φ are the required scale factors at the beginning
and end of the motion, determined from object geometry, and T is the time
required for the entire motion.

Forces are estimated by sampling time, computing object orientation from
Equation 13, and optimizing contact forces for that orientation and the given
contact positions. To optimize contact forces, the sum of normal forces applied
at the hand/object contacts is minimized, ignoring the magnitude of the
ground reaction force. A conservative estimate of the hand/object coefficient
of friction is used, as solutions optimized in this way tend to fall on the
extremes of the friction cone.

4 Results

Figures 8 and 9 show contact regions computed for new object geometries
by generalizing from the given example. The sizes of the independent con-
tact regions vary with geometry, aspect ratio (Figure 8), coefficient of friction



Generalizing Demonstrated Manipulation Tasks 13

= 0.3µ = 0.5β

2 times force

= 0.9µ = 0.5β

2 times force

= 0.5µ = 0.7β
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Fig. 9. (Left) Contact regions grow larger as the hand/object coefficient of friction
(µ) increases. (Right) Contact regions grow larger as the acceptable amount of
contact force (1/β times the example) increases.

Fig. 10. Comparison of human and humanoid motion. Frames are spaced every
0.33s (top) and 0.67s (bottom). Object weight is between 4kg and 5.4kg.

(Figure 9 left), and maximum allowed contact force (Figure 9 right). Note
especially in Figure 8 that the example can be adapted to any scale. The
tumbling demonstration of Figure 1 could be used to develop a plan to ma-
nipulate a much smaller object with the fingertips of a hand.

Contact forces are computed through time sampling and optimization,
as outlined in Section 3.4. Figure 3 shows results for two objects. Despite
dramatic changes in object geometry, contact wrench trajectories are similar.

Figures 1 and 10 show comparisons of the original human motion to mo-
tion of the Sarcos humanoid robot at ATR [6] tumbling two objects: one sim-
ilar to that manipulated by the human subject and one less similar. Videos
can be found at http://www.cs.brown.edu/people/nsp/papers/WAFR02.html.
Implementation details can be found in the Appendix. The tumbling task
was executed approximately a dozen times for the box without failures when
the initial box placement was within a few centimeters of the expected po-
sition. This task was executed at half the speed of the human performance
to reduce dynamic effects. Tumbling for the object in Figure 1 was slowed to
quarter speed to obtain reliable performance.
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5 Discussion

This paper describes an approach to adapting a single example of a quasistatic
manipulation task to various object geometries and friction conditions. Sig-
nificant flexibility was obtained both in geometry of the object and in choice
of contact locations. Experimental results with a humanoid robot show that
the resulting strategies can be executed reliably. They also retain some of the
natural feel of the original human motion.

One natural question is “why bother with the example motion?” After
the problem has been abstracted to the level of contact positions and forces,
it lends itself easily to such alternative approaches as global optimization of
contact configurations over time. Our informal observation is that globally
optimal solutions frequently do not match strategies actually used by human
subjects, perhaps because we have not adequately captured the optimiza-
tion function, if any, in use by the human subject. We believe by combining
planning and example-based approaches, some good features of both can be
captured. Using analytic generalization gives us valid contact regions, which
provide flexibility to avoid joint limits or other potential problems such as
areas where the object is slippery or fragile. Because contact regions are con-
structed from an example, contact placement is often very similar to that
of the example, which may be advantageous when the robot and the human
demonstrator have similar kinematics and workspaces. By design of the algo-
rithm, contact wrenches are constrained to be within some region containing
those of the example, and so we have a much stronger argument for similarity
of the results to the example than do planners which consider task goal only.

This approach will work for any object where Equations 9 through 11
can be solved for all contacts. These equations provide a mapping between a
contact index and a set of acceptable object features, although this mapping
is not in a practical form at present. Expressing these equations as sets of
acceptable object features would be useful for evaluating the generality of a
given strategy, for collecting/evaluating a motion database, and for selecting
between strategies when faced with a new manipulation problem. We are
working toward a practical mapping between wrench space regions and object
features.

Computation times for the examples in this paper are on the order of mil-
liseconds. However, sampling the object surface to find good contact regions
will be more expensive for truly 3D objects. We are working on a projection
algorithm along the lines of Ponce et al. [20] to address this problem.

More complex manipulation tasks will almost certainly require more struc-
ture and extensions to the techniques presented here. Manipulation tasks with
many contact transitions (e.g., remove a hand and place it somewhere else)
may need to be segmented into subtasks. Manipulation tasks with sliding
contacts, which are common in human manipulation of objects, cannot be
addressed with this approach as it stands. Complex contacts (e.g., contacts
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in concavities and area contacts) seem to be similar to contact with friction
but have not yet been explored.

We are excited about the results to-date and anticipate that the basic
approach will prove general: that quasistatic manipulation can be treated
as a single task domain, a library of example motions collected within this
domain, and these examples adapted to new situations as needed, allowing
us to take better advantage of the interesting variety of strategies exhibited
in human behavior.
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Appendix: Implementation Details

The human demonstration was captured using a commercially available op-
tical motion capture system from Vicon [23]. We used a standard marker set
with 35 14mm markers for whole body motion, supplemented with two ad-
ditional markers on each hand and three markers on the box. The additional
markers made it possible to extract hand/object contact points during the
motion.

The Sarcos robot at ATR (DB) [6] was used to demonstrate the example
and new manipulation plans. To obtain joint trajectories for the robot, the
raw marker data from the motion capture session was mapped to a human
skeleton, scaled to the robot degrees of freedom and joint limits as described
in [17], and adjusted using inverse kinematics to achieve and maintain contact
points at desired locations on the object.

The control system used for these examples is shown in Figure 11. The
input trajectory was specified as a set of kinematic parameters and a set of
parameters relating to contact between the robot and the object. Specifically,
inputs are robot joint angles and derivatives (θDES , θ̇DES , θ̈DES), box orien-
tation (θBOX,DES , θ̇BOX,DES), contact forces (fff ), and the ratio of contact
force magnitudes to torque about the box pivot point (fff/τBOX). Two low-
gain PD servos are used for control, one that uses visual feedback to maintain
box state and one that uses position sensing at the joints to track the joint an-
gle trajectory. The servo associated with box state controls the magnitude of
feedforward contact forces to implement a torsional spring and damper about
the box pivot point. Out-of-plane orientation errors are ignored. Correction
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Fig. 11. Controller for the tumbling task. All inputs on the left may have to be ad-
justed to adapt the input trajectory to a new object and/or new friction conditions.
This paper focuses on adjusting contact positions and contact force trajectories fff .

for such errors would make it possible to manipulate “thinner” objects (i.e.,
objects with smaller dimension along the axis of rotation).
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