
日本ロボット学会誌 Vol. xx No. xx, pp.1～5, 200x 1

解 説

Efficient Computation of Optimal, Physically

Valid Motion

Anthony C. Fang∗1 and Nancy S. Pollard∗2
∗1Department of Computer Science, National University of Singapore ∗2Robotics Institute, Carnegie Mellon University

1. Introduction

One appealing vision is that a user should be able to
design a motion trajectory by setting a small number
of keyframes and constraints—and that the resulting
motion should remain optimal in some way. Variations
of this problem have appeared in computer graphics,
biomechanics, and robotics (e.g., [9] [6] [8] [7] [4]) Despite
great interest and research progress, however, optimiza-
tion is still viewed as impractical when the number of
degrees of freedom is high; the reputation is that op-
timization will be slow, cumbersome, and difficult to
guide toward a desired solution.

To obtain motion for high degree of freedom charac-
ters using optimization, researchers in computer graph-
ics, for example, have explored techniques ranging
from extreme model simplification (e.g., [8]) to enforc-
ing stereotypical momentum patterns [5] to discarding
physical constraints entirely and relying on the anima-
tor to give the character a sense of weight and balance
(e.g., [3]).

We have found that physically plausible motion can
be created for high degree of freedom characters by
choosing to use only constraints and objective func-
tions with derivatives that can be computed in time
linear in the number of degrees of freedom of the char-
acter. Constraints that fall within this set include many
of those used to enforce correct physics. For example,
the swinging character in Figure 1 can apply very little
torque about the bar axis, ground contact forces should
fall within the friction cone at the feet, and linear and
angular momentum should be conserved during the dis-
mount. As the basis of our algorithm, we present a

原稿受付
キーワード：animation, physically based animation

*1Block S14 #06-08 3 Science Drive2, Singapore, 117543
*25000 Forbes Ave., Pittsburgh, PA, 15213, USA

Fig. 1 A single-flip dismount from a high-bar. (Top) Ini-
tial guess based on kinematic interpolation of full
body motion. (Middle) Flight duration is 0.6 sec-
onds; Flip posture is tight and maximum height at-
tained is below high-bar. (Bottom) Flight duration
increased to 0.8 seconds. Flip posture is relaxed,
and maximum height attained exceeds high-bar.

new formulation of the equations of motion that allows
first derivatives of constraints such as these to be com-
puted in O(D) time, where D is the number of degrees
of freedom (DOF) of the character, vs. the O(D2) time
expected from direct analytical differentiation, numeri-
cal differentiation, or automatic differentiation. We add
to the existing body of research this O(D) algorithm for
computing first derivatives of a broad range of physics
constraints for improved performance in a optimization
context (also see [1]).

The theoretical speedup from O(D2) to O(D) is pos-
sible because the individual torques at the character’s
joints are not computed—physics constraints are formu-
lated based on the aggregate force and torque applied by
the character to the environment. Because individual
joint torques are not available, our objective function
should not depend explicitly on those values. Our re-
sults suggest, however, that physics constraints and a
kinematic measure of smooth motion are sufficient to
capture dynamic effects such as squash-and-stretch and

日本ロボット学会誌 xx 巻 xx 号 —1— 200x 年 xx 月

2 Anthony C. Fang Nancy S. Pollard

tucking for faster rotation, as shown in Figure 1.

2. Efficient Physics Constraints

We state the optimization problem solved at each
stage in the following form:

min
x

h(B(t)x) subject to c(ti) = 0, i = 1..m, ti ∈ [ts, tf]

where h is the optimization function; B(t) is a set of ba-
sis functions; x are the coefficients, the free parameters
of the optimization; and c(ti) are the constraints. We
use B-splines as basis functions and follow the standard
approach of enforcing constraints at a fixed number of
keyframes.

Constraints that enforce physical validity can be for-
mulated as linear equality or inequality constraints on
aggregate force. The aggregate force is a representation
of all external forces and torques (excluding gravity)
that would have to be applied to the character root to
explain the character’s motion. For example, when the
character is swinging on a high bar or monkey bars, the
amount of torque that can be applied about the bar axis
is constrained. Let aggregate force f0 be represented as

f0 =

[
fa
0

fb
0

]
（1）

where fa
0 is linear force and fb

0 is torque about the world
origin. Aggregate force is translated to a constraint
point c as follows:

fc =

[
fa
c

fb
c

]
=

[
fa0

fb
0 − c0 × fa0

]
（2）

where c0 is the world vector from the origin to c.
The bar contact constraint can then be expressed as

−τmax < sbar · fb
c < τmax （3）

where τmax is the scalar torque limit, sbar is the bar
axis, and sbar · fb

c is a projection operation that results
in torque about the bar axis.

When constraints are formulated as functions of ag-
gregate force, they can be evaluated efficiently using any
efficient inverse dynamics algorithm. However, at each
stage of the optimization, derivatives of constraints and
objective functions may also be required. For example,
the sequential quadratic programming algorithm used
in [9] makes use of first derivatives of the constraints and

0
p

i
q

p

v

are affected by q
all parameters

i

Fig. 2 The effect of parameter qi is propagated up the
tree with velocities v and back down the tree with
momentum terms p. Computing ∂p0/∂qi requires
O(D) time and results in an O(D2) algorithm for
computing the momentum Jacobian.

both first and second derivatives of the objective func-
tion. Given free parameters x, the B-spline coefficients
defining the character’s trajectory, first derivatives of
constraints are simple functions of first derivatives of
aggregate force, which is expressed as follows:

∂f0
∂x

=
∂f0
∂q

∂q

∂x
+

∂f0
∂q̇

∂q̇

∂x
+

∂f0
∂q̈

∂q̈

∂x
（4）

At any time t, character position q, velocity q̇, and ac-
celeration q̈ are known, and terms ∂q/∂x, ∂q̇/∂x, and
∂q̈/∂x are available trivially from the definition of B-
splines. The term ∂f0/∂q, which we will refer to as the
force Jacobian, is the most difficult term in this expres-
sion, and the trick is to compute this term in time linear
in the degrees of freedom of the character.

2. 1 Linear Time Momentum Jacobian
Efficiently computing ∂f0/∂q, the force Jacobian, re-

quires efficiently computing ∂p0/∂q, the momentum Ja-
cobian, because aggregate force f0 is the time derivative
of aggregate momentum p0.

The usual way to compute aggregate momentum is to
formulate the following recursion:

vi = Xi
i−1vi−1 + s′iq̇i （5）

pi = Xi
i+1pi+1 + I′ivi （6）

where p0 is the desired result. Note that we use spatial
vector notation as in [2], and so both linear and angular
momentum terms are represented in Equations 5 and 6.

Velocities vi are propagated from base to leaf, and
momentum pi is propagated from leaf to base. Fig-
ure 2 shows this process. Parameter qi appears in the
coordinate transforms Xi

i+1 and Xi+1
i , and so every vj

for j > i depends on qi, and every pj for j ≥ 0 de-
pends on qi. Unrolling the recursion to collect terms
for ∂p0/∂qi requires O(D) time. There are D terms qi,

JRSJ Vol. xx No. xx —2— xx, 200x

Efficient Computation of Optimal, Physically Valid Motion 3

i
q

*p
*I

0
p

parameters from link i to
the base are affected by q i

Fig. 3 The effect of rewriting the recursion is to limit the
effect of qi to parameters collected at joints between
i and 0. Terms required for the momentum Jacobian
are accumulated in a single pass from leaf to base,
and the momentum Jacobian can be computed in
linear time.

and this approach will lead to an O(D2) computation
for the momentum Jacobian. There is no clever way to
simplify the calculation by aggregating terms when it is
presented in this form.

We observe that rewriting the recursion solves this
dilemma:

I∗i = Xi
i+1I

∗
i+1X

i+1
i + I′i （7）

p∗
i = Xi

i+1p
∗
i+1 + I∗i v

′
i （8）

p0 = p∗
0 （9）

The key thing to notice here is that p∗
i is expressed as

a function of v′
i, which is a local variable at link i. As

a result, only propagation from leaf to base is required,
and each parameter qj does not affect terms computed
for joints j + 1 and beyond (Figure 3). Also note that
p∗

i is in general not equal to pi if i �= 0. A term su-
perscripted with an asterix should be treated only as
an intermediary quantity, unless its subscript is zero in
which case it is the desired aggregate result.

A linear time expression for the momentum Jacobian
can be derived in a straightforward manner based on
this form of the recursion (see [1]). Note that we are
not simplifying or changing the outcome of the dynam-
ics computation, only changing the order in which terms
are computed. Aggregate momentum p0 and the mo-
mentum Jacobian are exactly the same in both formu-
lations.

2. 2 Linear Time Force Jacobian
In a traditional inverse dynamics formulation, accel-

erations and forces are expressed as the time derivatives
of Equations 5 and 6:

ai = Xi
i−1ai−1 + s′iq̈i + vi×̂s′iq̇i （10）

fi = Xi
i+1fi+1 + I′iai + vi×̂I′ivi （11）

where the symbol ×̂ is the cross product operator for
spatial vectors. As with momentum, this form results in
an expression for the force Jacobian that requires O(D2)
time to compute. For fast computation, we instead take
the time derivative of Equation 8, which results in

f∗i = Xi
i+1f

∗
i+1 + v′

i×̂p∗
i + I∗i a

′
i + İ∗i v

′
i （12）

This equation has the properties we are looking for.
Velocity v′

i and acceleration a′i are local to link i, and
terms are propagated from leaf to base only. Note that
as with aggregate momentum, f∗i is in general different
from the actual joint force fi if i �= 0.

Differentiating Equation 12 and accumulating the co-
efficients of derivative elements results in a compact
expression for analytical derivatives, which are given
in [1]. Each partial derivative of the aggregate force with
respect to joint positions, velocities, and accelerations
may be obtained in constant time, and the full Jacobian
may be obtained in linear time.

3. Results

Optimal Motions. Figures 1 and 4 show a sampling
of our results. Figure 1 shows a dismount. From top
to bottom: initial motion, results with a flight time of
0.6s, and results with a flight time of 0.8s. Note the
looser tuck and the higher flight trajectory in the 0.8s

motion. The initial motion appears very unstable at
landing. The character would fall over. This effect is
eliminated in the optimization by enforcing the physics
constraints of ground contact. This optimization re-
quired 26 seconds on a 750MHz Pentium 3 computer.

Figure 4 shows initial and final motion for a monkey
bars example. This optimization required 2.4 minutes
on a 750MHz computer. No touch-up was done on the
results. In particular, the geometry of the monkey bars
was not modeled. In this example, notice the swing-
ing of the legs and arms, as well as body roll, pitch,
and yaw. All of these effects are obtained as a result
of the optimization process. In this example, the initial
motion is rigid translation of the entire character.
Timing. To empirically test the advantage of our
method for fast derivative computation, we ran a test
example 5 times, each time with the identical setup ex-
cept that a different technique was used to compute all
required first derivatives. Figure 5 summarizes the re-
sults. The differentiation techniques tested were:

日本ロボット学会誌 xx 巻 xx 号 —3— 200x 年 xx 月

4 Anthony C. Fang Nancy S. Pollard

Fig. 4 Initial and optimized motion for a monkey bar example.

Technique Time per iteration Average % error

Our method 0.11s 0

Direct method 0.62s 0

NR1 0.97s 0.10

NR2 1.92s 1.0e-04

NR3 5.73s 1.5e-06

Fig. 5 Time required for one iteration using a variety of
differentiation techniques.

•Our method. Analytical gradient computation
using our approach.

•Direct method. Analytical gradient obtained by
direct differentiation of the equations of motion.

•NR1. Numerical differentiation by ordinary for-
ward differences.

•NR2. Numerical differentiation by central differ-
ences.

•NR3. Richardson-extrapolation of order 6.

4. Discussion

This paper contributes to physically based optimiza-
tion by defining and exploring a restricted class of op-
timization problems where physics constraints are in-
cluded and first derivatives of constraints and objective
functions can be computed in linear time. The fact
that first derivatives can be computed in linear time
instead of quadratic time suggests that our problem is
simpler than previous physically based approaches and
similar in complexity to very successful kinematic ap-
proaches such as minimizing distance to a reference mo-
tion. We suspect that our solution landscape will be
smoother than previous physically based optimization
approaches, making it feasible to handle more complex

characters.
For activities where joint torque limits are important,

torque information must be taken into account to pro-
duce good results. An extreme example of this situation
is the passive swing of a multi-link chain. Minimiz-
ing accelerations while maintaining physics constraints
would produce a result that was valid for the body as a
whole but would require non-zero torques at the joints—
no whipping motion would be seen. Minimizing sum
squared torques would produce the desired results. (Of
course, truly passive motion can be created much more
easily using forward dynamic simulation.)

More commonly, a limited set of torques or energy
terms may be important. For example, the monkey
bars motion appears to require very high torque at the
waist. When physical parameters at certain joints are
identified as important, our method can be extended
to provide and differentiate these parameters for any
K joints with running times of O(KD), reaching the
expected bound of O(D2) when all joint torques are re-
quired. An interesting research problem is to determine
automatically when torques at a given joint should be
considered.

Finally, we would like to emphasize that the main ad-
vantage of our approach may be as part of a more com-
plete animation system. Our vision is that the ability to
enforce physics constraints efficiently should be just one
of the tools available to the animator. Details of the de-
sired motion could be fleshed out using motion capture
data, procedural techniques, keyframes, and/or objec-
tive functions appropriate to the specific task. We have
shown that physics constraints can be enforced in an

JRSJ Vol. xx No. xx —4— xx, 200x

Efficient Computation of Optimal, Physically Valid Motion 5

efficient manner. Incorporating physics constraints into
traditionally kinematic animation approaches is one di-
rection of future work.

Acknowledgements This work was supported in
part by NSF awards CCR-0093072 and IIS-0205224.

References

[1] A. C. Fang and N. S. Pollard. Efficient synthesis of physically

valid human motion. In SIGGRAPH 03 Proceedings, 2003.

[2] R. Featherstone. Robot Dynamics Algorithms. Kluwer Aca-

demic Publishers, Boston, MA, 1987.

[3] M. Gleicher. Motion editing with spacetime constraints. In Pro-

ceedings of the 1997 Symposium on Interactive 3D Graphics,

pages 139–148, Providence, RI, April 1997.

[4] M. Hardt, J. W. Helton, and K. Kreutz-Delgado. Optimal biped

walking with a complete dynamical model. In Proceedings of

the 38th IEEE Conference on Decision and Control, 1999.

[5] C. K. Liu and Z. Popović. Synthesis of complex dynamic char-

acter motion from simple animations. In SIGGRAPH 02 Pro-

ceedings, 2002.

[6] Z. Liu, S. J. Gortler, and M. F. Cohen. Hierarchical spacetime

control. In SIGGRAPH 94 Proceedings, Annual Conference

Series, pages 35–42. ACM SIGGRAPH, ACM Press, July 1994.

[7] M. G. Pandy and F. C. Anderson. Dynamic simulation of hu-

man movement using large-scale models of the body. In Proc.

IEEE Intl. Conference on Robotics and Automation, 2000.

[8] Z. Popović and A. Witkin. Physically-based motion transfor-

mation. In SIGGRAPH 99 Proceedings, Annual Conference

Series. ACM SIGGRAPH, ACM Press, August 1999.

[9] A. Witkin and M. Kass. Spacetime constraints. In J. Dill, ed-

itor, Computer Graphics (SIGGRAPH 88 Proceedings), vol-

ume 22, pages 159–168, August 1988.

Anthony C. Fang
Anthony Fang is an Assistant Professor in
the Department of Computer Science at
the National University of Singapore. He
received his PhD in Computer Science at
Brown University in 2003. His primary re-
search interest is in the synthesis of physi-

cally based animation of humanlike characters.

Nancy S. Pollard
Nancy Pollard is an Assistant Professor
in the Robotics Institute and the Com-
puter Science Department at Carnegie Mel-
lon University. She received her PhD in
Electrical Engineering and Computer Sci-
ence from the MIT Artificial Intelligence

Laboratory in 1994, where she performed research on grasp
planning for articulated robot hands. Before joining CMU,
Nancy was an Assistant Professor and part of the Computer
Graphics Group at Brown University. Her primary research
objective is to understand how to create natural motion for
animated human characters and humanoid robots.

日本ロボット学会誌 xx 巻 xx 号 —5— 200x 年 xx 月

