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Abstract— In spite of substantial progress, robust and dexter-
ous in-hand manipulation remains a robotics grand challenge.
Recent research has shown that optimization of robot hand mor-
phology for specific tasks can result in custom hand designs that
are low-cost, easy to maintain, and highly capable. However,
the resulting manipulation strategies may not be very robust
or generalizable in real-world situations. This paper shows that
robustness can be improved dramatically by optimizing controls
instead of contact force / trajectories and by considering uncer-
tainty explicitly during the optimization process. We present a
evolutionary algorithm based pipeline for co-optimizing hand
morphology and control strategy over families of problems and
initial states in order to achieve robust in-hand manipulation.
We demonstrate that this approach produces robust results
which utilize all surfaces of the hand and surprising dynamic
motions. We showcase the advantage of optimizing joint limit
values to create robust designs. Furthermore, we demonstrate
that our approach is complementary to trajectory optimization
based approaches and can be utilized to improve robustness
of such results as well as to create custom hand designs from
scratch. Results are shown for repositioning and reorienting
diverse objects relative to the palm of the hand.

I. INTRODUCTION

Dexterous manipulators can achieve manipulation goals
much more efficiently than non-dexterous manipulators [1].
Many strategies involve building dexterous manipulators by
imitating the kinematics of human hands which are versatile
on a wide variety of tasks [2][3]. These human-like hands
provide a high degree of freedom to increase the workspace
of the manipulator, but are still difficult and expensive to
build, control and maintain. In contrast, low cost hands
with fewer degrees of freedom offer similar capabilities for
specialized tasks [4][5] and are significantly less expensive.
Since manually designing these manipulators for each task
requires much effort, automated strategies for hand design
optimization are preferred.

Trajectory optimization methods demonstrate exceptional
capabilities to synthesize complex dexterous motions espe-
cially when using contact invariance [6]. Hazard et al. [7]
shows that this concept can also be applied to optimize
the robot hand morphology. As this trajectory optimization
approach relies on approximations that guide the optimizer to
a good result, the robustness of generated designs or motion
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plans is not ensured. To address the challenge of creating
robust motions, we take a different approach, optimizing for
control strategies which produce success over families of
object geometries and initial states (i.e., utilizing domain ran-
domization as in [3]). Evolutionary algorithms [8] allow the
direct search for optimal morphology and control parameters
in such a simulation environment. While this is obviously a
more difficult approach due to the high-dimensional search
space that must be explored, these evolved robots generalize
much better to unseen environments [9].

This paper extends the previous work of Hazard et
al. [7], which introduces a trajectory optimization pipeline
to automatically generate low-DoF hand designs capable of
executing given object manipulation tasks. We demonstrate
the value of evolutionary algorithms to co-optimize the
hand morphology and controller in a physics simulation,
utilizing domain randomization for robustness. We similarly
take a sequence of goal poses for the manipulated object
as input task description. Consequently, the evolutionary
strategy must be able to achieve multiple objectives contain-
ing object positions and orientations at specified timestamps
simultaneously. We demonstrate the value of optimizing for
joint limit locations, and demonstrate that our approach
can both design custom hands and control strategies from
scratch as well as improve the robustness of an existing hand
and strategy created as described in the research of Hazard
and his colleagues [7]. Co-optimizing the hand and control
strategy as described in this paper results in simple hands
and interesting dynamic motions which can robustly achieve
desired in-hand manipulations in the presence of uncertainty.

II. RELATED WORK

Evolutionary optimization strategies are scalable methods
for optimizing control policies in physics simulation [10]. In
particular, these strategies are well suited to evolve both the
policy and the structure [8]. Recent work already provides
different algorithms to handle the evolutionary optimization
for multiple objectives. Single-objective evolutionary algo-
rithms such as CMA-ES [11] can be used by minimizing the
weighted sum of the objectives [12], but this trade-off needs
to be chosen a-priori. The results of actual multi-objective
algorithms are given as pareto front and allow the trade-off to
be selected a-posteriori. Simultaneously optimizing multiple
dimensions may require more generations and therefore more
computational time to match the quality if good weights
are already known. Multi-objective algorithms are the fa-
vored choice in literature for more complex approaches such
as optimizing robot designs and controllers [9][13]. Well



known algorithms are MO-CMA [14][15], a multi-objective
extension of CMA-ES, NSGA-III [16] and MOEA/D [17].
Many authors also suggest further improvements to balance
convergence and diversity [18][19][20] but initially this paper
relies on the basic algorithms.

Multiple works discuss the use of evolutionary algorithms
in a physics simulation to co-optimize robot morphology
and controller. Only Bongard [9] optimizes the hand mor-
phology and controller for object manipulation. In his paper
three-to-five fingered hands attached to a shoulder are op-
timized to simultaneously grasp, lift and actively perceive
the category of different objects in reach. This hand-arm
model contains a proprioceptive sensor in the shoulder and
range/tactile sensors in each phalange. Retrieved sensor
values are translated to desired target joint angles using
a continuous-time recurrent neuronal network as controller.
The weights and other parameters of the neuronal network
controller, as well as the finger segments lengths, phalange
radii and spacing between fingers are evolved by a multi-
objective evolutionary algorithm. The author concludes that
evolved robots generalize better in unseen environmental
conditions and also that evolving more aspects of robot
increases the probability of discovering successful solutions
as the complexity of the task increases. Other papers contain
improvements for the co-optimization process. Lehman et
al. [21] suggest including a novelty metric as additional
objective which measures the morphological difference to
other individuals to reward diverging solutions and mitigate
early convergence to a local minimum. The same author also
proposes a different approach completely abandoning other
objectives such as fitness and only optimizing for behavioral
diversity [22]. Furthermore, Cheney et al. [23] recommend
including how long a morphology remained unvaried as
objective to keep possible good morphologies with poorly
adapted controllers in the population. Nygaard et al. [13]
propose a two-phases approach to better improve the robot’s
controller by locking the morphology in a second optimiza-
tion phase and only adapting the control parameters. A differ-
ent approach on co-optimization uses Compositional Pattern
Producing Networks (CPPNs) to indirectly encode whole
robots including physical topologies, sensor placements and
embedded closed-loop neuronal network policies [24][25].
Auerbach et al. [25] evolve simple rigid body robots able
to sense and navigate towards target objects. Cheney et
al. [26] optimize two separate networks for morphology
and controller of virtual creatures based on 3D voxel-based
soft robots. The applied optimization algorithm gradually
increases the complexity of the network by adding new nodes
and links. Therefore, this method can dynamically adjust the
resolution to explore a greater variety of possible solutions.
Even though Auerbach et al. [24] state that this method may
be useful for object manipulation, no further research on this
problem is present.

The alternative strategy to evolutionary algorithms is based
on a trajectory optimization pipeline [7]. This method de-
signs the hand morphology and a physically plausible joint
angle trajectory which exerts specific forces at determined

contact point locations on the object. The proposed pipeline
allows the generation of feasible mechanisms on a variety
of in-hand manipulation tasks. However, this approach does
not address the building of robust manipulators. The required
forces to move the object to its desired pose are interpolated
between selected waypoints and not calculated. Furthermore,
this framework does not incorporate planning under uncer-
tainty. Executing obtained result in a physics simulation will
most likely lead to failure as even slight differences in exerted
forces, contact points or the environment perturb the motion.
Domain randomization can be used generate more robust
control policies in simulation that are able to transfer to
similar environments and also generalize better to reality [3].
As an example, observation noise can be added or physical
parameters of the manipulated object or robot such as surface
friction coefficients, object dimensions and masses may be
randomized in a scene.

This paper presents an approach for generating hands for
any desired object manipulation based on a high-level task
description. Our goal is to create manipulators which already
incorporate robustness in their structure and do not rely
on complex controllers. Therefore, we choose to optimize
simple torque-based policies on sensor-less hands so that the
hand morphology reduces uncertainty as much as possible.
An important aspect of our designs is the optimization of
joint limit parameters to increase robustness. We are unaware
of any case in literature attempting to do this.

III. METHODS

This section covers the structure of the optimization algo-
rithm, parameters of the hand morphology and controller to
be optimized as well as tested object manipulation tasks and
conducted experiments.

A. Task environment

The tasks considered in this paper are manipulations of
a single object, namely a sphere, box or capsule. This
manipulation is specified as re-positioning or re-orienting
the object with respect to the palm. Therefore, the task
complexity can be defined as the number of different position
and orientation goals that need to be achieved by the robotic
hand, thereby minimizing the distance and angle to the
desired object poses. Initially, the object can either be located
on a flat plane surface or in midair. Domain randomization
is incorporated to encourage more robust hand designs and
motion plans. For a given task a fixed number of world
states are created by uniformly varying the initial state of the
manipulated object. An interval of position, orientation and
friction deltas, as well as minimum and maximum multipliers
for mass and scale can be specified depending on the task.

B. Optimization process

As the goal of this paper is to find the simplest hand
design able to execute the task as accurately as possible,
multiple optimizations with different basic hand structures
are evaluated in a physics simulation following a bottom-
up approach along a hierarchy. This hierarchy as seen in



Fig. 1. This figure displays the hand structure hierarchy. A transition
between the hand structures either adds/removes one joint/segment or
rearranges them. The highlighted transitions model the bottom-up approach
when starting with a one-fingered hand and choosing the next hand
design such that rearrangement of fewer joints/segments is preferred over
adding new ones. The number of degrees of freedom and the number of
optimization parameter are always increasing.

figure 1 is based on the number of fingers and joints per
finger. Only hinge joints having one degree of freedom are
considered. To achieve a comparable amount of dexterity
as hands with multi-DoF joints, the joint axes are allowed
to differ inside a finger in contrast to human-like hands.
As some tasks may not be achieved by the simplest hand
structure, different starting points in the hierarchy can be
chosen to save computational time. After each run the best
result is evaluated on a specified number of different world
states stopping when reaching a small predefined error value
for all position and orientation goals.

While the discrete hand structure stays fixed during a
run, the finger positions on the palm, segment lengths,
friction coefficient, initial joint angles, axes and limits can
be individually optimized in between specified minimum and
maximum values depending on the task. The control policy
is jointly optimized with the hand morphology. This paper
primarily focuses on a simple control policy where piece-
wise constant joint torques are applied over defined time in-
tervals. As the policy may have difficulty coping with gravity,
compensating torques can also be calculated and added per

time step. This policy, which will be referred to as a ”torque
policy” throughout the paper, requires minimal calculation
in simulation and therefore allows for faster optimization. In
another approach desired target joint poses and coefficients
of a proportional plus derivative (PD) controller with feed
forward term are optimized [27]. The corresponding torques
applied at the joints are computed with equation (1).

τ =M(θ)(θ̈d −Kv ė−Kpe) + C(θ, θ̇)θ̇d +N(θ, θ̇),

with e = θ − θd ∧ ė = θ̇ − θ̇d
(1)

M(θ) denotes the inertia matrix of the manipulator,
C(θ, θ̇)θ̇d contains Coriolis and centrifugal forces and
N(θ, θ̇) comprises a gravity compensation term. Kv and
Kp are selected as diagonal positive definite gain matrices.
The diagonal entries are called p coefficients for Kp and
d coefficients for Kv . In contrast to the original formula
in [27], the matrices are multiplied with M(θ) to make
the p and d coefficients less dependent on changes of the
morphology during optimization. θ denote the actual and θd
the desired joint angle values.

C. Evolutionary Optimization

This hand generation process uses an evolutionary algo-
rithm to simultaneously co-optimize the morphology and
control parameters. CMA-ES [11] and MO-CMA [15] can
be selected. As both covariance matrix adaption strategies
can exceed set optimization parameter boundaries provided
parameters are mapped to a continuous function in the set
range [28]. Equation (2) displays a weighted penalty term
which is used to punish high values τi of the torque policy
greater than a term τp.

pτ =

{
w (τ∗ − τp) , τ∗ > τp

0, otherwise.
,

with w ∈ (0,1), τ∗ = max
i
|τi|

(2)

This penalty is required because the torques are non-
restricted. Also, moderate torques are preferred.

Let p(i) = (p
(i)
d , t

(i)
p ), i ∈ (1, ..., n) describe a specified

position goal i of n containing its desired position p(i)d at time
step t(i)p < t

(i+1)
p . Equation (3) maps this position goal to the

distance (either Manhattan or Euclidean) in space according
to the actual position p(k)tp at time step tp on world state k.

f (k)p : (R3,R≥0)→ R≥0, (pd, tp) 7→ d(pd, p
(k)
tp ) (3)

Further, p(0) = (p
(0)
d , t

(0)
p ) = (pinit, 0) is a position goal

containing the initial position pinit. The corresponding posi-
tion objective op(i) can contain either a single position goal
{p(i)} or a trajectory of goal positions {. . . , p̃(i)tj , . . . , p

(i)}
where p̃(i)tj is interpolated based on p

(i−1)
d and p

(i)
d at time

step tj ∈ (t
(i−1)
p , t

(i)
p ). Let T (op(i)) = t

(i)
p be a function

which is returning the time step of the current and t(op(i)) =
t
(i−1)
p is returning the time step of the preceding goal p(i−1)d .



The orientation/rotation objective or(i) is constructed sim-
ilarly where r(i) = (q

(i)
d , t

(i)
r ), i ∈ (1, ...,m) is an orien-

tation goal i of m containing the desired orientation q
(i)
d

as quaternion at time step t
(i)
r < t

(i+1)
r . Equation (4) maps

the orientation goal to an angle between the desired qd and
actual orientation q

(k)
tr at time step tr on world state k.

< q
(k)
tr , qd > denotes to the inner product of corresponding

unit quaternion.

f (k)r : (H,R≥0)→ R≥0,

(qd, tr) 7→ cos−1(2 < q
(k)
tr , qd >

2 −1)
(4)

The corresponding objective function value results from
equation (5) where o denotes either a position objective op(i)
with f (k)o = f

(k)
p or an orientation objective or(i) with f (k)o =

f
(k)
r .

fo =


10.000, if COLLISION

pτ +
1
|W |

∑
k∈W

1

|o|
∑
g∈o

f (k)o (g)︸ ︷︷ ︸
:=h

(k)
o

, otherwise.

(5)
Each objective goal is averaged over all domain randomized
world states W . Changing the hand morphology can cause
initial collisions of the hand with itself or the environment.
These collisions are therefore checked before the simulation
and all objective values are potentially set to an unreach-
able constraint term preventing the optimization to return
a non-collision-free result. This paper further introduces a
more complex variant dividing the optimization into ten
sub-problems per second using early termination to save
computational time and potentially guide the simulation to
relevant results. The individual optimizations are conducted
in consequent order where at each end the position and
orientation goals are evaluated for the current time step. The
simulation is terminated if these values exceed a predefined
margin so, either so = ds as maximal possible distance
between actual and desired position or so = θs as maximal
possible angle between actual and desired orientation. Ac-
cordingly, h(k)o in eq. (5) is replaced with h′(k)o displayed in
eq. (6) where tstop denotes the time step where the simulation
is terminated. The remaining not evaluated goals are set to
the maximum possible value based on a computed proportion
ao.

h′
(k)
o =


h
(k)
o , if to < tstop

1
|o| (

T (o)− tstop
T (o)− t(o)︸ ︷︷ ︸

:=ao

so +
ti<tstop∑
gti∈o

f
(k)
o (gti)), otherwise.

(6)
As already stated, the single-objective CMA-ES requires

a weighted sum of all objectives as fitness function to be
used with multiple goals. Throughout this paper wop = 1
and wor = 0.1 are selected as respective goal trade-off.

In comparison to single-objective, the results of the multi-
objective algorithms are provided as pareto front containing
the best individual for each goal and corresponding pareto-
optimal trade-offs. Therefore, the best performing manipula-
tor is determined by normalizing all position and orientation
objectives between occurring minimum and maximum values
in the optimal pareto front and selecting the solution with the
smallest distance to zero.

D. Experiments

In this section multiple experiments are described to
address different questions. The first sections focus on
how the trajectory optimization [7] and the evolutionary
approach relate. The following parts contains experiments to
demonstrate the opportunities of the evolutionary approach
to achieve robust manipulators, in particular the optimization
of joint limits. The hand morphology/control and domain
randomization parameter ranges as well as object and opti-
mization specifications for all optimized manipulation tasks
are displayed in Table I. On all experiments an initial stan-
dard deviation of 0.1 is specified for the covariance matrix
adaption strategy and the mean vector computed based on the
parameter interval boundaries. Furthermore, 0.005 is used as
physics simulation step size.

Various whole hand results and motion plans obtained
by the trajectory optimization [7] are directly transferred to
this paper’s physics simulation without applying domain ran-
domization. The object manipulation tasks comprise horizon-
tally/vertically rotating a capsule 90 degree in midair, rotating
a sphere 180 degree clock-/counterclockwise and drawing a
box with a capsule shaped pen. Since the motion plan is given
as sequence of target joint angles at specific timestamps a PD
controller with feed forward term and gravity compensation
is used to follow this generated trajectory. This experiment
is conducted to see if the trajectory optimization is able
to produce results that can be reconstructed in a physics
simulation.

The next experiment elaborates if the evolutionary ap-
proach can be used to further improve the trajectory op-
timization results by co-optimizing the morphology and
controller. Only small deltas from the initial hand parameters
and joint angles values for the PD controller are selected
during optimization as the optimal design and motion is
expected to be close the initial result. Rotating a capsule 90
degrees in midair (Task 1) is selected as primary example
in this paper. The first experiment optimizes morphology
along with the target joint angles from the already used PD
controller. In the second experiment a simple torque policy
replaces this controller. The torques are interpolated based
on three optimized parameters. The trajectory optimization
results already contain a desired object trajectory consisting
of multiple position and orientation goals. As the number
of goals is too large for multi-objective algorithms, CMA-
ES is used for optimization. This single-objective algorithm
is expected to have relevant results as the search space is
significantly reduced which decreases the probability to con-
verge to a local optimum. Applying domain randomization



TABLE I
PARAMETER AND PARAMETER RANGES FOR OPTIMIZATION EXPERIMENTS ON OBJECT MANIPULATION TASKS

Parameter Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

M
or

ph
ol

og
y Initial joint angle (in rad) [-0.5, 0.5]* [−π

2
, π
2

] [−π
2
, π
2

] [-π, π] [−π
2
, π
2

] [-1, 1]
Finger position palm1(in cm) [-1, 1]* [-3, 3] [-3, 3] [-4, 4] - -
Finger segment length (in cm) [-5, 5]* [1, 6] [3, 10]6 [1, 20]6 [4, 9] [4, 8]
Joint axis angle (in rad) [-0.5, 0.5]* [-π, π] [-π, π] - -
Joint limits (in rad) - [−π

2
, π
2

] - [−π, π] [−π
2
, π
2

] [−π
2
, π
2

]
Friction coefficient [-0.3, 0.1]* [0.2, 0.8] [0.3, 1.0] - -

C
on

tr
ol torque (in Nm) [-0.5, 0.5]3 - [-0.05, 0.05] [-0.05, 0.05] [-0.01, 0.01]3 [-0.01, 0.01]

Target joint angles (in rad) [-0.3, 0.3]*3 [-0.3, 0.3]* - - [−π
2
, π
2

]3 -
P coefficients [100, 5000]3 [100, 5000] - - [1, 100]3 -
D coefficients [12.5, 625]3 [12.5, 625] - - [0.1, 10]3 -

D
om

ai
n

R
. Object position* (in cm) [-3, 3]4 [-0.3, 0.3]4 [-0.3, 0.3]5 [-0.5, 0.5]5 [-0.5, 0.5]5

Object orientation*2(in rad) [-1.5, 1.5] [-0.15, 0.15] [-0.35, 0.35] [-0.4, 0.4] [-0.3, 0.3]
Object friction coefficient* [-0.05, 0.05] [-0.05, 0.05] [-0.1, 0.1] [-0.1, 0.1] [-0.05, 0.05]
Object scale** [0.909, 1.1] [0.909, 1.1] [0.95, 1.05] [0.66, 1.50] [0.5, 2.00]
Object mass** [0.66, 1.50] [0.66, 1.50] [0.66, 1.50] [0.66, 1.50] [0.66, 1.50]

O
bj

ec
t Shape Capsule Sphere Capsule Box Box Box

Measurement (in cm) 1.5L x 0.2r 0.35r 0.15L x 0.02r 0.04 0.04 0.04
Mass (in kg) 0.2 0.1 0.02 0.03 0.03 0.03
Friction coefficient 1.0 1.0 1.0 0.3 0.3 0.3

E
vo

.A
lg

. Algorithm CMA MO-CMA MO-CMA CMA/MO-CMA CMA
Iterations 1000 1000 200 1000 100 100
Population size 250 250 150 250 80 80
World states 16 16 64 128 8, 64, 128 128
Goal Pose trajectory Pose trajectory Pose Alignment Orientation

1 in x- and z-direction of hand-base-coordinate system 2 angle around defined axis 3 dependent on the applied control policy
4 in x-, y- and z-direction of global coordinate system 5 in x- and z-direction of global coordinate system 6 interval divided by the number
of joints belonging to the same finger * delta added to initial value ** scaling factor multiplied with initial value

to alter the object likely leads to initial collisions between
object and robotic hand. Therefore, two optimizations are
conducted with and without domain randomization where
the optimization with uses the best performing result without
as starting point. As second trajectory optimization result,
the re-orientation of a sphere clock- and counter-clockwise
around 180 degree is evolved (Task 2). In addition, early
termination with θs = 0.5 and ds = 0.5 is applied for this
optimization. It is notable that the trajectory optimization
results and corresponding manipulated objects are designed
ten times bigger than actual hand sizes. Other parameters are
accordingly adapted to match this larger size.

In a subsequent attempt it is investigated if similar so-
lutions to the trajectory optimization can also be obtained
in a completely evolutionary based approach. Therefore the
same task of rotating a capsule is similarly specified and
optimized on an identical hand structure in a much bigger
search space (Task 3). The controller comprises a torque
policy which applies interpolated torques based on three
optimized parameters over a two second time frame. Early
termination with θs = 0.3 and ds = 0.02 is applied for this
optimization.

The next experiment examines if suitable results can be
obtained when not provided with an initial hand structure.
This approach follows the introduced hand hierarchy. The
optimization starts with the simplest design of a finger with
only one joint and stops when reaching a two-fingered
hand with three joints instead of using a penalty term.
The motion task evaluated is a rotation of a box by 45

degrees around its vertical axis while the object remains at
its initial position on a flat plane (Task 4). One constant
torque is applied per joint for a duration of one second.
This task is evaluated on a large deviation of the initial
rotation to see if a robust manipulator can be built with
this simple control strategy. Accordingly, the distribution of
the initial and final object pose error is calculated on the
same 15625 domain randomization samples to ensure the
comparability of different hand structures. The optimization
pipeline is performed twice on this task to exclude that
some successful or poor performing manipulators are only
found by coincidence. The two best hand structures are again
optimized on a much larger iteration and population size
as well as using a broader range of morphology parameters
and a control policy with two interpolated torques over 1.5
seconds to see if the results can be improved if the search
space as well as the optimization duration is increased.

The last experiment explores if optimizing for specific
joint limits can effect the robustness of designed manipu-
lators on the following two tasks. The goal of the first task
involves the alignment of a box at a specified position by
applying two different constant torques per 1.5 seconds while
the object is lying on a flat surface (Task 5). The objective
of the second task is a 45 degree rotation of the same object
while the final position is irrelevant (Task 6). For both tasks
the hand structure is fixed having two fingers with two hinge
joints each. The design space of the hand morphology con-
sidered is two-dimensional and only segment lengths, initial



joint angles and limits are optimized. Multiple experiments
are performed on different numbers of randomized world
states and both covariance matrix adaption strategies are used
to assess their quality in finding joint limits. Furthermore,
target joint angles for a PD controller with feed forward
term are evolved for the first task to compare its results to
the simpler torque policy.

IV. RESULTS AND DISCUSSION

Fig. 2. This figure shows different optimization results to rotate a capsule
90 degrees in a physics simulation. The first motion (top) contains the hand
design and motion plan received from a trajectory optimization [7]. As in
many other cases, this direct transfer leads to failure as required forces can
not be matched and the object is slipping out of the hand. The following
motion (mid) shows that further optimizing this result within a simulation
using an evolutionary algorithm has excellent results. A similar robust and
successful hand design and motion is not as easily obtained in a completely
evolutionary based approach (bottom).

This section demonstrates the weakness of the current
trajectory optimization [7] and the advantage of using evo-
lutionary algorithms to optimize a robust hand morphology
on object manipulation tasks. All results from the different
experiment setups are displayed in motion in the attached
video.

Directly transferring the hand design and joint angle based
motion plan from the trajectory optimization pipeline [7] into
a physics simulation does not work in most cases. Utilizing
a hybrid approach to further optimize both morphology and
the PD controller leads to more successful results. Figure 2
provides both outcomes for an example task. Another ex-
periment replacing the PD controller with a simple torque
policy provides a comparable result. Therefore, our approach
to optimize simpler policies seems like a solid plan and may
also work on more complex tasks. Figure 2 also contains the
best result for the evolutionary approach from scratch. The

final state is not robust but the manipulator is able to mostly
follow the desired trajectory. It is noted that of five opti-
mizations only this produces such a good result. Three other
manipulators just use two of the three available fingers and
therefore are not able to closely perform the manipulation.
Therefore, future work has to improve the exploration of the
search space. In contrast, when utilizing an initial good seed
for the robot hand and control policy a much lower search
space needs to be addressed and therefore fewer iterations
in a time consuming physics simulation are needed to obtain
significant results. Furthermore, using a PD controller leads
to better motions than just applying optimized torques but
as further experiments show optimizing this control policy
in the whole joint value space is much more complex.

The performance of solutions for the hand hierarchy
optimization are visualized in figure 3. One-finger-hands
perform worst on the specified task as they are only able to
change the orientation while also altering the position of the
box. Potentially applying multiple torques can improve their
results. Two-finger-hands with at least three joints on one fin-
ger are able to achieve significant results which are close to
the initial deviation of position and orientation. Surprisingly,
a non-symmetric hand containing a finger with one and a
finger with three joints drastically outperforms a symmetric
two-joint-fingered-hand on this task even though the degrees
of freedom are the same. Adding another finger to the same
hand yields worse result which justifies this papers bottom
up approach when performing tasks which may not need
additional fingers to be robust. Overall, hands with three
fingers do not provide successful results on this task. The
reason is not only the increased complexity when adding
more degrees of freedom. The additional finger also hinders
the other two fingers from performing well. In most solutions
the extra finger is chosen to be as small as possible and lifted
immediately. Having to deal with an additional obstacle in
the beginning may lead to convergence to a local minimum.
As each optimization for a hand structure is executed twice
and most results do not diverge by much, there is a slightly
higher probability that these outcomes are representative
for the given specified manipulator and controller settings.
Applying a more extensive evolutionary optimization to the
two-fingered one-three- and two-three-joint hand structure
yields more robust results that are able to nearly reduce the
optimization error to zero. However, the position error does
not improve as decreasing the rotation error is achieved by
aligning the object with both fingers on two sides still leaving
two possible movement directions. Probably more finger or
a better exploited morphology are required to also improve
the position error. Overall, this reveals that doing a more
extensive search on the optimization pipeline is required to
find more robust solutions as the convergence rate to achieve
these results is slow. This decrease the performance of this
approach by a lot and therefore future work has to improve
the current optimization pipeline. Varying the number of
iterations/populations based on the degree of freedom is a
possibility.

Figure 4 and 5 show the simulation results for the joint



Fig. 3. This figure displays the distribution of the initial object pose and corresponding final object poses from optimized manipulators executed on task 4.
The hand structures are ordered in accordance with the proposed hierarchy and the digits denote the number of joints per finger.

Fig. 4. This figure displays two example motions results (right) for different
domain randomization (left) of task one. The two optimized joint limits in
the left finger cooperate to align with the side of the box. The red cube
with the arrow symbolizes the desired goal pose.

Fig. 5. Three different final results for task two. The optimized joint limit
of the first segment in the left finger aligns with the desired orientation of
the box.

limit optimization experiments. In both tasks specific joint
limits are exploited to align the finger with the desired
object pose to be more robust on different initial object sizes
and poses. These results may not look interesting at first
as they are only built for a specific goal. However, if the
resulting manipulators and motion plans are very robust on
randomized domains, moving or rotating the base of the hand
allows to accomplish any desired goal pose robustly with the
same optimized joint limits. The joint limits form an obstacle
which stops the object motion in its tracks. Therefore, no
opposing force from the finger is needed to granular position
an object. This is significant because a simple controller
such as constant torque is not able to do this very well.
The joints limits are only found in about 50% of the trials

when optimizing on a larger number of simulated domains.
Results simulated on boundary points of the domain ran-
domization intervals especially for scaling and orientation
are rather poor. Thus, more domain randomization samples
may lead to convergence to local minimum because the mean
fitness on the uniformly distributed samples is optimized.
Evaluating other strategies to combine these fitness values
such as weighting them based on their difference to the
initial values to improve overall result is part of future work.
Further experiments on the same tasks also show mostly poor
outcomes when optimizing a PD controller in comparison to
a torque policy. Finding optimal target joint angles in the
whole space while also modifying the morphology is very
difficult and this problem needs to be addressed. Another
deficit of the PD controller is the number of calculations
required per time step which lead to at least three times
slower computation scaling with degrees of freedom.

V. CONCLUSION

This paper provides a basis for future work to create
simple and robust task-specific hand designs for object
manipulation. A general framework is introduced applying
evolutionary strategies in a physics simulation to co-optimize
hand morphology and controller based on a high-level task
description. The optimization is performed simultaneously
on varying world states using domain randomization to ac-
count for uncertainty and improve robustness. Our approach
further shows that optimizing joint limits can support a
simple control policy to be very robust to deviations on spe-
cific tasks. Evolutionary algorithms are able to find arguably
good results, but are still restricted because of necessary
exploration of a large search space and a small number
of relevant solutions. The next steps involve optimizing
robust manipulators for more complex manipulation tasks.
Increasing the number of iterations may not automatically
lead to better results as evolution selects the best perform-
ing individuals on the short term and therefore potentially
converges to a local optimum [8]. Therefore, acquiring a
higher diversity in the population is an important future
goal. Literature provides potential approaches adapting basic
evolutionary algorithms or adding additional objectives to
balance convergence and diversity.

The fact that our optimization takes place in a simulated
environment makes planning extremely difficult and in many



cases prohibits us from effectively optimizing target joint
positions for a PD controller to follow. We believe that a
hybrid approach that fuses the trajectory optimization [7]
with the simulation based optimization of this work can
make this possible. This framework will essentially use a
trajectory optimization based motion planner and morphol-
ogy optimizer to provide good initial seeds for the physics
based optimization. The physics simulation will further fine-
tune the hand design and control policy to accomplish the
desired task in a variety of different domains.

Future work also includes building some of the optimized
robot hands and testing them to evaluate whether the current
approach is sufficient to create robust manipulators that gen-
eralize well. In addition, further deviations can be introduced
as the current model of the world is still imperfect. Adding
more types of perturbations may encourage robustness to
some variations and errors that are not considered.

VI. ACKNOWLEDGEMENTS

I would like to offer my special thanks to Prof. Tamim
Asfour at KIT who encouraged me to apply for the exchange
program with CMU. He provided valuable insights and
supported me during my semester abroad.

Further thanks goes to the Continuous Learning in Inter-
national Collaborative Studies (CLICS) exchange program
allowing me to spent half a year at the Robotics Institute at
Carnegie Mellon University.

VII. APPENDIX: IMPLEMENTATION AND HARDWARE
DETAILS

This framework is implemented in C++ using the Open
Dynamics Engine to simulate physics and applying evo-
lutionary algorithms from the open-source shark-ml li-
brary [29]. Simulations with about 300 iterations, a popu-
lation size of 150, 128 domain randomization and a physics
simulation step size of 0.005 using the simple torque based
control policy take about 60-120 minutes when executed on
all eight cores of a laptop with a i7-6700HQ CPU with
2.6GHz and 16GB RAM.
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