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Abstract—In this paper new grasp quality measures consid-
ering both object dynamics and pose uncertainty are proposed.
Dynamics of the object is incorporated into our grasping
simulation to capture the change of its pose and contact points
during grasping. Pose uncertainty is considered by running
multiple simulations starting from slightly different initial
poses sampled from a probability distribution model. A simple
robotic grasping strategy is simulated and the quality score
of the resulting grasp is evaluated from the simulation result.
The effectiveness of the new quality measures on predicting
the actual grasp success rate is shown through a real robot
experiment.

I. INTRODUCTION

Grasping objects with mechanical hands stably and reli-
ably remains a challenging task. In this paper we estimate
the quality of robotic grasping under uncertainty using a
simulation based algorithm, and compare the results with
experiments. Our grasp quality measure uses a physically
based simulation to consider the complicated interaction
between the robotic hand and an object that occurs when
grasping. The uncertainty in the simulation input data such
as the object position obtained from sensors is considered
in the algorithm by sampling from a probability distribution
model and running multiple simulations for each grasp.

We focus on estimating the success rate of an open-
loop grasp defined as a relative pose of the hand to the
object and finger configuration prior to grasping. Better
estimation of likely success or failure of such an open-loop
grasp is useful in itself for systems that rely on a relatively
simple finger closing mechanism for grasping. It can also be
used in conjunction with more sophisticated feedback driven
grasping algorithms to remove poorly performing grasps
from consideration.

Many planning algorithms for robot manipulation use a
set of precomputed grasps in order to pick a reachable grasp
and plan a trajectory to it within a reasonable time. A large
grasp set is usually used to increase the possibility of finding
a feasible grasp solution which is reachable from the current
robot configuration. Thus it is necessary to collect a large
selection of ‘good’ grasps because the success or failure of
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Fig. 1. Dynamic (upper) and static (lower) objects. The dynamic object

can translate and rotate according to the finger motion, which results in
more plausible contact points than the static object.

the manipulation task is directly affected by the quality of
the grasp set used in the planning.

Checking force-closure from contacts is a simple but
useful way to check if a grasp is good or stable enough
to resist external disturbance forces, and this approach has
been used in many automatic grasp generation tools such
as Grasplt! to choose good grasps among myriad numbers
of possible grasps. Various methods have been suggested to
qualitatively measure how good a grasp is, and those quality
measures are often used in sorting the grasps so that better
grasps can be more likely to be used in applications such as
manipulation planning.

To compute the quality score of a grasp with existing
methods, we need to know about the contacts between the
hand and the object. A kinematic simulation which closes the
fingers until touching the object is often used to obtain the
contact points under the assumption that the object remains
at the same place. However, such a static object assumption
does not hold in many grasping situations as shown in Fig.
1. When the resulting grasp is far from that obtained using
the static object assumption, contact information will be
incorrect, as will the estimate of grasp quality.

Uncertainty in the data obtained from sensors can also
affect the success rate of a proposed grasp. For example, a
slight change in object position can change a success into
a failure, or vice versa, as shown in Fig. 2. Such an abrupt
change in grasping result can only be effectively captured
with a dynamic grasping simulation as presented here.

In this paper, we incorporate the dynamics of the object
into our grasping simulation to capture the change of its



Fig. 2.
before closing fingers differ from the planned pose due to the data uncertainty.

pose and contact points during grasping, by which we expect
to be able to evaluate the grasp quality more precisely. In
addition, at every grasp test, we run multiple simulations
starting from slightly different initial conditions sampled
from a probability model to consider the uncertainty, and
then evaluate the success rate of the grasp by gathering
all simulation results. As far as we know, this is the first
attempt to incorporate both dynamics and data uncertainty
in estimating the grasp success rate.

The key finding of our work is that both the dynamic
contact change at the moment of grasping and the object
pose error from the sensor uncertainty must be considered at
the same time in grasp quality evaluation. Our new method
considering both of them outperformed the existing method
in predicting the actual (experimental) grasp success rate,
while considering only one factor at a time did not improve
performance.

II. RELATED WORK

Much previous research related to grasp quality metrics
has been focused on analyzing the 6-dimensional space
spanned by contact wrenches. Li and Sastry [1] proposed
using the smallest singular value of the wrench space matrix
and the volume of the wrench space as quality metrics.
They also suggested a task oriented quality measure to
consider the type of task to be done with the grasp. Ferrari
and Canny [2] suggested to use the radius of largest ball
inscribing the convex hull of the contact wrenches. The
physical meaning of this metric is that it represents the largest
minimum disturbance wrench that can be resisted by the
contacts. This metric is one of the most popular methods for
measuring grasp quality and has been implemented in many
systems for grasp analysis such as Grasplt! [3]. A variety
of other grasp quality metrics have been considered, and are

Grasp success (upper) and failure (lower) cases with providing the same grasp to the planner. The two actual hand poses (relative to the object)

summarized nicely in [17]. In this article, Balasubramanian
et al. additionally consider grasp quality measures that may
be derived from human-guided robot grasps.

Grasp quality measures have many applications such as
finding an optimal grasp as illustrated in [1], [2]. Automatic
generation of a large grasp set is also an obvious application.
A large grasp database containing grasps of various objects
was built using Grasplt! [5]. Other manipulation planning
tools such as OpenRAVE [4] also provide a function to
generate a grasp set automatically because the precomputed
grasp set can be used in motion planning algorithms such as
RRT-Connect [6]. Most of the existing methods for automatic
generation of a grasp set first obtain the contact points of
the grasp through a simple kinematic simulation with an
assumption that the object is static, i.e., that is remains
at the same position even after collision with the fingers.
However such a static object assumption does not hold in
many practical situations. As shown in Fig. 2, the object can
move significantly in response to collision with the fingers,
and in such cases the existing metrics may not give us
useful information on grasp quality. To handle the issue,
we consider dynamics of the 3-dimensional object in our
simulation for evaluating grasp quality.

Handling data uncertainty in grasping has been studied
by many researchers. A number of researchers (e.g.,[14],
[13]) have considered planning actions in conditions of
complete uncertainty. However, we assume that our robot
is capable of estimating object configuration with moderate
error. Toward handling such a circumstance, Zhen and Qian
consider how small uncertainties in friction coefficient and
contact locations affect grasp quality. Christopoulos and
Schrater [7] similarly incorporated shape uncertainty into
grasp stability analysis of two-dimensional planar objects
by considering the effect of small changes in contact force



position and direction. Goldfeder et al. [15] address shape
uncertainty by cross testing grasps with alternative shapes
that are nearest neighbors to a given model. It is worth
noting that their simulator uses an approximate dynamics
simulator to compute object response (e.g., object motion
due to forces applied by the hand is captured, but other
environment forces such as the supporting surface are not
modeled). The simulator used in their research has been
incorporated into Grasplt! as described in [16]. Hsiao et al.
[9] introduced a method that takes into account uncertainty
in object shape and pose data. They combined the data from
a set of object detection algorithms using a probabilistic
framework to find an optimal grasp.

In this paper we consider data uncertainty such as object
pose, with a focus on capturing the effect of errors in
pose estimation on the result of dynamics simulation. To
our knowledge, this is the first work to address both pose
uncertainty and the dynamic effect of the grasping task.

III. GRASP QUALITY EVALUATION

We define a grasp as a combination of a relative pose of the
hand to the object and the initial finger joint configuration.
The grasp information is used to set the initial condition of
the hand in our physically based simulation.

In each simulation we apply a simple grasping motion to
the hand to close the fingers for object grasping and to lift up
the object while maintaining the closed finger configuration,
and compute the object motion using the equations of motion
of the rigid body. In order to evaluate the quality of a
single grasp, we run multiple simulations, and at each run,
we set a slightly different object initial pose obtained by
sampling from a probability distribution model to consider
the uncertainty in the sensor based pose localization. At each
simulation we measure the quality of the simulated grasp
and gather the quality scores of all simulations we ran for a
particular grasp as raw data for evaluation of the quality of
the grasp under uncertainty.

One way to measure the quality of a grasp from the
simulation results would be simply counting the number of
successful grasps from the full set of simulation variations
for that grasp. We judge that a simulated grasping has failed
if the object was out of the hand or it had contacts with less
than two hand links at the end of the lift-up phase, and give
a score of 0. If the object did not move and it had contacts
with more than three links after the lift-up, we regard the
grasp to be successful and give a score of 1. If the object
was still moving after completion of the lift-up phase or it
had contacts with only two links, then we give a score of
0.5. We used the same scoring system to measure the quality,
or success rate, of a grasp in the real robot experiment too.
See section V for comparison of our simulation results with
those of the experiment.

We also tested another quality measure that considers
movement of the object as it is being lifted from its original
supporting surface. We mark the object pose relative to the
hand as a reference after completion of the grasping phase
and before starting the lift-up. Then, we obtain the maximum

Fig. 3. Uniformly distributed surface points for collision detection

deviation of the relative object pose from the reference pose
during the lift-up. If the object was moving a lot during the
lift-up, we consider the grasp is not stable and give it a low
score value. On the contrary, if there was no relative object
motion, we give a score of 1 which is the highest in our
system. Of course, as in the case of the above measure, if
the object was out of the hand or it had contacts with less
than two links at the final time step, then we still regard it
as a failure case and give a score of 0 which is the lowest.
We consider the deviations in the position and orientation
separately and compute them with

6;0 = ||pcom _ﬁcomH (1)
dr = ||Log(R" R)| 2)

where p..,, and R denote the relative center of mass position
and the orientation of the object from the hand, and the
bar symbol represents the reference values. Then, the quality
score is obtained from the maximum deviation §™* and a
tolerance limit L as

g=1-— 3)

when §™?* < L. If the maximum deviation exceeds the
tolerance limit, we give a score of 0. This quality metric
can be computed separately for position and orientation and
used as such, or these metrics can be combined, for example
by averaging. In our simulation we set 1 cm and 10 deg as
the tolerance limits, and the effect of change in the limits on
the relative grasp quality score was negligible.

IV. IMPLEMENTATION DETAIL

We simulate the robot hand grasping an object using our
own physics simulation tool. We assume frictional contacts
between the object and hand, and between the object and the
ground. The object motion at every time step is computed
based on the current contact forces and the equations of
motion of the rigid body.

The finger joints are kinematically driven by motors to
close the fingers, and the motor speed is adjusted depending
on the magnitude of the motor torque. The motor torque
is obtained by converting the contact forces using Jaco-
bian matrices, and hand dynamics is not considered in our
simulation. As the motor torque increases due to forces at



Fig. 4. The HERB robot and the objects (Pop Tarts and Fuze Bottle) used
in the test. The objects are fully filled with contents.

the contacts, the motor speed is reduced linearly which is
a typical characteristic of DC motors. If the motor torque
exceeds a limit, the motor does not close the finger any more
and remains in its current position. If all fingers have been
closed, then the hand starts to lift up the object by following a
given trajectory and stops at some point. We use a trapezoidal
velocity profile to lift the hand.

Some robotic hands have a clutch mechanism to change
the finger closing behavior, and our system handles such
a clutching mechanism. In the case of Barrett hand which
was used in our simulation and experiment, a single motor
usually drives the two joints in each finger. But, after the
breakaway clutch is triggered, only the outer joint rotates,
closing the finger tip further while the other joint remains
in place, which is useful for closing the hand more tightly
around an object.

For collision detection, we use a set of points uniformly
distributed on the surface of the robot hand geometry (Fig.
3). Each point will be tested for collision with the surface
of the object, and at each contact point, a contact force will
be computed with a penalty-based contact model. We use a
penalty-based frictional contact model suggested by Yamane
and Nakamura [10]. The contact forces affect the state of
the object at the next time step through the equations of
motions of the rigid body. They also affect the motor speed
for closing the fingers so that the motors automatically adjust
their speed and eventually stop at the stall torque condition.

V. RESULTS

We tested our grasp quality measure with predefined
grasps for the two types of objects shown in Fig. 4. We
generated a very large set of grasps using OpenRAVE and
chose 10 grasps for each object as shown in Fig. 5. The grasp
quality of the grasps were estimated using our simulation
based algorithm described in Section III.

To consider the uncertainty in the object pose relative to
the hand, we sampled the position and orientation of the
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Fig. 7. Comparison of the quality measures (Fuze Bottle)

object using normal distribution models. We set the standard
deviations of the two distribution models to be 1 cm and 6
deg respectively, and the sample size was 100 for each grasp
in the test. It took about 5 min and 13 min to evaluate the
100 trials for each of 10 grasps (total of 1000 simulations per
each object) for the box shaped object (Pop Tarts) and the
bottle (Fuze Bottle) respectively, and the test was performed
on a laptop with a 2.67 GHz Intel Core i7 CPU.

We conducted an experiment to obtain actual success rates,
or quality, of the grasps with HERB (Fig. 4), a service robot
consisting of two Barrett WAM arms and Barrett hands [11].
For each grasp, we repeated 10 times to grab and lift up the
objects to measure the success rate of the grasp, marked
a score at each trial using the (0, 0.5, 1) scoring system
described in Section III, and averaged the scores to get an
average success rate of the grasp.

Fig. 6 and 7 shows the grasp quality values for the two
objects. The blue line with diamond marks shows the success
rate obtained by the experiment, the red line with squares
represents the grasp quality values measured by our method
using the (0, 0.5, 1) scoring system, and the green line



Fig. 5.

with triangles shows the existing grasp quality measure by
Ferrari and Canny [2] with the static object assumption.
Though the quantity of the values is somewhat different,
our grasp measure shows a strong tendency of following
the experiment results, and we can conclude that the method
can be used effectively in predicting the actual grasp success
rates.

In our experiment, the actual robot grasping tends to
fail easily especially when the grasp is located at the near
boundary of the area where the finger can reach the object.
For example, the grasps 6 and 8 of the Pop Tarts, and the
grasps 2 and 6 of the Fuze Bottle are located far from the
object, and the success rates in the actual robot grasping are
significantly lower than the simulated values. We think that,
in such cases, the success rate in the experiment is more
likely to be affected by a calibration error. If the pose error
distribution has a nonzero mean, and the offset is located in
the far side, then the robot would have only small chance of
successful grasping. Of course, the offset could be placed in
favorable side with an equal probability if the object is placed
randomly. However, we used only the right arm of the robot
in the experiment, so this restricted the operator from placing
the object fully randomly because of the limited work space
of the robot arm. On the contrary, we assumed that the mean
of the sensory error distribution is zero in our simulation, so
the simulated grasping would still have 50% of chance for

The grasps tested in our simulation and experiment. Relative position of the hand to the object is shown at the bottom of each grasp.
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Fig. 8. Correlations to the experiment data

having the hand be located in the near side of the object,
and so we speculate that this leads to a higher success rate
than the actual grasping.

In Fig. 8 we show the statistical correlations between the
experiment data, i.e., the actual grasp success rate, and a



few grasp quality measures. In addition to the two grasp
measures discussed above (marked as ‘Dynamics + Uncer-
tainty (A)’ and ‘Baseline’), we added our another version of
quality measure based on the maximum deviation (marked as
‘Dynamics + Uncertainty (B)’). In our experiment, our first
measure using the three-step scoring system showed better
performance than the second method in predicting the actual
grasp success rates. We expect that the first measure performs
better because we used the same scoring system to measure
the success rates in the experiment.

We also added the quality scores of our two measures
without considering the uncertainty model (marked as ‘Dy-
namics (A)’ and ‘Dynamics (B)’) — we execute a single
run of physics simulation per grasp and get the scores
as described in Section III. The correlation plot clearly
shows the value of adding pose uncertainty in the grasp
quality measure design. The two measures incorporated with
the uncertainty model show the highest correlation to the
actual grasp success rates, which shows the effectiveness of
our grasp measures in estimating the actual grasp quality.
However, the quality scores without pose uncertainty do not
give good information on the success or failure of the actual
grasp even with considering object dynamics. From the
observation, we speculate that modifying the existing method
by simply replacing the static object assumption with a
dynamics simulation would not produce a great improvement
in estimating the real grasp success rates.

Finally, we investigated the effect of considering object
pose uncertainty on the performance of the existing quality
measure by testing poses sampled from the uncertainty model
and averaging the scores for each grasp (marked as ‘Baseline
+ Uncertainty’). However, this strategy did not produce
consistent improvement in our examples — it raised the
correlation in the case of the Fuze Bottle but acted in the
opposite way for the other object.

VI. CONCLUSION

In this paper two core factors affecting success or failure in
actual robotic grasping — contact change at the moment of
grasping and the object pose error by the sensor uncertainty —
have been addressed, and new grasp quality measures based
on physics simulation have been suggested. The effect of
changing contacts is captured by adding object dynamics in
the simulation, and the object pose uncertainty is considered
by running multiple simulations with slightly different ini-
tial poses obtained from a probabilistic distribution model.
Through the real robot experiment, we showed that the new
methods can effectively estimate the actual grasp success
rates. We also have found that both the dynamics and
uncertainty must be considered at the same time in grasp
quality evaluation, and considering only one factor at a time
does not improve the performance of predicting actual grasp
success rates.

Our new methods show better performance in predicting
the actual grasp success rates than the existing method,
and this would help improving robustness of robot grasping
by providing a better grasp set to the planner. However,

the methods based on either counting the number of finger
contacts or measuring the object pose deviation during the
lift-up process do not explicitly tell us about the stability of
the final grasps, i.e., the ability to resist external disturbance
forces, which is important for achieving robust manipulation.
It would be an interesting future work to design a simulation-
based method for measuring grasp stability and test it by
comparing with experimental results.
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