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Abstract— In this work, we investigate a form of dynamic
contact-rich locomotion in which a robot pushes off from
obstacles in order to move through its environment. We present
a reflex-based approach that switches between optimized hand-
crafted reflex controllers and produces smooth and predictable
motions. In contrast to previous work, our approach does not
rely on periodic movements, complex models of robot and
contact dynamics, or extensive hand tuning. We demonstrate
the effectiveness of our approach and evaluate its performance
compared to a standard model-free RL algorithm. We identify
continuous clusters of similar behaviours, which allows us to
successfully transfer different push-off motions directly from
simulation to a physical robot without further retraining.

I. INTRODUCTION
Humans exploit highly dynamic interactions with the

environment to reach states that would have otherwise been
inaccessible. For instance, to move to an out-of-reach hand-
hold, a rock climber jumps to the new handhold by pushing
against the wall with their legs. Swinging from the current
handhold before the jump can help them gain momentum for
larger jumping distances. In parkour, a popular technique for
scaling high walls is to run towards the wall and then jump
onto and push off the wall with a foot to reach the top. In
contrast to these highly dynamic interactions, robotic systems
typically attempt to avoid obstacles and only navigate and
operate in clear, structured settings such as labs and empty
hallways. If robots can use their arms to dynamically push off
obstacles, they could move more freely, flexibly, and rapidly
in cluttered environments. However, this particular skill is
difficult to learn because of the intermittent contact events
we encounter during a dynamic pushing motion.

In this work, we explore this scenario with the PushBot,
a freely hovering robot, that can only move by interacting
with its environment. To solve pushing tasks we develop
a reflex-based approach that switches between optimized
reflex controllers triggered by specific observations. We show
that our approach can solve push-off tasks in simulation,
and achieves success rates comparable to a standard model-
free RL algorithm. Furthermore, our approach allows us to
identify continuous clusters of similar behaviors, and we
demonstrate how these motion families can be utilized to
directly transfer push-off motions from simulation to a real
robot without further reward engineering or retraining.

II. RELATED WORK

Control of robotic whole-body locomotion. Designing
robots that can achieve dynamic, contact-rich, whole-body
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locomotion similar to human and animal capabilities remains
challenging. Dynamic legged locomotion has often been con-
sidered within the context of walking, running, hopping, and
jumping which involve periodic or semi-periodic movements
[1], [2], [3], [4], [5]. Our interest lies in non-periodic be-
haviors that allow robots to exploit dynamic interactions for
locomotion in unstructured environments. For most mobile
robots with arms, the arms are typically only engaged for
static or quasi-static tasks such as balance and support, object
manipulation, or climbing [6], [7], [8], [9], [10]. Zhao et
al. [11] demonstrate non-periodic humanoid locomotion on
challenging and unpredictable simulated terrain, where both
the arms and legs are used to move dynamically through the
environment.

Previous approaches for legged locomotion have used
simplified template models, such as those based on inverted
pendulums [12], for model-based planning and control; such
models can also be defined for highly dynamic tasks. For
instance, a simplified model was developed for the Park-
ourBot and demonstrated on a chute climbing, or “vertical
running”, task [13]. However, reduced template models are
more difficult to design for unstructured environments and
robots capable of more complex movements. Additionally,
they usually require more hand tuning than learned models
to adapt to new robots and environments.

Learning and optimization techniques, such as quadratic
programming [3], [8], [9], [10], black-box optimization
(BBO) [14], [15], [16], [17], [18], and reinforcement learn-
ing (RL) [19], [20] have been applied for automatic opti-
mization and tuning of locomotion controllers. There has
been increased interest in learning controllers for humanoid
locomotion using model-free RL which does not require
expert domain knowledge or strict assumptions about the
policy [21], [22]. BBO methods can be similarly used in
a model-free way using an approach called direct policy
search. Salimans et al. [23] demonstrated that a black-box
evolutionary algorithm is competitive with popular policy
gradient RL algorithms on a simulated 3D walking task.

Reflex control modules. Our approach is motivated by prior
works related to biologically inspired, whole-body humanoid
locomotion. Human locomotion and the neural circuitry in-
volved in generating locomotion behaviors have been studied
extensively in previous works [24] [25]. Experiments have
shown that neural networks along the spinal cord make a sig-
nificant contribution to generate these behaviors, and various
approaches have been proposed to model the neural circuitry.
In this context, Song et al. [15] demonstrate that a control
structure composed of reflex modules can generate diverse
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Fig. 1. We propose a reflex-based controller approach to learn push-off tasks, which switches between optimized low-level controllers triggered by specific
observations. Each reflex controller is trained on an individual task, e.g. a front push reflex, and within these low-level controllers we identify different
motion families which represent clusters of similar behaviors (colored patches). This approach allows us to transfer different push-off motions directly from
simulation to a physical robot without further retraining. The bottom row shows time-lapses of pushing motions to the right, left and center, respectively.
In each image we accelerate the robot towards the obstacle, contact triggers the pushing motion, and the robot moves to its final position (opaque).

and robust locomotion. These reflex modules are ”simple”
decentralized control units, which map sensory feedback
onto activation of one or multiple muscles. Combined with
a higher level control layer, their model is able to generate
periodic behaviors ranging from walking and running to stair
climbing and obstacle avoidance. Zhao et al. [11] achieve
dynamic, contact-rich humanoid locomotion by combining
whole-body locomotion behaviors using a high level reactive
planner. Similarly, we focus on the development of reactive
controllers that define simple dynamic pushing behaviors.

III. OVERVIEW AND CONTRIBUTIONS

Pushing and pulling are two of the most basic motions that
humans use to navigate through clutter. While it is intuitive
for us to align our arms in anticipation of contact, react to
contact, and adjust our arm stiffness, it is difficult for a robot
to learn these behaviors. We investigate a form of dynamic
locomotion where an omnidirectional robot base with a pair
of two degree of freedom (DoF) arms pushes against nearby
obstacles to move through its environment. Unlike previous
works applied to running, hopping, or climbing, neither the
applied force nor desired net movement direction is aligned
with gravity. Without gravity to help generate momentum,
the robot must utilize contact-rich dynamic interaction with
the environment to reach the desired goal.

Model-free reinforcement learning has shown promising
results for learning contact-rich tasks in simulation, but
comes with the drawbacks of poor sample efficiency and
challenges of sim2real transfer. In this work, we present an
approach that only relies on a kinematic robot model and the
general ability to adjust stiffness, damping and timing of an
end effector trajectory. Our reflex-based controller features
a hierarchical structure and optimized sub-controllers (fig. 1,
top). A high-level controller switches between relatively

simple sub-controllers, triggered by specific observations.
We build the structure of these sub-controllers, the reflex
controllers, from reasoning about human pushing motions,
and find suitable values for the controller parameters through
optimization. We identify clusters of similar motions within
the resulting behaviors, resembling the underlying patterns
observed in human locomotion. We apply our approach to
multiple tasks in simulation and compare the resulting mo-
tions to a baseline RL algorithm (Proximal Policy Optimiza-
tion, PPO [26]). We further show that we can successfully
perform real world pushing tasks by directly transferring
control policies learned in simulation to a real robot.

PushBot – A hovercraft with arms: To demonstrate
that our approach generalizes to the real world we build a
physical robot platform (fig. 1, bottom). To introduce com-
pliance in the arms, we choose a direct drive configuration
using brushless DC motors in each joint. Additionally, we
reduce friction between the floor and the robot by building
a hovercraft-like lift system. This creates a low friction air
cushion that allows the robot to move freely in all directions.
The robot uses piezo-electric vibration sensors [27] in each
end effector to detect contacts.

IV. MODEL AND METHODS

A. Robot states and action spaces

We define the robot state at a time t as

st =
(
vt θr,t cr,t θl,t cl,t ξt ζt

)T

where vt describes x and y component of the velocity of the
trunk. θr,t and θl,t are the joint angles of the right and left
arm, and cr,t ,cl,t are binary contact variables for each end
effector. ξt describes the current pose of the robot relative to
the goal in terms of distance and heading. We define the robot
heading error as the difference between the goal heading and



the current robot heading. Finally, an obstacle to interact
with is described by ζt , which encodes the distance from the
spatially closest obstacle, and the relative heading between
that obstacle and the current robot heading. For the scope of
this work we consider the state to be fully observable and
there is only a single obstacle.

We define actions as

u = (θr,θl ,kp,kd)
T

with goal angles θr,θl , and variables kp and kd specifying
the gains of the arm joint PD-controllers. A behavior is
considered successful if the absolute distance between the
robot trunk and goal dg,r = |pr− pg| < 0.1m at the end of
the push (time t = N). A reward is given at each timestep
t to encourage movement towards the goal rtot = γvrd − 1
with distance-based reward rd = 1− d̂ 0.4

g,r and a velocity-

based discount factor γv = (1−max{|v̂t |,0.1})max{d̂g,r ,0.4}
−1

with normalized d̂g,r, |v̂t | ∈ [0,1] to discourage overshooting.

B. Modeling pushing motions
We intuitively know that we can generate the momentum

required for pushing off by extending our arms and exerting
a force onto an obstacle. By varying the distance along which
we push and how fast we execute the motion, we can scale
the intensity of a push. A quick and full extension of our arms
will lead to stronger pushes. Instead of learning an optimal
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Fig. 2. Left: Pushing model, described by the effective length of the push.
Right: Qualitative examples of right-arm pushes along different lines of
actions, parameterized by distance di from the shoulder joint origin and
angle αi between line of action and shoulder joint y-axis.

trajectory from scratch, we incorporate our innate knowledge
about this task into a reflexive controller that constrains the
kinematic motion of the arms to retraction and extension
along a fixed direction. For a push, we allow the end effector
to move along a straight line of action as shown in fig. 2 left.

Each possible linear motion is parameterized by the angle
α between the line of action and the y-axis of the shoulder
joint reference frame, and an offset d between the line of
action and the shoulder joint reference frame fig. 2 right.
The resulting kinematic configuration of the robot arm for
a push can be described by κ = (α,d). Each position along
a line of action Li is parameterized by the coordinate li ∈
[0,1], with li = 0 specifying the fully retracted and li = 1
the fully extended arm position. Since this representation
parameterizes end effector motions along a linear trajectory
in cartesian space it also applies to robot arms with more
joints and DoF given that an inverse kinematics model exists.

C. Reflex-based controller for pushing tasks
We propose a hierarchical controller structure, which is

composed by a high-level controller that, based on the current
observation, switches between different reflex controllers.
Each reflex controller is dedicated for controlling specific
parts of the overall motion, such as placing the arms in front
in anticipation of the impact, or extending the arms to push
off while in contact with the obstacle.
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Fig. 3. Reflex controller at runtime: Contact at end effector triggers reflex
controller (trigger event), configuration policy selects arm configuration
setpoints lτ , timesteps tτ , kinematic pushing configuration κ , and PD gains
kp,kd (configuration phase). Arm joint angle trajectory is executed (active
phase).

1) High-level controller: During a pushing task, the robot
experiences changes in contact modes. Based on the current
robot state, the high-level controller switches between dif-
ferent control modes. We implement this as a finite state
machine with explicit transition rules, where the switching
mechanism is dictated by a set of handcrafted rules (e.g. if
a contact occurs at either end effector, switch on front-push
reflex controller).

2) Low-level reflex controller: Whenever a reflex con-
troller is triggered by the high-level controller, it runs through
two separate phases as described in fig. 3. Before the reflex
controller starts to execute an arm motion, the parameters
required for a successful push need to be selected based
on the current observation s̃ (configuration phase). The
controller then stays active for a fixed period of timesteps
and executes a specific dynamic motion (active phase).

Configuration phase: Each reflex controller constitutes a
configuration policy

φ : s̃→{lτ , tτ ,κ,kp,kd} (1)

that maps the state s̃ observed at configuration time to a
sequence of arm configuration setpoints lτ , timesteps tτ ,
kinematic pushing configuration κ = (α,d), and low-level
controller gains kp, kd . Depending on the type of the reflex
controller, it can either produce a single target position l0
or a sequential trajectory along the line of action L for the
end effector to reach. This corresponds to either a single
desired arm configuration (e.g. lτ = 0→ retracted, lτ = 1→
extended), or a desired motion (e.g. lτ = [0,1]→ first fully
retract, then fully extend the arms). A trajectory along a
line of action L is encoded by a sequence of setpoints
lτ = [l0, l1, . . . , ln] and desired number of timesteps to reach
each l, given by tτ = [t0, t1, . . . , tn]. Given an arbitrary setpoint
l we can calculate the corresponding joint angles directly
from the kinematics model described in section IV-B.



In order to execute the desired kinematic motion plan, the
reflex controller uses low-level PD joint controllers to move
the end effector. In addition to lτ , tτ ,κ , the configuration
policy also selects kp,kd , effectively adjusting the stiffness
of each arm during the active phase. We find a suitable
configuration policy for a task through optimization, as
described in section IV-D.

Active phase: After a reflex controller has been triggered,
it stays active for Nt = ∑ tτ timesteps, and executes the
configured trajectory. The kinematics model maps the arm
configuration setpoints to joint angles θi based on the desired
configuration, and the final trajectory in joint angle space
is obtained though linear interpolation. Finally, these target
angles, along with the desired gains kp,kd , are passed to the
low-level PD-controllers, which generate the required joint
torques. Configuration phase and active phase at runtime are
shown in fig. 3.

D. Learning reflex controllers

To learn the trajectory and controller gains for a reflex
controller, we formulate the following learning problem.
Our goal is to find a configuration policy φ(s̃), such that
given the current state s̃ at configuration time (when the
reflex controller is triggered) the resulting controller creates
a dynamic motion that accelerates the robot trunk towards
the goal.

We can define the optimization problem

φ(s̃) = argmax
φ

N

∑
t=0

rtot(st)

where we seek to maximize the sum of total rewards over N
timesteps, with total reward rtot defined in section IV-A.

Initial grid search: We organize the space of possible
configuration states s̃ into a discrete space Ω, such that each
point ω ∈ Ω represents a distinct value of s̃. In the push
task setting, different values of s̃ correspond to different
initial conditions, such as goal position and initial position
and velocity of the robot. For instance, goal positions gn ∈
[gmin,gmax] and initial robot velocities v0,m ∈ [v0,min,v0,max],
result in a grid space Ω ∈ Rn×m.

For each grid point ω , we seek to find the optimal
configuration φ ∗(ω), i.e. the optimal set of PD-controller
gains kp,kd , motion setpoints lτ , timesteps tτ , and kinematic
pushing configuration κ , that maximize the task reward.
Finding φ ∗(ω) ∀ ω ∈ Ω constitutes a non-convex problem.
However, given the nature of the task locally convex regions
exist, which represent families of motions.

In order to find such families we start an initial global
search to find the optimal set of parameters φ ∗(ω0) for
the first point in the discrete space. Many classes of BBO
algorithms work well to solve this problem. In our imple-
mentation, we use Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [18] due to its ability to handle ill-
conditioned and rugged landscapes. φ ∗(ω0) is then used as
initial guess in a local search to find φ ∗(ω1). We use the
SciPy [28] implementation of L-BFGS-B [29]. We continue
this process iteratively for neighboring points in Ω until

the local search does not converge to an optimal solution,
meaning the robot does not successfully complete the task.
This implies that φ ∗(ωi+1) and effectively the dynamic
motion required to complete the task is substantially different
from previous φ ∗(ωi). We then re-run a global search to find
a different locally convex region for ωi+1, and continue with
the local searches until we exhaustively found solutions for
all ω ∈Ω. The search process is shown for a 2D grid example
space in fig. 4 A-C.

Iterative process to refine families of motions: To further
improve the controller performance, we refine the locally
convex regions, which we term motion families. For each
grid point, we take solution candidates from neighboring
grid points as initial guesses for local searches. If a solution
candidate obtains a higher reward, we update the current
solution for the grid point. We repeat this process until
convergence. As shown in fig. 4 C-D, this leads to changes
in shape and area of the solution families, or shrinking and
extension of individual families.

The set of optimal reflex controller configurations φ ∗(Ω)
found by our search and refinement process is then used
to train a k-Nearest-Neighbor regression model. This model
serves as configuration policy φ(s̃) for the reflex controller;
given a state s̃ it predicts a suitable pushing configuration.

A. D.B. C.

Fig. 4. Grid search: Starting with an initial global solution (A top left),
we apply local search to neighboring grid points, using the initial solution
as starting point for each local search (A,B). If a local optimum is not
successful at completing the task (’x’ in A,B), a new global search is
initiated, creating a new starting point for neighboring local searches. We
continue this iterative search until solutions have been found for all grid
points. C, D show the resulting grid from 2D push (section V-B), before
and after our refinement process, respectively. Same colors indicate same
families of motion.

V. EXPERIMENTS AND RESULTS

A. Simulation environment

To evaluate the performance of our reflex-based approach,
we set up a 2D simulation environment using the Box2D
simulation engine [30]. We model a simple dual arm planar
robot, which consists of a circular trunk and two 2DOF
arms, as shown in fig. 5 left. Each task is implemented as
an environment using the OpenAI Gym ecosystem [31].

B. Simulated pushing tasks

Learning to push off along one direction - 1D: We create
two environments in each of which the robot has to learn to
push off from an obstacle along a fixed direction (x-axis) in
order to reach its goal.

In the first environment (static 1D push) the robot is
placed in front of the obstacle with arms positioned in a pre-
push configuration (flexed elbows). The initial position of the
robot is sampled along the x-axis, from a uniform distribution
xtrunk ∼U (0.77,0.8), such that the obstacle surface is always



TABLE I
PERFORMANCE OF PPO AND REFLEX-BASED APPROACH, EVALUATED

ON 10K EPISODES WITH RANDOM INITIAL CONFIGURATIONS.
REFLEX-BASED APPROACH REPORTED FOR 5X5 AND 10X10 GRID SIZES.

Env Metric Reflex-10x10 Reflex-5x5 PPO

1D
static

success rate
mean reward
train time [s]

98.85%
−5.47±2.12

556.28

93.77%
−7.4±3.2

60.52

98.97%
−4.8±2.3

1444

1D
success rate
mean reward
train time [s]

96.10%
−16.4±5.9

839.15

92.94%
−17.7±7.3

994.98

97.72%
−14.7±5.8

3449

2D
success rate
mean reward
train time [s]

98.65%
−15.6±3.7

3361.93

93.74%
−17.9±6.0

1013.67

97.52%
−16.0±4.8

2876

located inside the reachable workspace of both arms. We
further sample the goal position along the x-axis, such that
xgoal ∼U (0.35,0.6). Initially the robot is static, such that it
needs to generate the entire momentum needed for reaching
the goal through interaction with the obstacle.

For the second environment (1D push) the robot is ap-
proaching the obstacle with varying initial velocities. We
apply a force Finit,x ∼ U (6.0,12.0) which accelerates the
robot and sample the goal position from xgoal ∼U (0.0,0.4).

For training a pushing configuration policy φ(s̃) (eq. (1))
we restrict the kinematic configuration κ =(α = 0.0,d = 0.1)
and arm configuration setpoints lτ = [0,1]. This corresponds
to a straight push to the front (fig. 2), and allows for a
large effective length. We optimize for the remaining stiffness
(kp,kd) and timing (tτ = [t0, t1]) parameters.

As described in section IV-D, we create a n-by-m grid of
different initial conditions for each environment. For static
1D push, the grid axes represent possible goal locations and
robot positions, and for 1D push the axes represent possible
goal locations and robot velocities.

Learning to push off along two directions - 2D: For this
task, the robot needs to learn to push off from the obstacle
surface at an oblique angle. It is accelerated by a constant
force and we vary the goal position along both x and y-axis
from x ∼ U (0.2,0.4), y ∼ U (−0.2,0.2). We optimize for
configuration parameters [αl ,αr, l1,l , l1,r, t0, t1,kp,kd ], and fix
d = 0.1. Results are reported in table I.

C. Results

Table I shows the success rate, mean reward and train
time for the three simulated tasks. We compare our reflex-
based approach to PPO (stable-baselines PPO2 with Mlp-
Policy [32]) using the same OpenAI Gym environments. As
shown, both methods achieve comparable results with respect
to success rate and mean reward; this indicates that both
techniques can generate diverse and flexible motions which
generalize to previously unseen states. Train times generally
increase with rising complexity of the tasks, and grid size in
the case of the reflex-based approach.

For the 2D push task we find the solution grid shown in
fig. 4-D. The corresponding robot arm motions are visualized
in fig. 6 and fig. 7. The solution grid depicts motion families

y
x

y [m]

x 
[m

]

Fig. 5. Left: PushBot in Box2D. The robot’s task is to reach the goal (green
circle) by interacting with the obstacle. The front trunk orientation is marked
by a red line. Right: Overlay of motion families for 10x10 solution grid for
2D push (section V-B). Colors indicate different motion families. Points
marked in the color of a motion family indicate that the robot successfully
completed the task (reached the target) using a push generated by this family.

each marked by a distinct color and the corresponding lines
of action (fig. 6) and joint angle trajectories (fig. 7) are
colored accordingly. For comparison, we show the joint angle
trajectories generated by PPO in the same gridpoints in fig. 8.
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Fig. 6. Lines of actions for 10x10 solution grid for 2D push (section V-B).
Colors indicate different motion families, and three exemplary resulting arm
movements are shown on the right.
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Fig. 7. 2D push: Joint angle trajectories produced by reflex approach.
Colors correspond to grid points in fig. 4-D and lines of action in fig. 6.

VI. DISCUSSION

As shown in fig. 4-D, for the 2D task motion families
are primarily distributed along the y-axis which for this task
corresponds to goal locations ranging from left to right. We
note that in fig. 4-D not all families are continuous across
the grid. However, the underlying distribution of successful
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Fig. 8. 2D push: Joint angle trajectories produced by PPO. Colors
correspond to the same grid points as the trajectories in fig. 7.

motions, visualized in fig. 5 right, shows that for most grid
points multiple families can produce successful motions. For
the final policy we select the family resulting in the highest
reward for each grid point, which can lead to discontinuities.
Alternatively, the space could be segmented into continuous
families based on the results shown in fig. 5 right.

The observed joint angle trajectories are tightly clustered
within each motion family as depicted in fig. 7. This indi-
cates that arm motions are similar within the same motion
family and that each family produces distinct behaviors.
For instance, goal locations to the left require pushes using
primarily the right arm (fig. 6 magenta). For central goal
locations the robot uses both arms (light purple) and for
locations to the right mainly the left arm is used (green).
This can be especially useful for motion planning to solve
tasks that require multiple pushes in sequence.

To compare our approach to PPO, we evaluate pushing
behaviors generated by PPO for the same grid points as
discussed previously, and plot the corresponding observed
joint angle time series in fig. 8. Overall, PPO is able to
generate diverse motions across the grid, however, as can
be seen in fig. 8 the policy exploits the simulation physics
resulting in unnatural and jerky motions. For example, the
robot oscillates the arms to generate momentum towards
the goal. Contrary to the reflex based approach, there is
no distinct correlation between joint angle trajectories and
goal locations. In addition to the typical caveats of sim2real
(small changes in the environment or unknown obstacles
could cause failure), this behavior is undesirable as it creates
unpredictable and unsafe motions. Reward engineering and
dynamics or domain randomization [33] could help to create
more transferable RL policies, but would further decrease
sample efficiency and significantly increase training time.

VII. REAL ROBOT EXPERIMENTS

To validate that we can directly transfer a learned control
policy from simulation to the real robot, we use the PushBot
robot described in section III to run the reflex controller
learned for the 2D push simulation task. In the experiment,

we accelerate the robot towards an obstacle, and trigger the
push off reflex controller when either piezo vibration sensor
returns a binary contact signal. We select three goal locations
to the right, left and center of the robot, and for each goal,
we choose a corresponding pushing configuration from the
motion families found in simulation. The resulting push off
motions are shown in fig. 1 and in the supplemental video.

VIII. CONCLUSION AND FUTURE WORK

In this work we investigate the problem of learning highly
dynamic interactions. We present a reflex-based approach,
and show that we are able to learn to push off in a
simulated environment. Our approach achieves success rates
comparable to state-of-the-art model-free RL, but produces
distinct clusters of smooth and predictable arm trajectories.
We show that these can directly be deployed on a real robot
without further retraining and hand tuning.

In future, we hope to compare sim2real results from the
reflex controller to those from PPO. The challenge is that
sim2real with PPO requires that the real robot observes its
full state at all times. In contrast, for the reflex controller, it
is sufficient for the robot to know its initial velocity (fixed for
our examples) and the goal position relative to contact. No
observations were required for the reflex controller except
to recognize when the contact event occurred, which was
accomplished with sensors at the end effectors.

A second area of future work would be to explore inverse
dynamics as an alternative to reflex control. The challenge is
that inverse dynamics control requires the robot to maintain
desired contact forces during the push. In contrast, our reflex
controller learns and optimizes the effect of simple kinematic
controls that are easy for the robot to achieve.

Finally, we look forward to scaling these results to more
complex systems and scenarios. For the reflex controller, the
state information required may be represented as velocity of
the robot prior to contact and location of the goal in the local
coordinate frame of the surface. Although the required state
information has greater dimension than the examples shown
in this paper, the number of additional parameters is not
large. In contrast, unless similar abstractions are employed,
the PPO algorithm must scale up to the full state space of the
more complex robot and scenarios, and will have many more
additional parameters. To further improve scalability of the
reflex approach, we intend to explore adaptive sampling —
the presence of continuous families allows us to make good
estimates within large regions using simple interpolation of
parameters. An adaptive sampling approach would evaluate
random samples based on their interpolation result and
only optimize a new solution if the interpolated result was
inadequate. We look forward to testing these ideas with the
CMU ballbot and its 7 DoF arms [34].
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