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Abstract— This research focuses on the analysis of human
dynamic interactions and their applicability to robot systems.
Studying human mechanics and control strategies in these
interactions provides valuable insights for developing control
approaches for dynamic interactions in robots. This work cap-
tures and analyzes wall push-offs as a specific interaction, and
develops a skill model capturing push-off behaviors adaptable
to different robot embodiments. Pushing skills are modeled as
position trajectories relative to the center of mass, implicitly
encoding interaction forces. We show that this approach can
be scaled and adapted through optimization, and present results
for transferring wall push-offs to two different robot platforms.
Videos and additional data are available on the project website
(https://sites.google.com/andrew.cmu.edu/human-robot-agility).

I. INTRODUCTION

Dynamic interactions play a fundamental role in human
capabilities, enabling us to achieve a wide range of tasks such
as moving heavy objects, manipulating our surroundings,
and changing directions rapidly and safely. In contrast, most
conventional robotic systems lack this level of agility and
cannot perform dynamic interactions, limiting their potential
in practical applications. Recognizing the value of dynamic
interactions as crucial skills for robots, this research endeav-
ors to analyze human skills, and explore their applicability
to robot systems. By studying the biomechanics and control
strategies employed by humans during agile tasks, our goal
is to unlock valuable insights that can guide the development
of control approaches to perform dynamic interactions with
robots.

In this work, we capture and analyze how humans utilize
wall push-offs to quickly change their direction of motion.
We present a skill model that captures push-off behaviors
and can be adapted and employed for different robot embod-
iments. We model pushing behaviors as hand or end-effector
position trajectories relative to the body’s center of mass
(CoM), and our model implicitly encodes interaction forces
through position offsets. Using this framework, pushing
skills can be adjusted to different robots by varying skill
parameters. To trigger pushing actions in robots, we adopt a
reflex-based controller approach that activates upon detecting
a contact event. To our surprise, this simple model generates
human-like push-off behaviors in robots, even without any
adjustments. We further improve the robot behaviors by
finding optimal skill parameters through optimization in
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simulation, and present results for optimized push-off skills
for two different robot platforms, the CMU Ballbot [1] and
the PushBot [2].

Fig. 1. Human push-off experiment example sequence (top) and skill
transfer to the Ballbot humanoid robot (bottom).

II. RELATED WORKS
Analysis of dynamic human motion has long been of

interest in the field of bio-mechanics and medicine. For
example, Jansen et al. [3] conducted a study on human
obstacle avoidance strategies under vision impairment, while
other work [4], [5] used motion capture (MoCap) to analyze
Parkour landings to understand human strategies for injury
prevention and angular momentum regulation.

Humans are exceptionally talented at executing highly
dynamic motions and can easily recover from mistakes. As
a result, capturing and analyzing human motion to transfer
skills to robots has long been of interest to the robotics com-
munity as well. Several MoCap datasets have been released
that provide recordings of humans performing basic skill
tasks such as walking, running, grasping, or demonstrating
more specialized skills such as playing sports, dancing, or
working in a kitchen [6], [7], [8]. The majority of high-
fidelity datasets focus on the kinematics of human motion
and are recorded using the Vicon motion capture system.
However, capturing dynamic motions that involve interaction
forces requires additional instrumentation. Maldonado et al.
[9] capture and analyze the kinematics and dynamics of
a kong-vault jump (a parkour technique for overcoming
obstacles) by using a Vicon motion capture system, two force
plates, and two handlebar sensors.

Early works that use human motions to generate synthe-
sized character motions can be found in computer graphics.



Arikan et al. [10] use motions of a real person responding
to being pushed to synthesize new character motions. To
rapidly edit highly dynamic motion capture data, Abe et al.
[11] use an optimization algorithm that can transform the
captured motion so that it satisfies high-level user constraints
while enforcing that the linear and angular momentum of
the motion remains physically plausible. Lui et al. [12] use
single motion capture examples to learn the skills required
by real-time physics-based avatars to perform parkour-style
fast terrain crossings.

In addition to transferring human motion to human char-
acters, studies have also transferred motions to humanoid
robots with various embodiments. For instance, Miura et al.
[13] generate walking and turning motions of a humanoid
robot based on human motion capture data. Amor et al. [14]
learn human-robot interaction skills from captured human-
human interactions using dynamic motion primitives.

Despite extensive analysis of dynamic human motion and
the development of approaches to transfer these skills to sim-
ulated or physical agents, dynamic interactions have received
little attention. This is especially true for human pushing
maneuvers, despite their widespread use and practical utility
(e.g., navigating cluttered environments and workspaces).
We build on our prior work [2] where synthetic push-off
behaviors were generated for a robot that approaches the wall
straight on and pushes off with both hands. We successfully
transferred these behaviors to a real robot using a reflex-
based controller, without the need for further retraining. In
this current work, we eliminate the need for hand-crafted
policies and instead create pushing models from human
demonstrations. This allows us to produce refined pushing
behaviors for a wider range of entry and exit angles and
pushes with just one arm. Compared to our previous work,
which solely focused on reaching a goal position after the
push, the human data incorporates features that encourage
efficient pushes through redirecting the momentum and im-
proving maneuverability after the push by trying to match the
robot heading with the direction of motion. We show that our
approach scales well to complicated humanoid robots, and
find that a simple model effectively captures human push-off
motions. This simplicity enables a straightforward process to
transfer pushing motions to very different robots.

III. HUMAN MOTION CAPTURE EXPERIMENTS
AND ANALYSIS

We conduct a motion capture experiment to study how
humans push off from a wall with their hand in order to
dynamically change their direction of motion.

The experimental setup, shown in fig. 2, consists of a
wall that has a 6-axis force-torque (FT) sensor attached for
measuring reaction forces. Study participants were instructed
to approach the wall at a walking (jogging) pace and use the
FT sensor to push off to move towards the goal position
marked with a cone. The study protocol can be found on
the project website. We track human motions using a Vicon
motion capture system with the marker set placed as in
[15] and record the forces and torques exerted on the wall

Fig. 2. Motion capture setup: Study participants wear a full-body suit with
markers that are tracked by a Vicon motion capture system. A wall-mounted
force-torque sensor is used to record reaction forces and cones are placed at
the respective entry and exit angles for visual guidance during the motion.

during interaction using the FT sensor. A human push-off
demonstration is shown in fig. 1.

A. Data Collection

The study included 11 participants (5 male and 6 female).
For each, we recorded 54 pushes resulting in a total of 594
pushing motions. We choose two approach speeds (walking,
running), two approach angles (0◦, 45◦) and five exit an-
gles (0◦, 30◦, 45◦, 60◦, 90◦). We note that for a 0◦ degree
approach angle, we did not record 0◦ exit angles because
this combination would not require any change of motion.
The complete list of pushing motions can be found in table I.
fig. 3 visualizes the center of mass (CoM) trajectories of all
participants for the two different entry angles (0◦, 45◦).

Fig. 3. Top view of center of mass trajectories for 0◦(left), 45◦(right)
entry angles and varying exit angle, shown for walking speed (top), and
jogging speed (bottom); x points perpendicular to the wall, y parallel to it.

B. Mass model and Body Center of Mass

We take inspiration from existing work [16] to model the
human body and the distribution of mass and inertia across
body segments. Starting from the skeleton model of the
MoCap data format, we assign a mass mi to every segment
i. Individual segments are shown in fig. 4, labels and mass
values can be found on the project website. Each segment is



modeled as a cylinder, where the length li equals the length
of the MoCap model bone segment length. We assume a
uniform density of ρ = 1g/cm3 across all body segments.
The radius of the segment cylinder can then be found by
ri =

√
mi/(πliρ). The CoM xcom,i of each segment is

located at the center of the cylinder, and the total body CoM
is given by the sum of individual CoM positions, weighted
by the individual masses: xcom = 1

mt

∑n
i=1 mixcom,i

The total body CoM coordinate frame uses the convention
x-right, y-front, z-up. This mass model is scaled to individ-
ual study participant body weight estimates. The resulting
cylindrical segment model is shown in fig. 4.

Fig. 4. Left: MoCap skeleton bone segments (labels on project website).
Right: Each bone segment corresponds to a cylindrical link scaled based on
bone segment length and mass value. The center of mass is marked by a
black-and-white sphere.

C. Momentum and Impulse during Push-Off Tasks

To analyze how much the push-off component contributes
to the motion during the task, we calculate the linear momen-
tum p given by p = mv throughout push-off tasks, where m
is the body’s total mass and v denotes its linear velocity. By
measuring the reaction force Fw with the wall surface, we
can calculate the impulse applied to the body at the hand-
wall contact:

Jw =

∫ tf

t0

Fwdt

where t0, tf mark the start and end of the contact. The
impulse-momentum theorem states that the change in mo-
mentum of a body ∆ptotal equals the impulse applied to
it, ∫ tf

t0

(Fw + F u)dt = mvf −mv0 = ∆ptotal

where Fw is the force acting on the hand at contact with the
wall, F u are other (unknown) forces acting on the body, e.g
foot contact forces, and v0 and vf are initial and final linear
velocity of the body, respectively. For each of the entry-exit
angle combinations we captured, table I lists the maximum
force measured at the wall Fw, the push-off impulse normal
to the wall Jn, the total change in linear momentum in the
direction normal to the wall ∆ptn, and the contribution of
the push-off impulse to the total change in linear momentum
(Jn/∆ptn · 100%). As shown in the example plots fig. 5,
for shallow push-off angles, the magnitude of the linear
momentum over time stays relatively constant. The change
in momentum is the greatest while the hand is in contact
with the wall and can primarily be observed perpendicular
to the wall. For more acute entry-exit angle combinations
(e.g. 45◦ − 90◦), we observe a temporary dip in momentum
magnitude during the hand-wall contact, as subjects slow

down, and regain momentum as they accelerate again when
exiting the push-off.

Fig. 5. Momentum time series for different push-off cases, labeled with
’entry angle’ ’speed’ ’exit angle’. Time frames where the hand is in contact
with the wall are highlighted in red.

We find that the impulse from the arm push-off contributes
substantially (39%− 91%) to the overall change in momen-
tum both for walking and jogging and across all entry-exit
angle combinations. We observe that the measured force at
the wall Fw increases with increasing exit angles, with the
highest forces observed for acute angles (e.g. 45◦−60◦). At
the same time, the overall contribution of the arm push-off
to the change in momentum decreases with increasing exit
angles from the wall suggesting that the push-off motion
contributes proportionally less, while the importance of foot
contact forces increases. This can be attributed to leg muscles
generally being much stronger than arm muscles [17]. While
the majority did not apply forces > 300N we observed large
variations among participants.

Additional data from the study, and the MoCap dataset are
available for reference on the project website.

D. Modeling Pushing Motions and Forces for Skill Transfer

For each push-off motion, both the arm and body motion
as well as the applied forces are important. We create
separate models for representing motions and applied forces
that can be combined into a pushing skill. To extract the
models from the motion capture study data, we employ the
following procedure. First, we calculate the position of the
human body’s CoM in each time step based on the cylindrical
bone model shown in fig. 4. We then examine the trajectories
of the arms and the wall interaction forces in the CoM
frame for each participant. Next, we focus on the right-
hand trajectory w.r.t. the CoM frame. We segment and extract
the portions of the trajectory where the hand is in contact
with the wall. Simultaneously, we also segment and extract



TABLE I
ENTRY ANGLE, EXIT ANGLE, MAXIMUM PUSHING FORCE PER

PARTICIPANT Fw,max , PUSHING IMPULSE Jn , CHANGE IN MOMENTUM

PERPENDICULAR TO WALL ∆ptn , AND CONTRIBUTION OF PUSH

IMPULSE TO IT IN PERCENTAGE (Jn/∆ptn · 100%)

angle (◦) Fw,max (N) J (Ns) ∆ptn (Ns) Jn
∆ptn

(%)

in out mean max mean (std) mean (std) mean (std)

walking

0 30 141.2 218.7 31.0 (13.5) 34.8 (10.1) 91.0 (35.4)
0 45 160.8 249.1 37.4 (12.2) 54.6 (15.0) 71.4 (24.7)
0 60 175.7 247.3 43.1 (11.6) 73.1 (19.2) 60.4 (13.8)
0 90 189.4 285.0 47.2 (12.8) 79.1 (20.9) 61.6 (17.0)

45 0 163.8 230.9 41.0 (14.4) 52.0 (18.9) 83.4 (30.1)
45 30 187.1 256.8 49.0 (12.3) 77.3 (23.8) 67.4 (22.4)
45 45 208.5 292.8 54.6 (15.6) 97.5 (26.9) 58.0 (16.9)
45 60 222.6 304.3 60.6 (15.8) 114.7 (31.5) 55.3 (16.7)
45 90 224.8 382.9 65.3 (13.8) 124.1 (36.0) 56.3 (17.7)

jogging

0 30 181.6 244.9 32.8 (10.7) 48.2 (16.4) 72.6 (28.9)
0 45 207.3 281.7 36.0 (10.4) 67.4 (19.5) 55.5 (16.9)
0 60 216.1 335.8 38.0 (11.3) 84.9 (19.6) 45.7 (12.2)
0 90 244.5 360.7 42.7 (13.2) 93.5 (28.7) 46.8 (11.9)

45 0 191.3 280.3 33.0 (10.0) 70.3 (24.2) 49.0 (15.4)
45 30 231.9 383.1 44.7 (13.3) 106.4 (32.5) 43.2 (11.5)
45 45 269.3 481.0 49.2 (13.7) 118.0 (33.4) 42.6 (9.5)
45 60 273.2 470.3 55.5 (15.0) 146.6 (49.9) 39.3 (8.3)
45 90 267.1 457.0 62.0 (18.6) 153.0 (52.1) 42.2 (11.0)

the corresponding time series of reaction forces experienced
during the hand-wall contact.

To ensure the duration of each push is uniformly scaled
between participants and pushes, we normalize the duration
of each push t̃ ∈ [0, 1] with ∆t̃ = 1

N−1 and N the number
of time steps for a push per recording.

We model the hand trajectory ξ = (x,y, z)T during
pushes by fitting a third-degree polynomial to each of the
three components (x,y, z) of the segmented right-hand
trajectories. An example of right-hand trajectories and the
fitted model are visualized in fig. 6 (center) from a top-
view perspective. Furthermore, we also fit a three-term
Fourier series model to the x, y, and z-components of the
segmented force time series. After evaluating various models
(e.g. polynomial, Gaussian), we concluded that the Fourier
series model provided the most accurate representation of
the force data. An example of recorded force time series and
the resulting fitted force model is shown in fig. 6 (left) for
a push with a 0◦ entry and 45◦ exit angle at walking speed.

In order to combine the information about hand trajectories
and exerted wall forces into a single model, we first translate
the force information into an equivalent displacement d =
1
kF with k the stiffness coefficient and F the force time
series. We can then superimpose the force displacement with
the hand trajectory data to represent a pushing skill

ξpush = ξhand + d = ξhand +
1

k
F .

The original hand trajectory ξhand, force displacement d and
resulting push trajectory ξpush are visualized in fig. 6 (right).

IV. RETARGETING DYNAMIC PUSHING
MOTIONS TO ROBOTS

Our goal is to re-target the push-off motions observed
in our study from humans to mobile robots. We develop a
transfer approach that is applicable to arbitrary robots with at
least one arm. In the following sections, we detail the transfer
process and demonstrate its effectiveness through two robot
examples: The CMU Ballbot and the PushBot.

The Ballbot is a unique, human-sized robot that balances
on a single spherical ball. By tilting its body in the desired
direction, the Ballbot creates a driving force that propels
it forward. This lean-based locomotion allows the robot to
move smoothly and agilely in any direction. The Ballbot is
equipped with two articulated arms, each with seven degrees
of freedom (DoF), providing a wide range of motion.

The PushBot is a small omnidirectional robot platform
which uses a hovercraft-like lift system, creating a low
friction air cushion that allows the robot to move freely in
all directions. The PushBot has two planar 2-DoF arms, and
moves by interacting with its environment.

A. Simulation environment

In this section we describe how we set up the simulation
environment for each of the robots, what assumptions are
made, and how the robots are controlled. In our study, we
employ PyBullet to create a three-dimensional simulation test
setup that includes a rigid wall object from which robots can
push off.

The Ballbot’s inverse mouse-ball drive mechanism
(IMBD) is modeled using a spherical joint. Additionally, a
separate controllable yaw DoF allows for body rotation. Each
arm of the Ballbot features seven DoF, and the end-effectors
are knob hands that are not articulated.

The body controller features a staged combination of a
low-level balancing controller with center of mass compen-
sation and an outer control loop that accepts lean angle
commands, enabling the robot to lean and accelerate toward
a desired direction. Each arm controller is realized as a
cartesian impedance controller, with feed-forward terms for
gravity, nonlinear terms, and a null-space projection keeping
the arm joints close to a neutral configuration (elbows bent)
and away from joint limits.

The omnidirectional free-floating hovercraft body of the
PushBot is modeled through a fixed virtual base and two
prismatic joints in the x and y-direction, and an unactuated
yaw joint aligned with the z-axis. This setup allows the
body to move freely in the xy-plane, and rotate about the
vertical axis. The 2 DoF arms of the Pushbot are controlled
by a cartesian impedance motion controller described in the
following section.

B. Cartesian Impedance Motion Controller

We control the arms of the Ballbot and PushBot through a
cartesian impedance motion controller without inertia shap-
ing, that effectively emulates a spring-damper system. This
controller receives commands w.r.t. the shoulder frame.



Fig. 6. Pushing skill model example (0◦ − 45◦ at walking speed). Left: Force profiles over duration of the push, human data and fitted force model.
Forces are shown w.r.t. center of mass coordinate frame (x-right, y-front, z-up). Center: Top-view of right hand trajectory profiles (transparent), and fitted
trajectory model (black edges) w.r.t. center of mass, plotted at the origin. Blue arrow points toward heading, and red arrow points toward right side of
human body model. Right: Combined trajectory force model; at each trajectory point, a scaled force offset is added to the position, indicated by red arrows.

Based on the current arm configuration, we calculate the
position error at the end effector ex and its derivative ėx =
d
dtex. The desired task force fd is given by

fd = ẍd +Kp,xex +Kd,xėx

with desired acceleration ẍd, stiffness and damping matrices
Kp,x,Kd,x, and this force is mapped to the joint torques
based on

τ cmd = JTfd = JT (ẍd +Kp,xex +Kd,xėx).

We compute the feedforward terms τ f as the sum of the
coriolis and centrifugal terms C, and the gravity terms G.

τ f = C(q, q̇) +G(q)

To keep the arm close to a desired neutral configuration
qd (bent elbows) and away from joint limits, we add an
additional joint space torque

τ q = Kp,qeq +Kd,qėq

with gain matrices Kp,q,Kd,q , and joint position error eq .
In the case of the Ballbot arms, we project this component

into the null-space using

τn = (I − J#J)τ q

with pseudoinverse J#. Finally, all torques are combined
into the final control torque

τ = τ f + τ cmd + τn.

For the PushBot, since the 2 DoF arms are not redundant,
we simply omit the nullspace projection and instead add the
resulting joint space torque, τn = τq in the control law. The
controller gains are listed in table II.

TABLE II
CARTESIAN IMPEDANCE CONTROLLER GAINS

Kp,x Kd,x Kp,q Kd,q

Ballbot 4000 400 25 2
PushBot 100 1 0.2 0.02

C. Reflex-Based Pushing Skill Controller

A high-level skill controller switches between different
modes, and executes the pushing skill when the hand makes
contact with an obstacle (trigger event). At each timestep,
this controller outputs a cartesian end-effector position and
sends it as a command to the arm task-space impedance
controller. The controller output changes based on the current
mode. The different modes of the skill controller are:

0) Freemotion: Hand positioned in an anticipating config-
uration. This is the average position of the hand w.r.t.
the CoM at the contact event from all motion capture
recordings.

1) Push: Hand executes pushing skill trajectory generated
by the process described in section III-D.

2) Recovery: End-effector moves from the current po-
sition back to the freemotion position on a linear
trajectory.

Figure 7 shows the mode sequence for the pushing skill
controller. The controller launches in freemotion mode. Con-
tact at the end effector triggers the switch to push, which lets
the arm execute the push. After the pushing skill trajectory
is completed, the controller switches into recovery mode.
When the end effector completes the recovery trajectory and
is back at the initial position, the controller switches back to
freemotion.

Fig. 7. Reflex-based skill controller. The controller starts in freemotion
mode, contact at the end effector triggers the switch to push. After the
pushing skill trajectory is completed, the controller switches into recovery
mode, and after completing the recovery trajectory back to freemotion.



D. Transfer and Optimization
The approach detailed in section III-D generates pushing

skill trajectories that are described with respect to the center
of mass frame of the human body, as shown in fig. 8 (right).
We can transfer these trajectories to a robot as follows: We
first copy them into the CoM frame of the robot. We then
transform the trajectories into the shoulder frame and scale
them to lie within the robot arm workspace.

However, simply copying and scaling the trajectories is
not enough to transfer the skill properly to robots, as shown
in our experiments in section V. To account for different dy-
namic properties between robots and humans, we introduce
skill parameters that allow us to further modify the push.

We parameterize the push in terms of pushing angle ϕ,
and stiffness coefficient k. The pushing angle ϕ allows
for rotating the complete pushing trajectory, including force
displacements, in the xy - plane around the vertical axis of
the shoulder origin. Varying the stiffness coefficient k scales
the force displacement d as described in section III-D.

Fig. 8. Pushing skill model transfer from human to robots, for the example
of a 0◦ − 45◦ push at walking speed: We fit the pushing skill model to
the data captured in our MoCap study. The original human trajectories for
this push are shown as partially transparent lines next to the human model
(right), the resulting model is highlighted in solid color. The skill model is
transferred to the Ballbot (center), and the PushBot (left). Trajectories are
shifted w.r.t. the CoM of the different embodiments, and scaled to lie within
arm workspace.

To find suitable pushing skill parameters θ = (ϕ, 1
k )

we use Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [18]. We evaluate the fitness of pushing parameter
values based on the following cost terms.

• Position cost cp: the distance of the CoM from the target
position, 2s after initial wall contact.

• Push-off velocity angle cost ca: cumulative difference
between angle of current CoM velocity direction and
target push-off angle, within 2s after initial wall contact.

• Final heading cost ch: difference between current robot
heading and target heading, 2s after initial wall contact.

The total cost is given by the weighted sum of all cost
terms, ct = wpcp + waca + whch. We obtain average

target locations, angles and heading values for each push
from our motion capture study described in section III.
For our optimization experiments, we set the weights to
wp = 100, wa = 0.01, wh = 1.

V. EXPERIMENTS AND RESULTS

When transferring pushing skills from humans to robots,
we observe that simply copying and scaling the pushes
according to our model surprisingly already produces push-
off behaviors in robots as shown in our video submission;
however, in most cases, the resulting push-off direction is not
aligned with the goal. We optimize pushing skills for both
the Ballbot and the PushBot in simulation for two speeds,
two entry angles, 4 and 5 exit angles, respectively, with a
total of 18 different test cases per robot. The resulting skill
parameters, cost values, push impulses and maximum forces
are listed in table III, and the CoM trajectories are shown in
figs. 10 and 11.

The total runtime of the optimization for all test cases on
an 8-core (3.6GHz) CPU is 125 min for the Ballbot and 88
min for the PushBot.

The lower and upper bounds for the skill parameters are set
to θl = (−90◦, 0.0), θu,bb = (90◦, 0.002) for the Ballbot, and
θu,pb = (90◦, 0.02) for the PushBot. Given the pushing skill
model described in section III-D, the bounds for the inverse
stiffness coefficient 1

k can be interpreted in the following
way: At the lower bound 1

k = 0, the stiffness coefficient k is
infinite, and the force-displacement becomes null, resulting
in purely matching the modeled hand trajectory. At the upper
bound, a maximum force-displacement of 0.002F is added
to the pure hand trajectory model. This corresponds to a
stiffness of 500N/m, and with the mean maximum forces
observed in our study ranging within [141N, 274N ], results
in a maximum position-offset of |d| < 0.548m.

When comparing the stiffness coefficients Kp,x used in
our cartesian impedance controller (see table II) for the two
robots, we find that the difference in order of magnitude can
be attributed to the difference in total body mass (Ballbot:
94.952kg, PushBot: 0.666kg). The magnitude of scaling
aligns with previous work [19] which has shown that scaling
mass and stiffness coefficients can be estimated by m1

m2
= L3,

K1

K2
= L2. In our case, this would yield a stiffness scaling

factor of 27.3 from PushBot to Ballbot, which is in the same
order of magnitude as our scaling factor of 40.0.

We find that overall the skill transfer is successful for both
robots and produces human-like push-off motions. There are
certain commonalities observed in the pushes executed by
both robots and human, such as a similar CoM trajectories.
Additionally, in both human and robot pushes, the arm
induces a rotation in the direction of motion and yaw.

However, there are also notable differences between robot
and human pushes. Due to the lack of feet, the Ballbot exerts
higher impulses and forces with the arm when compared
to humans. In contrast, humans utilize their legs to absorb
impact and redirect momentum, particularly for acute angles
and higher velocities. In the absence of legs, the optimization
yields a strategy where the Ballbot utilizes both arms to



Fig. 9. Examples of optimization results for the PushBot (top) and the Ballbot (center, bottom). The target position is marked by a red circle, and red
arrows visualize the push-off angle.

Fig. 10. Resulting CoM trajectories for optimized models for the Ballbot.

Fig. 11. Resulting CoM trajectories for optimized models for the PushBot.

absorb the initial impact in similar scenarios, as depicted
in fig. 9 (bottom).

Furthermore, we observed that when the exit angle of the
push is 90◦, both humans and robots struggle to fully redirect
the push using their arms alone. Instead, humans rely on their
feet to correct their direction after the push. This can be seen
in the purple CoM trajectories illustrated in fig. 3 which
show that the exit angle right after the push is not exactly
90◦, resulting in a slightly curved trajectory. In contrast,

the Ballbot and PushBot can not significantly correct their
direction after losing contact with the wall, which results
in an exit angle that is less than 90◦ as shown in figs. 10
and 11. We hypothesize that the performance for acute angles
can be improved by implementing different strategies, such
as slowing down before the push or using both arms.

Additionally, we tested an alternative skill model which
models trajectory and force separately. However, incorporat-
ing the modeled force as an additional term in the desired
task force calculation (IV-B) did not produce favorable
results in terms of cost and the motion’s visual appearance.

Overall, our experiments demonstrate that the simple
parameterization and transfer of pushing skills w.r.t the
CoM is able to capture the human demonstrations well, and
generate effective pushes to redirect the robot’s motion. In
our prior work, the PushBot was able to reach the goal,
but consistently approached the wall at a 90◦ entry angle,
used both arms, and relied on a handcrafted push-off model
where forces are applied along the hand trajectory line. This
limited the achievable exit angles to a more narrow range
[−26◦, 26◦], and resulted in less human-like motions after
the push, with the robot sliding backwards and not changing
its heading to face the goal. In contrast, our current study ob-
serves force profiles in human pushes that differ significantly
from the prior model’s assumptions, with forces primarily
perpendicular to the pushing trajectory. By incorporating
these observed force profiles into our modeling, we achieve
motions that closely resemble the original human movements
and effectively capture the change in heading after the push.

VI. CONCLUSION AND FUTURE WORK

This work presents an analysis of how humans use dy-
namic interactions for tasks, exemplified by wall push-offs.
We captured a total of 594 interactions which we used as the
basis for creating a human-based push-off model. Further, we
demonstrate the successful transfer of this human model to
mobile robots with arms.

Another potential application of our model lies in its
suitability for unmanned aerial vehicles (UAVs) that navigate



TABLE III
OPTIMIZATION RESULTS FOR PUSHBOT, BALLBOT. ENTRY ANGLE, EXIT

ANGLE, OPTIMIZED PUSHING ANGLE ϕ∗ , OPTIMIZED INVERSE

STIFFNESS COEFFICIENT 1
k∗ , TOTAL COST ct , POSITION ERROR ep ,

PUSHING IMPULSE J , MAXIMUM WALL CONTACT FORCE F+

in out ϕ∗ 1
k∗ ct ep(m) J(Ns) F+(N)

PushBot walking speed

0 30 27.31 0.0007 84.9 0.70 0.05 3.07
0 45 -85.82 0.0009 59.1 0.40 0.47 10.28
0 60 -89.80 0.0129 43.7 0.25 0.97 14.92
0 90 -88.24 0.0200 304.1 0.87 1.03 14.76

45 0 -25.60 0.0135 102.7 0.52 0.48 25.18
45 30 43.17 0.0002 215.8 0.92 0.05 3.42
45 45 36.25 0.0006 201.7 0.76 0.14 8.04
45 60 49.04 0.0151 80.6 0.03 0.69 15.87
45 90 57.94 0.0093 167.3 0.46 1.32 15.98

PushBot jogging speed

0 30 -57.21 0.0004 64.3 0.42 0.45 9.07
0 45 23.39 0.0102 22.6 0.14 0.86 15.19
0 60 -13.23 0.0038 195.5 0.99 1.30 16.55
0 90 -29.31 0.0054 575.3 1.79 1.23 15.67

45 0 -14.70 0.0044 138.4 0.34 0.50 15.89
45 30 43.66 0.0112 194.1 0.12 0.87 14.96
45 45 85.77 0.0035 187.1 0.65 0.18 17.63
45 60 68.64 0.0124 70.8 0.28 0.43 12.84
45 90 66.41 0.0059 214.2 0.48 1.51 49.29

Ballbot walking speed

0 30 -20.70 0.0008 67.8 0.44 31.99 285.89
0 45 -82.39 0.0015 49.5 0.01 36.31 378.18
0 60 -17.83 0.0020 87.5 0.20 57.11 367.22
0 90 -16.95 0.0020 386.4 1.14 52.68 372.61

45 0 -45.00 0.0012 74.1 0.44 44.72 518.32
45 30 -50.22 0.0019 26.2 0.04 51.58 453.24
45 45 -14.49 0.0020 38.6 0.11 71.07 825.98
45 60 43.97 0.0020 36.8 0.10 123.99 866.30
45 90 58.95 0.0020 209.6 0.69 118.01 844.40

Ballbot jogging speed

0 30 34.38 0.0020 106.9 0.85 47.49 465.74
0 45 -7.39 0.0020 152.5 0.93 44.86 431.34
0 60 -10.37 0.0020 409.0 1.64 50.86 439.04
0 90 -10.34 0.0020 700.5 2.45 68.43 448.56

45 0 1.40 0.0020 139.7 0.43 87.26 965.03
45 30 29.43 0.0018 30.7 0.00 95.08 817.26
45 45 42.89 0.0020 44.7 0.15 118.49 855.32
45 60 90.00 0.0008 93.2 0.56 66.05 731.23
45 90 88.43 0.0006 407.9 1.55 57.15 666.67

through confined spaces, where precise and efficient maneu-
vers are vital. UAVs equipped with an arm could harness our
approach to push off to make turns or to stop, enhancing their
performance in such situations. Our approach could also be
adapted to emulate human-like motions for legged robots,
given that a well-defined gait policy is available.

Our prior work has shown that optimized skills can be
used as a basis for more general models to interpolate to
unseen states. Future work involves modifying our model to
interpolate between angles captured in our motion capture
study, to produce push-off skills that cover a continuous
entry-exit angle space. These skills could then be integrated
into a higher-level task and skill planning algorithm, as
another step towards robots that can effortlessly navigate and

interact with the world around them.
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