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Abstract— Sensor placement for grasping tasks in conven-
tional robotic hands has been extensively studied, with goals
including sensorizing essential contact areas or determining
the effect of number of sensors on performance. However,
with the new generation of dexterous soft robotic hands that
deform to the shape of the object, the former frameworks
may not be sufficient. In particular, we find that real-world
experiments are essential to determine the value of different
sensors and the effect of different sensor placements due to the
complex interactions between the deformable robot body, sensor
material properties, and sensor and task performance. In this
paper, we propose a sensor-placement framework for dexterous
soft robotic hands that is easily reconfigurable to different hand
designs using off-the-shelf sensors. Our three-step framework
selects and evaluates candidate sensor configurations to de-
termine the effectiveness of sensors in each configuration for
estimating qualitative and quantitative manipulation metrics.
We tested our framework on a soft robotic hand to select
the optimum sensor placement for a given set of manipulation
patterns using force and inertial sensors. Our studies show
that sensors placed at contact points are best for predicting the
qualitative success of the manipulation. However, when it comes
to estimating quantitative manipulation metrics, off-the-shelf
sensors placed at contact points decrease performance for some
manipulation types. This performance decrease may be due
to the disturbance they create to surface texture, deformation
patterns, and weight of soft robotic systems.

I. INTRODUCTION

Sensor placement for conventional rigid robotic hands is
an extensively researched topic [1], [2], with approaches
ranging from contact-based to mathematical-based. These
frameworks seek to optimize sensor placement so that we can
better understand the interactions between the object and the
hand during contact. Many of these studies concluded that
sensors should be placed at contact locations, forming the
sensor placement framework for many robotic hands [3].

However, there has been a new generation of soft [4]-
[8], and dexterous [8]-[10] robotic hands. These new hands
exhibit different physical characteristics compared to con-
ventional rigid systems [11]. In particular, soft robotic hands
deform more than conventional rigid hands when they in-
teract with objects [9], [10]. Since the whole hand is one
piece of deformable material, large vibrations pass through
the hand differently and can even be propagated to the entire
hand. Therefore, precise contact points can be measured not
just at the fingertips but also along the length and side of the
fingers and inside the palm [12].
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Moreover, the way that sensors interact with the object in
the soft hand can be different from rigid hands. Given that the
soft hand deforms to the shape of the object [13], the sensors
must be able to adapt with the deformity of the hand. Off-
the-shelf force sensors placed at contact locations tend to be
rigid [12]. Therefore, the redistribution of the forces caused
by the difference in compliance of these sensors and the soft
hand during the interaction could corrupt the sensors’ data.
The difference in texture of these sensors can also affect the
grip between the object and the soft hand, therefore affecting
the quality of the manipulation.

Furthermore, little work has been done on perceptual
methods and their relationship to dexterous robotic manipula-
tion [14]. The signals that are picked up by the sensors during
a dexterous manipulation are different from conventional
grasping tasks. This is because for a fully autonomous
hand, the sensors must be able to track the progress of the
manipulation in addition to sensing contact. Therefore, an
ideal sensor placement should pick up both these signals
to reveal the quality of the manipulation. While the motion
of the dexterous manipulation can be tracked using optical
methods, high frequencies of slip makes it difficult for
camera to capture [12]. Visual cameras can also be difficult to
use because of occlusions that occur during the manipulation
[15]. Therefore, more studies are needed to develop hardware
for processing tactile information in conjunction with vision.

A good sensor placement for soft and dexterous hands
can help address the challenging task to develop fully
autonomous soft robotic hands capable of achieving or
exceeding human-level dexterity [14]. Effective autonomous
dexterous manipulation requires sensor perception that accu-
rately estimates state or knows the surrounding environment
[9], [16], [17]. Sensor placement can affect the quality of
the data received and therefore the next state decisions
made by the system [13]. The signals received from a good
sensor placement can also help us to better understand the
interactions between the soft robotic hand and the object
during the dexterous manipulation. This allows researchers
to calculate more stable interaction states between the hand
and the object on a physical robotic hand [18].

In this paper, we propose a three-step sensor placement
framework SoftTouch- inspired by traditional contact-based
approaches [1], [19]- to determine sensor placement for
soft and dexterous robotic hands. We illustrate SoftTouch
with The Elliot and Connolly Benchmark [8] which is a
standardized benchmark for evaluating in-hand dexterity. The
benchmark evaluates the dexterity of soft robotic hands based
on 13 distinct in-hand manipulation patterns derived from
observations of multiple human subjects from the Elliot and



Connolly paper [20] using objects selected from the Yale-
CMU-Berkeley (YCB) Object Set [21]. These manipulation
patterns were chosen because they are focused specifically
on dexterous manipulations with objects in the hand. They
are tied to motions observed in daily life, and cover the
full range of potential in-hand manipulations primitives [8].
The benchmark decomposes manipulation into qualitative-
Success or Failure - and quantitative- Translation and Rota-
tion Performance Scores- component metrics. We then use
information embedded in the sensors’ data for the above-
mentioned state estimation, which we use to center our
evaluation of different sensor placements.

II. RELATED WORK
A. Contact Frameworks

Conventionally, sensor placement was determined by first
performing the task on the human hand, then transferring re-
sults to equivalent locations on the robotic hand. Both Wiener
et al. [1] and Mirkovi¢ and Popovi¢ [2] determined sensor
placement for intertial and force sensors to be the point of
contact between the robotic hand and the object. These tech-
niques were developed for conventional hard robotic systems.
Due to the deformable nature of soft robotic hands during
grasping and manipulation, the same conclusion might not
apply to soft robotic systems. There have also been studies
that investigated the effect of the number of sensors on
successful grasping [22]. However, none of these studies
evaluated other potential sensor placement configurations
which could provide better sensing information.

Classifying motion using contact forces from sensors is
also not a new concept. Karaku et al. [23] used contact forces
to classify movement type (no movement, contact/release)
using a multinomial regression model. Funabashi et al. [15]
used a Convolutional Neural Network (CNN) to determine
the joint angle of next timestep from estimated joint angle
of the current timestep. Hogan et al. [24] divided the role
of tactile sensing to Control State control, which reacts to
binary slip signals; and Object State control which regulates
the applied forces on the object to enforce a desired contact
mode.

B. Mathematical Frameworks

There are studies that investigated the number of sensors
needed and the effect of different number of sensors on a
robotic hand [22]. However, mathematical frameworks are
often represented as an optimization problem with respect to
task-specific manipulations or robot kinematics.

Spielberg et al. [13] optimized for task-specific manip-
ulation by accounting for the deformable nature of soft
robotic hands using strain and strain rates. As a result,
they determined the optimal sensor placement by assessing
expected value of data from a given configuration for object
grasping prediction, learned proprioception, and control. Kim
et al. [25] instead optimize based on kinematics consid-
erations. They determined sensor placement by setting the
constraint on the number of sensors used, and then determine
computationally where to place the sensors to minimize

shape and tip error between a reconstruction model and
a mechanics-based mode. However, both these proposed
frameworks were not evaluated on a real robotic hand, but
rather left for future exploration. Computational techniques
to estimate sensor data are often not reliable enough for real-
world tasks [26]. Furthermore, it might be challenging to
fit all necessary sensors in limited available space of the
simulated optimal configuration [12]. Therefore, we believe
that there is value in evaluating different sensor placements
on a physical robotic hand.

C. Hand/Sensor Design Frameworks

There are also studies that examine contact forces through
wrapping the hand with a sensorized glove. STAG [27], for
instance, studies the contact force signatures captured for
different types of in-hand manipulations. However, building
a custom glove for other types of hands that have different
morphology and geometry is not a simple or quick task. On
the other hand, Hennig et al. [28] developed a sensor glove
that uses fewer sensors placed in frequent contact regions.
Hennig and colleagues noticed that there were undetected
grasp attempts, and attribute this finding to suboptimal sensor
placement. This result suggests the need for a sensor place-
ment framework that is evaluated based on key manipulation
metrics such that such false negatives can be minimized.

There are also many studies investigating new sensor
designs that are complementary for soft systems. DefSense
[29] and FingerVision [30] are both deformable sensors that
are complementary with soft systems. DIGIT [31] is even
designed with the application of dexterous manipulation in
mind. However, such sensors are expensive and not easily
reconfigurable for different types of soft hand designs.

Our proposed sensor placement framework - SoftTouch
- is a contact-inspired framework for highly dexterous soft
robotic hands [1], [2]. Our framework evaluates sensor
placement on a physical robotic hand performing real-world
manipulation tasks [20], [26], based on data collected from
sensors placed in a given configuration [23] using state-
of-the-art manipulation metrics [8]. The key advantage of
our framework lies in its easy reconfigurability for different
soft robotic hands, and its complementarity with off-the-shelf
sensors without the need to design a new soft hand or skin.

III. SOFTTOUCH FRAMEWORK

A. 3-Steps Framework

1) Perform Contact Experiment

In this step, a human contact experiment is performed
on the 13 manipulation patterns established by Elliot
and Connolly [20]. The object used for each manipu-
lation pattern is taken from Table. I.

First, each of the objects is stained using green paint.
Next, the manipulation patterns are performed on the
stained objects with a human hand. We present our
contact experiment results in Fig. 1. Three manipula-
tion patterns are chosen for further investigation. The
equivalent stained locations on the human hand for
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Fig. 1: Results from Contact Experiments. Green stains mark

regions that comes in contact when performing the manipulation
pattern.

Manipulation Pattern | Object YCB ID | Metrics
Pinch (P) Bolt & Nut 46, 47 T,
Dynamic Tripod (DT) Small Marker 41 T,
Squeeze (S) Syringe N/A Ty
Twiddle (T) Bolt & Nut 46, 47 T., Ry
Rock (R) Cup (yellow) 64 R
Rock II (RIT) Small Marker 41 Ry
Radial Roll (RR) Marble (green) | 62 T,, Ry
Index Roll (IR) Marble (green) | 62 T,, Ry
Full Roll (FR) Wood Block 69 R,
Rotary Step (RS) Cup (yellow) 64 R
Interdigital Step (IS) Small Marker 41 Ty
Linear Step (LS) Large Marker 40 Ty
Palmar Slide (PS) Large Marker 40 R

TABLE I: YCB Objects and Metrics for the Elliott and Connolly
Benchmark; 7'- Translation, R- Rotation, subscript represents re-
spective axis for metric.

2)

these three patterns are then marked on a soft robotic
hand (Fig. 4).

Identify Candidate Configurations

Sensor placement configurations where the sensors
are not placed at contact locations should also be
evaluated. This is because vibrations get propagated to
the entire hand. Furthermore, sensors that are placed
at a distance away from the manipulation are also less
likely to interfere with the manipulation. Therefore,
sensors that are not placed exactly at the contact points
may be better at picking up information about the
manipulation.

We propose identifying candidate configurations com-
prising sensors placed at contact points identified in
the previous step; sensors placed midway between
the contact points and the furthest locations from the
contact points; and sensors placed at locations furthest
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Fig. 2: Flowchart for Classification (SVM) and Regression (Ridge)
Models. Regression Model is trained only on successful manipu-
lations represented with Binary Filter. Red dotted arrows are flow
targets at test time.

3)

from the contact points. While there are many such
configurations, we suggest selecting a subset that is
most relevant for evaluation while considering the
space constraints of the hand . We provide an example
and justifications for it in Section V-B.

Evaluate each Configuration

For each configuration, the soft robotic hand performs
selected manipulation patterns [20] on the objects
referenced in Table. I. A fiducial marker (AprilTag)
which records the translation and rotation along the
given axis is attached to each object [8]. For the RocklII
manipulation, two AprilTags are attached on each end
of the pen and the angle of rotation is calculated using
trigonometry.

The qualitative metric is determined by observing
whether the manipulation was successful. The quan-
titative metrics can be decomposed into translation
distance and angle of rotation [8], which is determined
from the motion of the AprilTag. Each configuration
is evaluated based on how well the data captured
by sensors placed in the given configuration are at
predicting these metrics. Given training sensor data,
we represent the continuous metric as a univariate or
bivariate regression problem and the binary metric as a
binary classification problem. A Final Total Score then
weighs the performance scores between the regressor
and classifier, and the final sensor placement is deter-
mined from the configuration with the highest value
Section. IV.

B. Regressor

The current position of the object is a function of current
sensor values and previous position. To predict the current
position, we can use a regression model. In particular, we
chose the Ridge Regression Model (RRM) as we observe
better performance compared to Linear Regression in our
initial exploration. The regression model is trained on a
subset of successful manipulations X .



The regression model is visualized in the bottom half
of the flowchart in Fig. 2. During training, the regression
model takes in the true position of the object at the previous
timestep Ypos,t=n—1 and the sensor data at the current
timestep X, to predict the position at the current timestep
Ypos t=n- Starting from timestep n = 0. During test time,
the regression model takes in the predicted position of the
previous timestep s ,—,_; and the sensor data at the
current timestep X, to predict the position at the current
timestep Yo p—n-

C. Classifier

A Binary Classifier is trained on the same distribution of
sensor data collected from each sensor placement configu-
ration and each type of manipulation pattern. In particular,
we chose Support Vector Classifier (SVC) with a linear
kernel among other kernels and models such as Random
Forest Classifier due to better performance. The distribution
X comprises 80% positive class and 20% negative class
containing equal distribution of “Control Errors”, “Slips”
and "No Object”. The target y is the binary metric defining
whether the manipulation pattern was successful, which is
labelled qualitatively from the video.

As shown in the top half of Fig. 2, a threshold is first used
to filter out control failures. This threshold is determined
from the maximum absolute sensor readings when the robotic
hand is at rest. The SVC is then evaluated on the filtered
training set with 5 random seeds and a train-test split of
80/20.

IV. PERFORMANCE SCORES
A. Relative Regression Score

The Mean Squared Error (MSE), R, is computed for
each manipulation pattern m and given configuration ¢. R'™
represents the set containing the MSE of all the evaluated
configurations for a given manipulation pattern. Relative
Regression Score, R, for each manipulation m and given
configuration m is defined as the relative MSE compared to
the lowest MSE in the set. This relation can be represented
mathematically as follows.

m ngn _ min(Rlnl)
Re' = max(R'™) — min(R'™) X 100 M

If the manipulation can be defined by both translation and
rotation scores, R is the average of the Relative Translation
and Relative Rotation Regression Scores.

B. Relative Classification Score

Since the Relative Regression Score is computed relative
to the other configurations of a given manipulation pattern,
the Classification Score should also be relative to the other
configurations in order to make a fair comparison between
the classification and regression performance.

The Classification Score, F’'™, for each manipulation
pattern m and given configuration c is the accuracy score
out of 100%. F'™ represents the set containing the Classifi-
cation Scores of all the evaluated configurations for a given

manipulation pattern. Relative Classification Score, F", for
each manipulation m and given configuration ¢ is defined
as the relative classification score compared to the lowest
classification score in the set F'™. This relation can be
represented mathematically as follows.

F'™ — min(F"™)

"= 1 2
© max(F’™) — min(F'™) x 100 @

C. Total Final Score (T)

T" condenses the Relative Classification and Regression
Scores into a single performance score for a given manipu-
lation pattern and configuration

T"=axF"+(1-a)xR | 0<a<1 (3

where « is the weighted importance between the classifica-
tion and regression performance scores. The coefficient « is
dependent on application, but we use o = 0.5 for simplicity.
The best sensor placement for a given manipulation pattern
is therefore the configuration that leads to the highest 7.

V. EXPERIMENTS
A. Setup

The SoftTouch framework was completed with the CMU
Foam Hand III [8], a bio-inspired, tendon-driven dexterous
robotic hand made almost entirely of foam. It has a high
level of dexterity while requiring a relatively low number of
motors (10) for operation.

For our experiments, we evaluated on 2 off-the-shelf
sensors- MPU9250 Inertial Measurement Unit (IMU) and
Taidacent Force Sensitive Resistor (FSR)- due to their easy
reconfigurability on different soft robotic hands. A 5MP
Raspberry Pi Zero W camera module was placed 35 cm away
from the hand to record each manipulation. The camera was
calibrated with the standard 7x7 checkerboard to get the
intrinsic camera parameters used to process the translation
and the rotation of the AprilTag. The sensors were sampled
at a rate of 84Hz, while the camera was sampled at the
standard 30fps. We tested our framework on a subset of 3
manipulation patterns- Dynamic Tripod, Rock II and Index
Roll. These patterns represent all 3 possible combinations of
the quantitative metrics (Translation and Rotation) described
in Table. I. The keyframes for a successful manipulation of
these patterns are shown in Fig. 3.

B. Hand-To-Robot Conversion

Given the size of the sensors used and the space constraints
on the CMU Foam Hand III, we define the mapping between
the human hand and the soft robotic hand in Fig. 4. As
described in the Section. III, the contact experiments for
the three experiments were first performed (Fig. 1). We then
selected 4 distinct configurations to evaluate as shown in
Fig. 5 (right) on the two sensors (IMUs and FSRs).

Configuration A1l represents the configuration following
traditional contact-inspired frameworks on rigid robot hands.
In this configuration, all the sensors are placed at contact
points. We hypothesize that the configuration A1l leads to the
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Fig. 3: Key Frames of Successful Manipulations on Human and
Robotic Hands.

Fig. 4: One-to-One Mapping between Human Hand and Soft
Robotic Hand. Position 7 represents the furthest point from the
contact points.
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Fig. 6: Spectrogram of Successful (left) and Unsuccessful (right)
manipulation patterns

best Final Total Score based on the conclusion reached by
earlier studies on conventional rigid hands [1], [2]. Config-
uration B2 serves as a baseline for the other configurations.
At this configuration, all the sensors are placed furthest away
from contact points. We also hypothesize that configuration
B2 leads to the lowest Final Total Score, since all the
sensors are placed furthest away from the contact points and
therefore receives the weakest signals. Configuration B1 and
A2 both represent configurations where sensors are placed
midway between the contact points and the furthest locations
from the contact points. In particular, B1 represents the
configuration where the IMUs are placed at the midpoint,
but the FSRs are placed at the contact points. A2 represents
the configuration where the FSRs are placed at the midpoint,
but the IMUs are placed at the contact points. The results of
these configurations are compared with A1 to determine if
sensors placed at non-contact locations can pick up signals
that are best for manipulation task metrics. The sensors were
also securely fastened to the soft hand with both threads and
masking-tapes to minimize unintended movement in the IMU
during the manipulation.

C. Data Processing

We refer to each manipulation pattern conducted as a
“run”. The hand is initially at rest at the start of the
manipulation. For each run, we first subtract the initial
bias at rest. Since the accelerometer will always record the
gravitational acceleration, the resulting acceleration vector in
the dataset therefore represents the direction and magnitude
with respect to the initial gravitational vector. Next, we trim
each run to keep only the duration when the manipulation
is performed. Since the hand is initially at rest, the start
of the manipulation can be determined reliably as the first
spike that is recorded by the IMU. Each manipulation took
approximately 2.5s. This corresponds to segment containing
210 and 75 samples after the first spike recorded by the IMU
and Camera (translation and rotation) respectively. The time



segment for the FSR is the same as the IMU given that they
are sampled at the same frequency.

Our experiments show that most frequencies of both
the successful and unsuccessful manipulation for the three
patterns are contained within 10Hz (Fig. 6). We apply a low
pass filter to the IMU data by averaging every 7 samples.
For the camera data (translation and rotation), we resample
to 90Hz and apply a low pass filter by averaging every 3
samples. Both filters create a cutoff frequency ~ 10H z, and
we refer to each of the 30 samples after the averaging as a
timestep n. For the classifier, we compute the percentage of
time that FSRs are in contact with the object and append this
vector with the IMU vector to form X. For the regression
model, we compute for each time interval a binary value that
represents any FSRs contact during the timestep, and append
this vector with the IMU vector to form X,,,.

VI. RESULTS AND DISCUSSION

The results for the performance scores are illustrated in
the Fig. 7. The Final Total Score is computed with o = 0.5.
The results for B2 are not shown as it has a consistent value
of 0 across all the performance scores. We conclude that the
optimal sensor placement configuration is A2 for Dynamic
Tripod, B1 for Rock II, and A1l for Index Roll on the CMU
Foam Hand III. If one configuration had to be chosen for
all three manipulation tasks, A2 would provide the best
results, as it is the configuration with the highest minimum
performance over all tasks. Given that the framework can
be used for other soft hands, manipulations and sensors, the
same conclusion might not be reached when some of these
variables are changed. However, the tests are straightforward
to run for any new sensor, hand, and task suite.

To allow other researchers to apply our sensor placement
framework on other sensors, hand designs and task suites,
we provide our code for data processing, apriltag detection,
and classification and regression modelling !.

A. Key Takeaways

There are four key takeaways from our results. Firstly,
our results confirm that for soft and dexterous robotic hands,
sensor placement can affect the quality of sensor data used
to estimate the manipulation metrics. This can be seen from
Fig. 7 where configurations Al, B1, A2 have higher Final
Total Score as compared to the configuration B2 where all
the sensors are placed furthest away from contact points.
Furthermore, since the performance scores are different for
different configurations, a sensor placement framework is
important to select the best configuration for a given ma-
nipulation pattern.

Secondly, our results suggest that the optimal sensor
placement can be different for different manipulations. In
the cases of Dynamic Tripod and Rock II, sensors placed
at contact points do not always lead to better performance.
We notice that IMUs placed at contact locations can affect
the quality of some manipulation patterns due to the added

Thttps://github.com/spartace98/SoftTouch

weight to the soft and light robotic hands. This manifested
for the Rock II pattern where IMUs placed at contact points
has lower Relative Regression Score as compared to A1 and
A2. This means that unlike conventional rigid hands, sensors
placed at non-contact locations can lead to better estimation
of quantitative manipulation metrics. This highlights the need
for a proper sensor placement framework to evaluate different
placements for different manipulation patterns.

Thirdly, our results show that IMUs placed at contact
locations leads to higher Relative Classification Scores. This
is likely because IMUs placed at contact locations are more
sensitive to signals inherent in unsuccessful manipulations.
From Table. II, IMUs placed at contact locations tend to pre-
dict ”Slip” and "No Object” as an unsuccessful manipulation
better than when they are placed at non-contact locations
(bold red). When the object ”Slip(s)”, the IMUs pick up a
distinct high frequency spike (Ref to Fig. 6). When there
is no object in the hand, the fingers move in a different
trajectory as compared to the when there is an object in the
hands. IMUs placed at contact locations are more sensitive
to these small differences. We do observe that across the
configurations, “Control Errors” are consistently correctly
predicted as they are filtered away by the thresholder (Fig. 2)
and are not involved in training.

Lastly, our results show that qualitative information about
the manipulation can be detected even at distant locations.
This can be seen from Table. II, where even for configuration
B2, unsuccessful manipulations are often predicted correctly.
This is likely due to the fact that the soft robotic hand is a
single piece of deformable material. Therefore, the vibrations
that carry information about the manipulation can propagate
to distant locations on the soft hand.

B. Limitations

Step 1 of our framework requires observed contact regions
to be transferred from human to robot hand. While this step
may be trivial for anthropomorphic or bioinspired hands such
as ours, it can also be performed on non-anthropomorphic
hand designs with a map between the Human-To-Robot Hand
(Fig. 4).

Our framework is designed under the assumption that the
manipulation patterns can be performed on the soft robotic
hand. In particular, CMU Foam Hand III can only perform
10 out of the 13 manipulation patterns. The 3 manipulation
patterns that we evaluated were a subset that is representative
of these 10 successful patterns. However, we believe that
this is a reasonable assumption given that it is irrelevant
to sensorize a robotic hand that can never perform the
manipulation pattern. Therefore, our framework is designed
specifically for manipulation patterns that can be performed.

Our framework determines sensor placement by compar-
ing the different sensor configurations. Therefore, we chose
to use relative scores to rank the performance of different
sensor configurations. Furthermore, relative scores projects
regression and classification to the same scale which makes it
easier for the experimenter to decide whether more emphasis
should be placed on classification or regression. However,
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FSR Placement
1 2 2 1 2
A 100.0 100.0 100.0 100.0 100.0 100.0 Control Error
B 100.0 100.0 100.0 100.0 100.0 100.0
A 100.0 66.7 100.0 100.0 100.0 100.0 .
IMU Placement | g 66.7 111 100.0 55.6 33.3 111 Slip
A 100.0 100.0 100.0 100.0 100.0 50.0 No Obicct
B 80.0 40.0 100.0 90.0 90.0 50.0 )
Dynamic Tripod Rock II Index Roll

TABLE II: Breakdown of Classification Accuracy(%) for Unsuccessful Manipulations. ”Control Errors” are unperformed manipulations;
”Slips” are manipulations where the object slips out of the hand; "No Object” are performed manipulations without the object in hand;
Classification accuracy for chance is 20%, so patterns with values > 20% are greater than chance.

we do note that relative comparisons are less effective if
none of the configurations generate useful data that can be
used in classification and regression tasks. Therefore, the
experimenter should also account for absolute performance
scores when determining the final sensor placement, which
we report in our repository.

During our experiments, we observed that when FSRs
were attached to the contact points in configurations A1 and
B1, the manipulation was much harder to perform. This is
due to the fact that FSRs typically have smooth surfaces
and a rigid structure that differs from the natural compliance
of the soft hand. As a result, this led to an increase in the
number of instances where the object slips out of the hand
before and when the manipulation pattern was performed.
To resolve the problem of surface roughness, we investigated
using a rubber casing to enclose the FSRs. However, this led
to an increase in the randomness in the contact sensed, which
was recorded as spikes. We also observed that when the
Force Sensor readings were removed from the training data,
there was no significant change in the performance. This
led us to conclude that attaching these specific force sensors
might not be a feasible approach to sensoring a soft hand
and reinforces the importance of ongoing research towards
deformable off-the-shelf force sensors.

C. Future Work

Our study did not test the proposed configuration with a
feedback control loop. Given that the eventual goal is to
develop autonomous hands that can perform complex in-
hand manipulation, we believe that further exploration may

be needed to expand our framework to a closed-loop control
setting.

Our experiments also did not evaluate mixed sensor con-
figurations where sensors are placed at both contact and non-
contact locations. Earlier studies have reported that greater
sensor coverage at both contact and non-contact points can
lead to improved performance of the full pre- and post-
contact policy [22]. Therefore, we believe further exploration
is needed to assess these mixed configurations.

Given that our framework is designed to reduce com-
plexity in sensor placement decision making, we propose
using classical machine learning techniques that can generate
the performance scores quickly. We eventually converged on
using RMM and SVC as they generated the highest perfor-
mance scores which indicates a strong relationship between
sensor data and the manipulation metrics. Deep learning
neural networks can possibly generate higher performance
scores, which we leave as future work.

Finally, we look forward to testing our framework with
other sensors.

VII. CONCLUSION

This paper proposes a sensor placement framework for a
highly dexterous soft robotic hand. Our framework directly
assesses different sensor placements with a physical robotic
hand based on state-of-the-art qualitative and quantitative
manipulation metrics. The key advantage of our framework
lies in its easy reconfigurablity to different soft robotic hands
and off-the-shelf sensors. We also presented results for exper-
iments conducted using the framework. Our results showed



that even for soft and dexterous hands, sensor placement
can affect the quality of the data collected. Furthermore, we
showed that similar to rigid hands, sensors sometimes per-
form best when they are placed at contact points. However,
this finding was not universal, and placing sensors away from
contact points sometime led to better results, especially for
estimating quantitative manipulation metrics.
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