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Abstract— Grasp planning and motion synthesis for dexter-
ous manipulation tasks are traditionally done given a pre-
existing kinematic model for the robotic hand. In this paper,
we introduce a framework for automatically designing hand
topologies best suited for manipulation tasks given high level
objectives as input. Our goal is to create a pipeline that
automatically generates custom hands designed for specific ma-
nipulation tasks based on high level user input. Our framework
comprises of a sequence of trajectory optimizations chained
together to translate a sequence of objective poses into an
optimized hand mechanism along with a physically feasible
motion plan involving both the constructed hand and the object.
We demonstrate the feasibility of this approach by synthesizing
a series of hand designs optimized to perform specified in-hand
manipulation tasks of varying difficulty.

I. INTRODUCTION

Dexterous manipulation has long been a topic of interest
in robotic manipulation due to its association with fine motor
skills in humans, and the advantages that it can confer upon
factory robots and general purpose robots[11]. Dexterous
manipulators are able to accomplish motions more efficiently
and operate in limited workspace environments more eas-
ily[17]. Additionally, we want to develop manipulators that
work in intuitive and human-like ways, particularly if they
are meant to work alongside humans.

One line of research in dexterous manipulation focuses on
the design of manipulators to mirror the kinematics of the
human hand[16][15]. These hands have shown impressive ca-
pabilities with regards to dexterous manipulation [25] tasks,
however the problem of dexterous manipulation remains
unsolved [4]. One reason for this is that we cannot yet fully
replicate the capabilities of the human hands and choices
made to simplify the design may end up limiting capabilities
of the hand. We have experienced this in our own research
when the thumb of a dexterous hand does not have sufficient
range of motion or the geometry of the hand’s inner surfaces
impedes rather than aids performing a manipulation. Progress
in this domain is further burdened by the fact that these hands
are prohibitively costly.

Rather than trying to approach manipulation from the
perspective of human hand kinematics and dynamics, we
focus on accomplishing some critical dexterous human hand
functions and optimizing mechanisms to perform specific
in-hand manipulation tasks. Our vision is to create an opti-
mization pipeline for generating low cost hands that are well
tuned for specific tasks or families of tasks. The possibility of
creating useful low-cost hands has been well demonstrated,
as in [18][6][7]. In several cases, optimization has been used
to tune some of the design parameters for these types of
hands [9]. We go beyond previous work by constructing our

hands from scratch based on a given task definition. Our goal
is to allow even novice users to easily design a variety of
hands for their intended use cases.

In this paper, we introduce an optimization pipeline that
takes high level user specifications such as a sequence of
goal poses for a manipulated object and builds a mechanism
specifically designed for the given task with no additional pa-
rameter tuning required on the part of the user. In this work,
we limit ourselves to the class of in-hand manipulations that
can be wholly described as reorientation of the object with
respect to the palm, however the pipeline we have developed
is extensible to other classes of in-hand manipulations. We
show that our pipeline is able to synthesize a wide variety
of useful specialized manipulators for various tasks.

II. RELATED WORK

A large body of work revolves around classifying human
manipulation behaviors and replicating them with robotic
manipulators inspired by the human hand. Works such as
[1] and [27] attempt to classify the spectrum of human
hand manipulations into a hierarchy of grasps and in-hand
manipulations covering various phenomena such as rolling
motions, controlled slipping, grasp repositioning, and finger
gaiting [23] with the intention of mimicking these motions
on robotic hands. Platforms such as the NASA Robonaut
hand [16], GIFU III [21], and Shadow Dexterous [15] have
become standard models on which manipulation algorithms
and controllers have been implemented to mimic these
types of behaviors. These hands are meant to be generic
manipulators that should be able to carry out virtually any
manipulation task given an appropriate control policy.

Low DOF hands have the advantage of being easier to
build and maintain, easier to control, less expensive, and
less prone to mechanical failure since they have fewer
moving parts[9][8]. Due to the fact that they are cheaper
and easier to build, specifics of the design can be optimized
to tune or specialize a given hand. Various works [3][5][2]
have optimized continuous parameters such as component
lengths, tendon stiffness, and pulley radii to address kine-
matic concerns such as reachability constraints, avoidance
of Jacobian singularities within the workspace, limits on
individual joint torques, etc. [26] addresses the problem of
discrete optimization of gripper design by chaining together
individual modules to build fingers until a desired grasp
quality is reached.

We build on previous work by optimizing both discrete
and continuous characteristics of hand design to suit specific
tasks. A significant portion of our design process consists
of trajectory optimizations to test the competence of our



hands in performing different tasks. Trajectory optimiza-
tion methods have shown remarkable ability to synthesize
complex motions in both robot locomotion and manipu-
lation, allowing the user to create complicated physically
feasible motions from high level goal specifications. [13]
and [12] develop optimization routines in which an initial
grasp pose is specified with a given hand model along with
kinematic goals for an object, and a numerical optimizer
constructs physically feasible motion plans to synthesize
target manipulations. Other work in trajectory optimization
for manipulation captures demonstrated manipulations and
finds contact forces that explain the motion[28].

Recent work in trajectory optimization has explored the
use of discontinuous contacts in locomotion and manipu-
lation tasks [19][24]. Mordatch et. al. [19] introduced the
concept of contact invariance, in which contact is treated
as a continuous variable, to facilitate optimization with
changing contacts. Our work draws inspiration from [20],
which applies the contact invariant method to the domain of
manipulation.

Trajectory optimization methods for motion synthesis as-
sume a fixed robot morphology. We do not know of any
prior work that attempts to optimize the manipulator design
while also creating a motion plan for physically feasible
manipulations. Such a task is challenging for in-hand manip-
ulation tasks due to the fact that these tasks are very contact
dependent and hard to model or simulate.

III. OPTIMIZATION PIPELINE DESCRIPTION

We focus on precision in-hand manipulation where the
hand manipulates an object with the fingertips in order to
change the object’s configuration with respect to the base
of the hand. The object may be partially supported by the
environment. This type of manipulation is fundamental to
acquiring and placing objects, and moving from one grasp
to another [22]. Our examples demonstrate 2 and 3-fingered
hands, however our approach can be applied to accommodate
hands with more fingers.

Our optimization pipeline has three parts, as shown in
Figure 1. The input to our system is a sequence of objective
poses for the object, a trajectory for the base, and an initial
placement (subject to change) of the contact points on the
object. The output of our system is an optimized mechanism,
contact points, and forces that meet our objectives in a
physically valid motion. The sections below discuss the
components of this pipeline. Results are given in Section
IV, and implementation details are provided in Appendix A.

A. Floating Contact Optimization

The floating contact optimization computes optimal con-
tact points and forces that can move the object to its desired
objective poses. No information about the robot mechanism
is used (or even available) at this point. Specifically, let

St = [xO fj rj cj ] (1)

be the state at time t of the object, with xO denoting the
object’s position and orientation in the world frame, and ẋO

being the derivative at time t of position and orientation.
fj denotes the force vector at contact point j for j ∈
{1, 2, ..., Ncontacts} expressed w.r.t. the world frame, and rj
denotes the location of contact point j in the local frame
of the object. cj is the contact invariant term described in
[19] that is constrained to lie in the interval [0,1], with 0
representing an inactive contact and 1 being fully active.

We wish to find a trajectory S = {S1,S2, ...,SNkeyframes
}

such that

S = argmin
S

ΣtΣi wi ∗ Li(t) (2)

s.t. cj ∈ [0, 1] for 0 ≤ t ≤ T (3)

where each cost Li is in the set {Lphysics, LforceReg ,
LfrictionCone, Ltask, Lci object, Lci object slippage,
LfloatingContactAccel, LobjectAccelReg , LangularAccelReg},
which we detail below.
• Physics terms:

Lphysics(t) = LlinMom(t) + LangMom(t) (4)

(5)LangMom(t) = ||Σi ci(t) ∗ (ri × fi,local)
−(ω×(I localobjectω)+Iω̇)||2

LlinMom(t) =
∑
i

ci(t)fi −mẍ (6)

where Iobject is the moment of inertia of the object
in its own local frame, ω is angular velocity, and m
is the object mass. The Lphysics term is responsible
for ensuring that the forces acting on the object impart
the necessary accelerations to move the object to its
destination.

LforceReg(t) =
∑
i

||ci(t)fi||2 (7)

(8)
LfrictionCone(t) =

∑
i

ci∗exp(α(||fi,local

−n∗(fi ·ni)||−µfi ·ni))

where n is the local surface normal, µ is the coefficient
of friction, and α is a sharpening factor for the exponent
that controls how much we penalize contact forces that
are close to the friction cone bounds. LfrictionCone
is responsible for ensuring that our contact forces are
physically feasible, while LforceReg is a regularization
term to discourage excessive contact forces.

• Task objectives:

Ltask

=
1

k

∑
k

||pos(k)− posgoal(k)||2 + dist(o(k), ogoal(k))2

(9)
where k is the set of keyframes for which we define
object goal positions posk and orientations ok. The
function dist(q1,q2) refers to the quaternion distance
formula, which is essentially the angle required to rotate
from one frame of reference to the other. This particular
task objective dictates a set of objective poses (position
and orientation) that our object is required to meet.



Fig. 1. Given the required user input, our ”floating” optimization generates a physically feasible motion plan using disembodied contacts points. We then
synthesize a mechanism with fingertips designed to follow these trajectories and provide the required forces. Finally, we combine the floating motion plan
with the hand design to adapt the motion to the designed mechanism, outputting the mechanism and a physically valid motion.

Other task objectives can be specified depending on the
behavior we want to see from our system: for example,
we can also specify goals such as tracing out a desired
path with an end effector point on the manipulated
object.

• Contact Invariant Costs:

Lci object(t) =
∑
i

ci||rproj − ri||2 (10)

where rproj is the projection (in local coordinates) of
the contact point ri onto the object

eobject(i, t) = ri,proj object(t)− ri(t) (11)

Lci object slippage(t) =
∑
i

||cifi||2∗||(ėobject(i, t))||2

(12)
The Lci object cost dictates that the contact points lie on
the object surface, while the Lci object slippage term dis-
courages (but does not prevent) contact point slippage
on the object for active contacts.

• Additional regularization terms:

LfloatingContactAccel(t) =
∑
i

||r̈i(t)||2 (13)

LobjectAccelReg(t) =
∑
i

ẍ2 (14)

(15)
LangularAccelReg(t)

=
∑
i

((ω × (Iworldω) + Iworldω̇)/tstep)
2

where x is the manipulated object’s position.
LfloatingContactAccel regularizes the movement of

the floating contact points, preventing them from
teleporting on the object, while LobjectAccelReg and
LangularAccelReg encourage smooth movement of the
object.

The motions output by a first pass through the floating
optimization have contact invariant values ci between 0 and
1, and typically cluster around higher values (above .7) and
low values (.3 and below), indicating the importance of the
contact point in the optimization. After this first pass, we
”de-fuzzify” our ci values by setting each ci to either 0 or
1 based on a threshold of either .1, .2, or .3. We pick our
threshold by testing each one and re-optimizing our floating
motion with the contact values held fixed, ultimately picking
the ”de-fuzzed” motion with the best objective value to pass
to the synthesis optimization. Future steps in the pipeline
hold these contact values fixed.

B. Mechanism Synthesis Continuous Optimization

The synthesis step involves both the optimization of the
discrete structure of the hand (the number of joints per
finger) as well as the optimization of continuous parameters
governing the mechanism design. In this section we describe
the continuous optimization, which is used by the discrete
optimization procedure described in the next section. The
optimization below assumes that we have all discrete pa-
rameters (i.e. the kinematic structure) fixed.

We optimize a set of morphological parameters
M = {L A B}, a set of joint angle poses
Q = {Q1,Q2, ...,QNkeyframes

}, and a set of contact



points P on the constructed fingertips such that:

M,Q,P = argmin
M,Q,P

ΣkΣi wi ∗ Li(k) (16)

for k ∈ {1, 2, ..., Nkeyframes} (17)

where L, A, and B respectively represent the finger segment
lengths, joint axis orientations, and positioning of fingers
on the base/palm of the hand and Li are the costs in the set
{LeeTarget, LcontactDistSurface, Lcollision,
LfingerLengthRegularization, LfingerMinLength, LjacNull,
Ltorque, LfingerPositions, LfingerAcceleration, LjointLimits}.
To discourage slipping on the fingertips, we restrict contact
points p to remain fixed in the fingertip’s local frame when
that contact is active. The term ”fingertip” used throughout
this paper refers to the surface of the last segment on a
given finger, not the actual tip of that finger segment. Our
contact points are therefore able to lie anywhere on the
surface of these finger segments.
• Contact point costs:

LeeTarget(k) =
∑
i

ci ∗ ||pi − ptarget||2 (18)

LcontactDistSurface(k) =
∑
i

||pproj − pi||2 (19)

where ci represents the binarized contact invariant term
(either 0 or 1) for fingertip i at keyframe k. LeeTarget is
the distance between the contact point pi on fingertip i
and the corresponding point on the given trajectory for
that contact, encouraging our selected contact points to
line up with the trajectories from the floating motion
plan. LcontactDistSurface is the distance between the
contact point and its projection onto the surface of the
fingertip it is attached to: this is paired with a high
coefficient to force contact points to lie on the surfaces
of the fingertips.

• Collision
For collision penalty calculations, we use a second
order smooth piecewise cubic spline that interpo-
lates between the functions f(x) = 0 for x < 0
and f(x) = x2 for x > 0 as follows: g(x) =

0 x ≤ −ε
x3

6ε + x2

2 + εx
2 + ε2

6 −ε ≤ x ≤ ε
x2 + ε2

3 ε ≤ x

Lcollision(k) =
∑

i,j∈bodies

g(pen(bodyi, bodyj)) (20)

where penetration distances are calculated such that
non-penetrating bodies have negative penetration dis-
tance (hence no collision cost) and ε is simply a small
arbitrary constant (ε = 10−6)

• Finger length costs:
LfingerLengthRegularization =

∑
i

(li)
2 (21)

LfingerMinLengthCost =
∑
i

g(lmin − li) (22)

where i ranges over all the capsules present in the hand,
li denotes the length of the principle axis of capsule i,

and g denotes the piecewise cubic spline defined above.
These two costs are meant to keep the finger lengths
within a reasonable range of values.

• Controllability related costs:
We require that our mechanisms be able to actively sup-
ply the necessary forces needed to accomplish the target
motion. This is done through two terms: one to penalize
the component of the applied force that lies along the
null space of our mechanism’s Jacobian (requiring our
mechanism to actively supply the necessary force) and
another to regularize the torque applied at the joints
(encouraging efficient mechanisms).

LjacNull =
∑
i

ci ∗
√∑

k

(f · ek)2 (23)

where the vectors ek consist of an orthonormal basis
of the null space of the manipulator Jacobian for each
given finger/contact point pair i, f being the force
required for the finger to provide at the end effector,
and ci being the contact invariant weight (either 0 or 1)
for the given contact.

Ltorque =
∑
i

‖~α‖2 (24)

where ~α is the vector of torque magnitudes that must
be supplied by the mechanism to actively provide the
desired force. Note that this torque penalty does not
take into account the torque required to compensate
for gravity, nor does it account for a hard maximum
on the allowed torque to be supplied by a given motor
(although this could be added if necessary).

• Additional costs:

LfingerPositions =
∑
i

||projbase(bi)− bi||)2 (25)

where i ranges over all the bases of the fingers and we
find the closest projected point onto the base. This term
ensures that our fingers are attached to the surface of
the base and can be applied to a variety of base shapes
as long as a smooth projection formula exists for the
surface. In this work we limit ourselves exclusively to
circular bases although this can be readily extended.

LfingerAcceleration(k) =
∑
i

(1− ci) ∗ ẍi2 (26)

where ẍi is acceleration of fingertip i and ci is the
contact invariant term for that fingertip in frame k.
Fingertip acceleration only applies to contacts that are
inactive in order to encourage smooth transitions for
lifted fingers.

LjtLimit(k) =
∑
i

∑
j

g(j(i)− jmax) + g(jmin− j(i))

(27)
where j runs over our set of joints. The terms jmax
and jmin are constant joint limits set to π/2 and
−π/2 respectively and g is our piecewise cubic spline
introduced earlier for smooth interpolation.



C. Mechanism Synthesis Discrete Optimization

The process by which we optimize the discrete structure
of our hand designs is relatively simple. We optimize fingers
independently for computational efficiency and treat joints as
being independently controlled. We keep adding additional
finger segments (and joints) to each of our fingers until the
combined LeeTarget and LjacNull scores for our finger fall
below a predefined threshold or until we reach an upper limit
on the number of joints allowed per finger.

After optimizing each finger independently for multiple
trials, we enter a recombination step in which we combine
the top performing fingers into a complete hand design. Upon
recombination, we must re-optimize our hand due to the fact
that we may incur self-collision among the recombined fin-
gers (since they were optimized independently, their motions
can easily overlap). The first recombination trial always takes
the top performing fingers from each set of fingers meant
to track the end effector points. Additional recombination
trials randomly select fingers from each set according to a
weighting that is inversely proportional to their combined
LeeTarget and LjacNull scores (so that fingers with lower
costs have higher chances of being selected). We then take
our best performing hand, and if the combined LeeTarget
and LjacNull scores for each finger fall below our threshold
we return this design as our constructed hand. Otherwise,
we add an additional joint to each of the fingers with scores
still above this threshold and repeat the loop again until either
that finger hits the maximum number of joints allowed per
finger or it meets our objective criteria.

D. Whole Hand Optimization

As the final stage in our motion optimization pipeline,
we take the generated motion plan for the object and the
hand mechanism constructed for it to go about a trajectory
optimization similar to the one used in step 1. We introduce
several additional terms to the objective function to create a
physically realistic motion with respect to the hand and we
add the joint angles at each keyframe to the list of variables
that we intend to optimize. We do not restrict contact points
to be stationary with respect to the fingertips as we did in
the synthesis step, thereby allowing us to perform some small
degree of slipping and rolling. We do not explicitly model
slipping or rolling on the fingertips, though we discourage
these via the imposition of soft constraints. Below we detail
the additional terms added to the objective function:
• LjointLimits: this is equation 27, taken from the syn-

thesis step
• LfingerAcceleration: equation 26 taken from the synthe-

sis step
• Lcollision: equation 20 from synthesis
• LjacNull and Ltorque: equations 23 and 24 from the

synthesis step
• Finger contact invariant terms: Lci finger and
Lci finger slippage mirror the contact invariant terms
introduced in the floating contact optimization, but
applied to the finger instead of the object. Lci finger

dictates that the hand’s fingers remain in contact with
the object if exerting a force, while Lci finger slippage
discourages slippage of the contact point on the
fingertip.

Lci finger(t) =
∑
i

ci||rproj − ri||2 (28)

where rproj is the projection (in world coordinates) of
the contact point ri (world coordinates) onto the finger

Lci finger slippage(t) =
∑
i

||cifi||2∗||(ėfinger(i, t))||2

(29)where efinger(i, t) = ri,proj finger(t)− ri(t)
• LfrictionConeHand: since our finger may not be per-

fectly tangent to the object it makes contact with, we
introduce an additional friction cone term that mirrors
the friction cone with respect to the object, but using the
outgoing normal from the fingertip at the contact point
instead (similar to equation 8). This prevents us from
exerting unrealistic forces with respect to the fingertip
surface.

(30)
LfrictionConeHand(t) =

∑
i

ci ∗ exp(α(||fi

−n∗(fi ·ni)||−µfi ·ni))

where n is the surface normal to the fingertip (world
frame), µ is the coefficient of friction, and α is a
sharpening factor for the exponent

IV. RESULTS AND DISCUSSION

In our accompanying video, we demonstrate a set of
example motions ranging from simple object re-orientations
to multi-step motions. In Figure 2, we demonstrate the ability
of our pipeline to generate feasible mechanisms on a variety
of in-hand manipulation tasks. Figure 4 demonstrates two
sequences in which we build up progressively more complex
motions from a set of simple primitive motions. From these
examples we can see a variety of different mechanisms arise
to meet our task specifications rather than a generic one-
size-fits-all design, and we note that the complexity of these
mechanisms scales directly with the complexity of the given
task.

Our pipeline is robust in the sense that we use the same
fixed set of optimization weights for each step regardless
of the motion. In the vast majority of cases, the final result
of our ”whole hand” optimization yields very low physics
error penalties and near zero Jacobian null space projection
penalties, indicating that the pipeline generates a motion plan
that fits very well the designed mechanism, ensuring that
the mechanism is capable of performing the motion in a
physically realistic way.

Our optimization program is able to discover quirks in
our motions that lead to non-trivial mechanical designs. For
example, in Figure 2(b), our optimization was able to suggest
a mechanism in which we use one of our upper fingers
to push out our capsule to bow it out while rotating it 90
degrees perpendicular to our palm surface, using the other
two fingers to pivot the object. Our mechanism originally



(a) (b) (c) (d) (e) (f)

Fig. 2. Here we reproduce still-frames of several example hands/motions generated by our system (refer to accompanying video for complete motions):
(a) A vertical flipping motion, as if feeding a part (b) Rotate from horizontal to vertical and bow out the capsule (c) Drawing a box with a pen on the
ground (d) Rotating a capsule 180 degrees (e) Tabletop rotation with hand above the object (f) Tabletop rotation with the hand on the side of the object

Fig. 3. To demonstrate the feasibility of our designs, we fabricated a hand with 3d-printed parts scaled with regard to the embedded motors. This particular
design is meant to rotate a 4 inch diameter ball 180 degrees either way.

Fig. 4. Here we demonstrate 2 sequences of progressively more complex
motions (refer to accompanying video for complete motions): (above) we
demonstrate a horizontal side to side motion (without gravity, so that we
don’t require our mechanism to actively provide counter-gravitational force),
a circular planar motion (no gravity), and a hemispherical motion (with
gravity). (Below) we demonstrate a line of motions (all with gravity enabled)
beginning with a sphere rotation 180 degrees either way, followed by a
sphere rotation with the ability to translate in and out, and finally a sphere
rotation with the ability to translate in the plane.

bows out the mechanism beyond the 45 degree target, then
slides the pushing finger upward and reduces the force
it exerts to achieve the desired position. In Figure 2(c),
we replace our usual pose objective with an objective that
attempts to track the shown goal points with the tip of the
gripped ”pencil”. In this motion, our optimization discovered
a cyclic manipulation in which the finger on the bottom left
of the pencil automatically resets itself while still maintaining
contact on the object. In the middle motion shown in Figure
4(b) we dictate that our mechanism is to rotate the sphere
180 degrees either way followed by a translation in and
out from the palm. Surprisingly, our optimization found a
way to do this with only two degrees of freedom per finger
by discovering that our hand can ”lock” in our object by
folding the distal joints. Normally one would expect such a

manipulation to require at least 3 DOF’s per finger as in the
succeeding motion, in which we require that the sphere also
be able to translate side to side as well as in and out.

We are often able to create distinctly different mechanisms
for the same motion simply by varying the initial contacts
placed on the object or by varying the initial position of
the base. We demonstrate this in Figures 2(e) and 2(f) in
which we place our contacts in the same positions but placed
our base differently: the result is that our floating motion
plans are identical, but we get two completely different
mechanisms out of the initial conditions. Similarly, we can
get distinct mechanisms from placing our initial contacts dif-
ferently. The fact that our pipeline gives different results for
different initial conditions means that the user can select their
ideal mechanism by trying out different initial conditions,
as well as gain intuition about how the base and contact
initialization affect the optimal mechanism design in general.

To demonstrate the feasibility of our designs, we fabricated
a physical prototype for a hand that is meant to rotate a
sphere 180 degrees forward and backward (shown in Figure
3). Given a design generated by our pipeline, we program-
matically generate a set of individual parts represented via
constructive solid geometry, which are then converted to a
set of 3d printable CAD files. Due to the fact that we have
embedded the motors in the fingers, we have scaled our
design according to the size of the individual motors. Our
prototype hand (equipped with the computed set of poses)
is capable of reliably rotating a 4 inch Styrofoam ball from
a variety of initial palm orientations. This motion involves a
significant amount of rolling between the fingertips and the
object, which is made possible by its unique design.

V. LIMITATIONS AND FUTURE WORK

There is a disconnect between the floating optimization
and synthesis optimization in our pipeline due to the simple
fact that the floating optimization has no concept of what
a finger is or how kinematic constraints can limit motion



capability. It is therefore not possible for our system to
generate manipulations like finger gaiting motions or mean-
ingful grasp transitions organically, although we can force
this behavior to occur if we manually set the initial contacts
at every frame.

This disconnect is the cause of most of the failure cases we
have observed. Sometimes the floating contact optimization
gives a non-collision free trajectory: in general this can be
addressed by providing multiple initial seeds. Additionally,
poor selection of base location can give awkward looking
mechanisms. In future work, we may try to combine the
design optimization with the contact planner to resolve these
issues.

Our current pipeline is restricted to placing contacts on
the distal finger segments, the palm, and objects in the
environment. In future work, we plan to add in the capability
to use intermediate finger segments as contact surfaces,
allowing us to model motions like power grasps.

Issues with building robust manipulators can be addressed
by adding a simulation based optimization to the end of
our pipeline, in which we take the trajectory optimization
based design and put it in a physics engine to carry out the
intended motion, perhaps with the addition of unexpected
perturbing forces or other uncertainties to encourage robust
behavior. In particular, our generated hands are optimized
with respect to a single known starting configuration as well
as known object size and weight. In future work, we plan to
design mechanisms that are robust to sensor noise, variations
in object geometry, friction, mass, etc.

We believe that the pipeline introduced in this paper
can serve as the basis for development of a scalable and
increasingly sophisticated design tool that is intuitive, user-
friendly, and allows users to generate designs to suit their
particular needs.

VI. APPENDIX A: IMPLEMENTATION DETAILS

Although our optimization has very few parameters for
a user to tune, there are internal weights and other details
required to duplicate these results. Weights were set the
same for all examples. We observe that these weights lead to
qualitatively similar motions as long as they are set to within
an order of magnitude of the listed values. Most examples
in the paper completed between 30 and 60 minutes on Dell
Inspiron 5520 laptop.

A. Floating Contact Optimization

When calculating our objective in the floating contact
optimization, we interpolate between the keyframes and
calculate the sum at each time according to a time step
tstep = .1 seconds. Weights for the objective terms are given
in Table I. Depending on the number of steps involved, we set
our motions to last between 4 and 12 seconds for most of our
example manipulations (more complex manipulations require
longer time horizons for smooth motions). The number of
keyframes we use for a given motion is dependent upon
the number of objective keyframes specified (which is also
a measure of the motion’s complexity): we typically use

wphysics 10 wci object 100
wtask 50 wci object slippage 100

wforceReg .01 wfloatingContactAccel .01
wobjectAccelReg .1 wobjectAngAccelReg 1
wfrictionCone .1 α(frictionsharpen) 5

TABLE I
Table of common weights for floating contact optimization

1-3 additional keyframes between each of our objective
keyframes, spaced uniformly over time. The object position
component of xO and contact positions rj are interpolated
via catmull-rom splines, object orientations are computed via
the exponential map[10], and ẋO are calculated via finite
differences. The contact forces fj are linearly interpolated
and the cj are evaluated as piecewise-constant terms.

In our optimization, we allow for one point contact on each
fingertip on our hand and a single point contact to allow the
object to interact with the ground. We optimize our objective
with a standard L-BFGS solver [14].

Except for the Ltask term, we normalize each of our
cost terms by the number of keyframes in our motion. We
initialize the object poses in our keyframes by interpolating
between our objective goal positions and determine contact
positions by keeping the same initial contacts with respect to
the objects local frame (i.e. initial contacts are just translated
and rotated with the object). This initialization gives zero
Ltask cost on the first step of the optimization, prompting
the optimizer to focus on solving for the forces and contact
positions needed to satisfy the Lphysics term. The result
is that we tend to see an optimization procedure in which
Ltask remains small while the Lphysics term dominates the
optimization, eventually leading to a solution with only slight
deviation from the original task objective and low physics
penalty.

B. Mechanism Synthesis Continuous Optimization
In our continuous mechanism optimization (whether we

are optimizing entire hands or individual fingers), we apply
a three step annealing schedule (shown in Table II) in order to
deal with errant collisions such that our gradient updates do
not become unstable. Our annealing schedule initially assigns
a low penalty for collisions, and gradually increases it to the
full value to generate a mechanism that tracks trajectories as
well as possible while avoiding collision.

Additionally, to check for collisions between keyframes,
we evaluate collision costs for intermediate poses in which
the object position and orientation are splined between
keyframes. We fix the position and orientation of the base
to the trajectory specified by the user: this prevents accom-
plishing the motion by trivially reorienting the base while
holding a static grasp.

Variable Step 1 Step 2 Step 3
weeTarget 50 10 50
wcollision .1 5 100

TABLE II
Weights for the annealing schedule: we gradually increase the trade off

between end effector tracking and collision to encourage stable gradients



wci finger 100 wci finger slippage 10
wci object 100 wci object slippage 10

wfingerAcceleration .001 wcollision 100
wtask 50 wphysics 10

wjacNull 1.0 wtorque .05
wfrictionCone .1 wfrictionConeHand .1

α(frictionsharpen) 5 wkinematic 1

TABLE IV
Table of weights for the whole hand optimization: weights for terms not

mentioned above are kept the same as in the floating contact optimization.

weeTarget varies wcollision varies
wfingerLengthRegularization .1 wcontactDistSurface 1000

wfingertipAcceleration .001 wjacNull 1
wtorque .05 wjointLimits 1

wfingerPositions 1 wfingertipMinLength 1

TABLE III
Common weights for mechanism synthesis continuous optimization: note

that weeTarget and wcollision vary with the annealing schedule

C. Mechanism Synthesis Discrete Optimization

On a given iteration of our outer loop, we typically
optimize 10 different randomly seeded fingers, generate 5
recombined hands, and limit ourselves to a maximum of
3 joints per finger. In generating our initial seeds for the
fingers, we randomly reseed the finger pose, finger segment
lengths, the initial joint angles, joint axes, and the points at
which the fingers connect to the base of the hand as well as
the contact points on the fingertips (expressed in the local
coordinate frame of the fingertip). We propagate the same
random initial pose for the finger across all of the keyframes
in our optimization.

D. ”Whole Hand” Optimization

A table of common weights is shown in Table IV. Prior
to optimization, we reinitialize each contact location to be
the closest point on the object to its assigned fingertip.
By default, the user specified base trajectory is held fixed,
however in various examples where it is appropriate we allow
the ”whole hand” step of our optimization to adjust the base
motion. This helps to avoid collision with the ground in
several cases.
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