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Characterizing Continuous
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There has been an explosion of ideas in soft robotics over the past decade, resulting

in unprecedented opportunities for end effector design. Soft robot hands offer benefits

of low-cost, compliance, and customized design, with the promise of dexterity and

robustness. The space of opportunities is vast and exciting. However, new tools are

needed to understand the capabilities of such manipulators and to facilitate manipulation

planning with soft manipulators that exhibit free-form deformations. To address this

challenge, we introduce a sampling based approach to discover and model continuous

families of manipulations for soft robot hands. We give an overview of the soft foam

robots in production in our lab and describe novel algorithms developed to characterize

manipulation families for such robots. Our approach consists of sampling a space of

manipulation actions, constructing Gaussian Mixture Model representations covering

successful regions, and refining the results to create continuous successful regions

representing the manipulation family. The space of manipulation actions is very high

dimensional; we consider models with and without dimensionality reduction and provide

a rigorous approach to compare models across different dimensions by comparing

coverage of an unbiased test dataset in the full dimensional parameter space. Results

show that some dimensionality reduction is typically useful in populating the models, but

without our technique, the amount of dimensionality reduction to use is difficult to predict

ahead of time and can depend on the hand and task. The models we produce can

be used to plan and carry out successful, robust manipulation actions and to compare

competing robot hand designs.

Keywords: robot hand, manipulation, dexterity, manipulation planning, robot hand design, Gaussian Mixture

Model, soft robot, manipulation families

1. INTRODUCTION

In industrial applications, robotic systems have been successful for decades for certain assembly
line tasks such as spot welding (Wang and Guu, 1989). The motivation for automating these tasks
comes from the high cost of skilled human labor and the serious risk of injury present in many
manufacturing processes. Today, the goals of modern robotics extend beyond the rigid structure
of the factory environment, seeking to safely and robustly perform in the relative chaos that is
everyday life.

An emerging class of robots designed to address this problem are soft robots made from
intrinsically soft materials (Deimel and Brock, 2013; Tang et al., 2019; Zhang et al., 2019; Zhou et al.,
2019; Li et al., 2020). Apart from being safe, the softness and compliance realized by these robots can
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be exploited to reduce the complexity of environmental
interactions. For example, the compliance of soft robots allows
them to adapt to geometric variations without the need for
complex low-level control, a feature shared by robot hands
which contain rigid skeletons but may have compliant joints or
actuation (Dollar and Howe, 2009; Odhner and Dollar, 2011;
Xu and Todorov, 2016; Della Santina et al., 2018; Homberg
et al., 2019). Such an exploitation of compliance can be observed
in many biological organisms and is therefore a promising
characteristic (Majidi, 2014). Soft robots have shown great ability
to conform to object surfaces, produce stable grasps, and handle
fragile objects gently (Brown et al., 2010; Galloway et al., 2016;
Stuart et al., 2017). However, achieving human-level dexterity,
including dexterous in-hand manipulation, remains a challenge.
Enabling such capabilities requires considerable innovation in
hardware, modeling, and control (Marchese and Rus, 2016; Zhou
et al., 2018; Abondance et al., 2020).

One very promising approach is to design low-cost, easily
manufacturable hand designs which can be customized for
specific tasks. For example, King et al. (2018) present a class
of novel fully-compliant, tendon-driven soft hands made from
off-the-shelf components (Figure 1). The primary structure of
this type of robot consists of a flexible foam core. The softness
and flexibility of the foam hand have been shown to be of great
advantage for stable and secure grasping, and robust in-hand
manipulation (King et al., 2018). However, these hands do have
trade-offs. The advantages gained by softness come at the cost of
necessarily more complex control and planning strategies. This is
due to the uncertainties created by complex contact mechanics,
deformable materials, and the lack of a compact Forward and
Inverse Kinematics representations (i.e., solve FEA instead of

FIGURE 1 | From the top in the direction of the arrows we show: (1) Highly diverse, highly complex hand morphologies can be rapidly and in-expensively fabricated

using simple 3D-printing and casting methods. (2) The hands are driven using embedded tendons integrated with the foam via textile skins. (3) Customized, interactive

soft-body simulators allow for exploration of designs, actuator configurations, and planning strategies. (4) A variety of complex and dexterous manipulations can be

performed across a wide range of hand designs, demonstrating the capabilities, and tremendous potential of soft foam manipulators.

using rigid body transformations with joint angles). Another
trade-off is that soft robots have a lower upper-bound on the
velocities and forces they can operate at due to their low stiffness,
thus may not be suitable for high speed or high force industrial
processes. However there are very complex manipulations that
do not require high speeds or high loads, such as tasks done day-
to-day by human hands. At these kinds of speeds we have not
observed performance issues with the kinds of soft hands shown
in this paper.

The goal of this research is to provide an intermediate
representation of soft hand capabilities to facilitate control
and planning, as well as to discover the inherent competence
or dexterity of a given hand design. Specifically, we present
an approach to identify and model continuous families of
manipulation actions for these robot hands. The models
described in this paper can be used directly for planning and
control, as successful actions can be sampled from the model
or combined in a planner. A planner that has access to a large
family of strategies to achieve a manipulation goal can be robust
to different environments: if it cannot achieve its goal with its
primary strategy, rather than being stuck with failure, it can
explore secondary planning strategies and beyond. We note
that some manipulation actions are multimodal; in developing
our models, we identify discrete different ways in which target
manipulations can be accomplished. Identifying and separating
multiple modes of performing manipulations provides a valuable
tool for both planning and local control. A planner, for example,
can attempt to formulate a plan using each potential mode and
select the option with greatest utility for the current scenario.

These models presented in this paper also provide a
representation of a robot hand’s capabilities. This representation
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is in terms of the space of actions that produce successful
manipulations. A large action space indicates substantial
flexibility in performing a manipulation action—that
manipulation can be performed by the robot hand in many
varied ways. If a hand has a large, continuous successful
action space for a manipulation, it may be fair to classify that
manipulation task as “easy” for that hand design. As such, these
models can be used to compare hands and refine designs. Hand
design parameters can be tuned and optimized, or discrete design
elements can be selected by measuring their effect on the size of
the action spaces for manipulations that are of particular interest
for the robot hand under development.

Finally, we present a pure intellectual curiosity behind this
work—given a new hand design, we are driven to see just what
that design may be able to accomplish. Our approach provides
an empirical means to begin to achieve that goal and quantify
the results.

2. RELATED WORK

The continuously deformable nature of soft robots makes
controlling them a challenging problem. Their ability to
accomplish motions such as buckling, extension, or bending,
results in soft robots having virtually infinite degrees of freedom.
Additionally, George Thuruthel et al. (2018) mention nonlinear
material effects such as compliance, visco-elastic material
behaviors, and hysteresis, as well as the wide range of design
and actuation techniques that account for the non-trivial nature
of this problem. Previous works have particularly studied the
problem of inverse kinematics (IK) which is concerned with
finding a mapping between actuator configuration and desired
hand configuration (i.e., pose) (Rolf and Steil, 2013; George
Thuruthel et al., 2016; Jiang et al., 2017; Schlagenhauf et al.,
2018; Bauer et al., 2020). Existing control approaches can be
classified into three main categories: model-based or model-free
controllers, as well as combinations of both. The model we refer
to here follows the definition of model by Sutton and Barto
(2018), that is ‘a model of environment, something that mimics
the behavior of the environment, or more generally, that allows
inferences to be made about how the environment will behave’.

Model-based controllers rely on the establishment of a
kinematic mapping from which the actuation can be directly
inferred for the desired configuration. A popular approach
is to use lumped parameter models and pseudo rigid-body
models (Saunders et al., 2010), model caterpillar-like soft robots
as a series of extensible linkages. For tentacle-shaped soft
robots, Marchese et al. (2014), Marchese and Rus (2016), and
Chen et al. (2013) use piecewise constant curvature models to
model the robot. For soft robots with arbitrary shapes, Duriez
(2013) presents a real-time solution using a finite element
method (FEM).

Model-free approaches offer a wide variety of data
driven techniques to control soft robots. Neural networks have
successfully been used to learn inverse kinematics on a cable
driven soft tentacle manipulator with 2 degrees of freedom
(Giorelli et al., 2015). Rolf and Steil (2013) have proposed an

exploration algorithm for creating task space samples for IK
learning. Model free approaches have been successfully used
to learn grasping and manipulation tasks for soft hands from
demonstration (e.g., Gupta et al., 2016; Della Santina et al., 2019).

Our approach is model-free in the sense that while
we sample data from simulation, we do not reason explicitly
about the system configuration. Instead we observe the effect
of an action toward achieving an intended manipulation (e.g.,
reorientation of an object within the robot hand).

The challenge of working with data of this sort is three fold.
First, the sample space is usually large in dimension, so we need
efficient sampling methods. Second, we must determine which
degrees-of-freedom, or dimensions, are significant. And third, we
require appropriate models for representing planning strategies.

We have identified solutions to these problems by using
well known methods like stratified sampling (Mitchell, 1996;
Dellaert et al., 1999), principal component analysis (Jolliffe
and Cadima, 2016), and Gaussian Mixture Models
(GMM) (Reynolds, 2009), to tackle the problems of
sampling, significant dimension determination, and modeling
approach, respectively.

Prior art has utilized similar building blocks. For example,
Khansari-Zadeh and Billard (2011) use Gaussian Mixtures to
ensure local asymptotic stability of dynamical systems, Nguyen-
Tuong et al. (2008) use Gaussian Process Regression to achieve
real-time online model learning, Calandra et al. (2016) use
Manifold Gaussian Processes on non-smooth complex functions
such as contact mechanics, Bidan Huang et al. (2013) use GMMs
to generate grasps given a starting object-hand configuration,
Lawrence (2005) use Dual probabilistic PCA and Gaussian
Processes for dimensionality reduction, and Engel et al. (2005)
use Gaussian Processes with Temporal Differences to learn a
controller for a soft octopus tentacle. What distinguishes our
approach is that we utilize GMMs to form global models of
successful action spaces. Action spaces can be modeled in many
different ways, and we give results from two concrete examples
in this manuscript. However, for any model, we aspire to capture
the entire valid space of possible manipulations as one or more
continuous action regions.

3. METHOD

We propose a sampling based method to identify and model
families of manipulations for soft robot hands. Given a
manipulation goal for a soft hand, our approach aims to
discover and model large continuous action spaces that allow the
manipulation goal to be successfully accomplished.

We elaborate on the design of our method in the
sections below. In section 3.1, we explain how we represent
the physical environment and the soft hand’s interaction with
that environment, including defining manipulation goals and
action spaces. In section 3.2, we unfold our three-step method
for generating models of continuous successful action spaces to
achieve manipulation goals. Experiments used to test the validity
of our method are discussed in section 4.
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TABLE 1 | Variable Table.

Variable Description

θ Single parameter sample, defining an open loop action for the

foam hand

action space Continuous region of parameters θ that may achieve some goal

(e.g., result in performing a manipulation task successfully)

2 Set of parameter samples θ

� Parameter space from which θ can be sampled for a foam hand

d Dimension of �

φ(θ , t) Controller function, which produces an action from parameter θ

and time t

at Action performed at time t, defined as an open loop control

actuation command

da Dimension of an action; degrees-of-freedom in the action space

for a single time t

st State of the observed physical system (including manipulated

object) at time t

sgoal Goal state of the observed physical system.

ds Dimension of the state vector; observed degrees-of-freedom in

the physical system

score Weighted difference between observed state and goal state in a

manipulation

b Coefficient vector weighting state differences for computing a

manipulation score

cminScore Minimum score required to consider one parameter θ as

successful.

ninitial Target number of successful samples to collect in the initial

sampling process

nsample Number of samples to test in one iteration of the initial sampling

process

s Scale factor s > 1 controls exploration beyond observed

successes in initial sampling

m Number of PCA dimensions for a proposed GMM, m ≤ d

k Number of Gaussians for a proposed GMM

p(θ ) or GMMm,k Gaussian Mixture Model built over 2 with hyperparameters m, k

p′(θ ) GMM whose Gaussians have normalized inverse weights of p(θ )

ǫw_std Threshold to achieve sufficiently uniform GMM weights

ǫw_diff Threshold to indicate progress is not being made on equalizing

GMM weights

ǫsucc Threshold to indicate a match for desired GMM success rate

wold Old weight of Gaussians constructed in the model building

process

wnew New weight of Gaussians constructed in the model building

process

csucc_rate Target (required) success rate for each proposed GMM

3.1. Problem Definition
In this section, we formally define the soft robot hand’s actions,
states, and manipulation goals. Table 1 contains a listing of
variables and their descriptions. Specific instantiations of these
variables are given for two robots in sections 4.1 and 4.2.

We start with the definition of actions of a soft robot
hand. We assume that the soft robot hand is driven by its
controller. The controller takes a parameter vector θ as input.
θ corresponds to attributes that could be used to generate

a control signal, things like positions, joint angles, forces,
torques, as well as their combinations. This parameter vector
is drawn from a parameter space � which is established
ahead of time by the user. The specific definition of the
parameter space depends both on the robot hand design and the
choice of control. For example, one possible set of parameters
is a list of actuator commands and associated timestamps,
which could be used to actuate the hand with an open-loop
PD controller.

Given a parameter vector θ , the controller generates
a sequence of open-loop actuation commands called actions,
at=1...T ∈ R

da , where da represents the number of controlled
degrees-of freedom. The controller actuates the foam hand
by executing the action generated by at = φ(θ , t) for
all T time steps.

As the soft foam hand’s controller executes its actuation
commands, its surrounding physical environment would
be affected by its behavior. For example, the action may
result in manipulation of a grasped object. To represent
this change in the system, we define the state of the
physical system containing the soft hand for any time
step t as a vector, st=1...T ∈ R

ds , where ds represents
the number of observed degrees-of-freedom. The physical
system always starts with a rest state s0 and ends with a
final state sT . The state vector contains numbers which
correspond to measurable attributes of the scene at a given
time step such as positions, velocities, forces, or even raw
sensor values.

The objective of the controller is for the final state to
be sgoal. At each time step t, the foam hand controller can
interact with the system by executing at , which transforms
the system according to the state update function, st+1 =

simulator(st , at). After the controller finishes executing the
actions, we compare the final state of the system sT against the
goal sgoal to evaluate θ ’s effectiveness in manipulating the soft
hand. Specifically, we generate a score, score = b · ‖sT − sgoal‖,
taking the inner-product of a linear coefficient vector, b, and the
normed error vector, ‖sT − sgoal‖.

To classify the parameter vector θ used by the
controller to generate actions, we compare score against
a minimum score threshold, cminScore, where successful
or failure case occurs if score is above or below the
minimum threshold, respectively. In practice, this is
evaluated using the conditional indicator function:

1(score > cminScore) =

{

1 if True

0 if False

Therefore, in the later section of this paper, when we mention
successful parameters, we refers to those that satisfies the
indicator function 1(score > cminScore). On the contrary, failed
parameters have scores below the threshold cminScore.

The goal of the research described in this paper is to
identify large continuous regions of parameters θ that result in
achieving the user specified goal sgoal. In other words, we wish to
find large continuous regions of θ that are classified as successful.
We informally call these regions action spaces as they represent
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Algorithm 1: GMMModel Construction Pipeline

Input:
�, ninitial, nsample, s, ǫw_std, ǫw_diff , ǫsucc, cminScore, csucc_rate, b ;

Let d = dim�;

// Step 1: Collect initial samples ;
Stratified sample a parameter set 2 from the parameter
space �;
Evaluate 2 and collect the successful ones as 2initial.;
while size(2initial) < ninitial do

Build a Gaussian modelN (µ,6) to cover the parameter
set 2initial;
Sample nsample samples fromN (µ, s6);
Evaluate nsample samples and collect the successful ones

as 2new.;
2initial = 2new ∪ 2initial;

end

// Step 2: Build candidate models with different k and
m ;
Sample a integer setM of size nm from {1 . . . d};
Sample a integer set K of size nk from {1 . . . d};
2all = 2initial;
2new = 2initial;
2old = {};
form ∈ M do

for k ∈ K do

// Refine model and fill in sparse regions ;
2new,2old,GMMm,k =
BuildModelOnPCA({},2initial, k,m, cminScore, b);

wold = {∞,∞, . . . ,∞} ∈ R
k;

wnew = GMMm,k.weights;

whilemaxki=1 |wnew,i −

∑k
i=1 wnew,i

k
| >= ǫw_std and

sum(wold − wnew) > ǫw_diff do
2new,2old,GMMm,k =
BuildModelOnPCA(2old,2new, k,m, cminScore, b);
2all = 2all ∪ 2new;
wold = wnew;
wnew = GMMm,k.weights;

end

// Trim model to desired success rate ;

Binary search in between
(

lo, hi
)

for r such that
|success_rate(GMM(µ, r6))− csucc_rate| < ǫsucc;
Let GMMm,k = GMM(µ, r6);

end

end

// Step 3: Select best model for coverage of all
successful samples ;
2test = downsample(2all);
bestModel = Select model with smallest Mahalonobis
distance to 2test ;
return bestModel;

Algorithm2:BuildModelOnPCA(2old,2new, k,m, cminScore, b)

2newRed = downsample(2new);
2 = 2old ∪ 2newRed;
2pca = pca(2,m);
Build Gaussian Mixture Model(GMM)
p(θ) =

∑k
i=1 wiN (µi,6i), θ ∈ 2pca;

Build GMM p(θ)′ =
∑k

i=1

1
wi

∑k
i=1

1
wi

N (µi,6i);

Sample 2lowProb∼p(θ)
′;

for θ ∈ 2lowProb do

for i = 1, 2, . . . ,T do

at = φ(θ , t);
st = simulator (st , at);

end

Calculate score = b‖sT − sgoal‖.;

if score > cminScore then

2succ = 2succ ∪ {θ};
end

end

2new = 2succ;
2old = 2;
Return (2new,2old, p(θ))

continuous families of actions that the soft robot hand can take
in order to achieve the desired result.

3.2. Approach Overview
Our method is designed to identify and model continuous action
spaces that allow a soft robotic hand to achieve a manipulation
goal successfully. The resulting models are intended for use in
manipulation control, manipulation planning, and robot hand
design/evaluation.

At high level, our method can be considered as black box
that takes in all the physical system information, for example,
goal state sgoal and initial state sinitial, and soft hand action
information, such as parameter space � and controller φ, then
builds a model to cover the successful parameter distribution
in �, eventually outputting a model to generate parameters for
soft hand controllers to achieve their objective of changing their
surrounding environment’s state to sgoal.

Specifically, we employ a sampling based approach
consisted of three steps, which are shown in Figure 2: (1)
collect a large number of successful samples of performing the
desired manipulation, (2) construct a collection of alternative
models, refining each model to “fill-in” sparsely sampled regions
and achieve a target success rate, and (3) compare all models
for best coverage of an unbiased test dataset formed by
selectively downsampling all successful samples ever seen. The
approach terminates by selecting and returning the best model.
Pseudocode for the full pipeline can be found in Algorithm 1.
Each of the three steps will be discussed in detail in sections
3.3–3.5, respectively.
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FIGURE 2 | Algorithm flow chart.
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3.3. Collect Data in the Full Dimensional
Parameter Space
The first step of the algorithm is to collect a large set of successful
manipulations. To achieve this goal, we use a two-step process,
first collecting data by sampling within the full action space
using stratified sampling, and then performing a more focused
exploration in the area “near” successful samples that have
already been identified.

An initial exploration of the action space is performed
using stratified sampling (Mitchell, 1996). The stratification is
done by dividing the parameter space � ∈ R

n into small
sub-regions by subdividing each of the n dimensions. Samples
are drawn randomly from within each subregion to ensure
some coverage of the entire space. This approach helps induce
improved sampling uniformity even with a relatively small
sample size.

Once an initial collection of successful samples have been
drawn, the search is focused to an area where successful samples
are more likely to occur, i.e., we switch to a process of sampling
with constraint. The constrained space is constructed by building
a Gaussian Model from the existing collection of successful
samples, Minitial = N (µ,6)∼2, where N (µ,6) is a standard
Gaussian where parameters 2 represent successful samples.

To facilitate some exploration within the constrained
sampling process, We create a new model N (µ, s6) whose
covariance matrix s6 is equivalent toMinitial’s covariance matrix
scaled by a scalar s > 1. By sampling from this relaxed Gaussian
model N (µ, s6), we increase the probability of collecting
successful parameters compared to the original parameter space
�, without limiting the new sampling domain to only the
successful cases we have encountered thus far. The examples in
this paper use s = 2. We iteratively construct relaxed Gaussian
models on the sample set 2 collected so far and sample from
them until we pass ninitial, the minimum number of samples
required during the initial sampling process.

3.4. GMM Construction
After collecting a suitable number of samples, we move to the
next step of the algorithm, the central box in Figure 2. The goal
of this step is to generate a candidate set of models of the
continuous successful action space. The models are Gaussian
Mixture Models, and they vary in two parameters: the number of
Gaussians selected (k) and the dimension of the space in which
they reside (m).

The motivation for testing different numbers of Gaussians
(k) is fairly obvious. We wish a representation of our action
space that is both compact and comprehensive. As such, we
would like to identify the smallest number of Gaussians that
covers the continuous successful regions of the action space well
(i.e., without missing large successful regions). It is difficult or
impossible to predict this number ahead of time, and so we test
different values.

The motivation for testing spaces of different dimension
(m) is perhaps less obvious. It has been shown repeatedly that
many actions that appear complex are in fact highly coordinated
(e.g., Safonova et al., 2004; Ranganath et al., 2019). It seems likely
that some reduced dimensional space would be adequate for
representing the entire successful action family. However, how

many dimensions may be needed is again difficult to predict.
Here again, we test different values.

The output of this step is a collection of models having
different k and m values and an extended set of successful
samples, all of which are used to determine a final best model
in the third and final step. The next section details the model
building process for an individual k and m value, assuming that
these values have already been selected.

3.4.1. Dimension Reduction With PCA
We now walk through the process of building and refining a
single model (the central block in Figure 2). The first step is
to identify a suitable reduced dimensional space of size m. For
this, we use PCA (Jolliffe and Cadima, 2016), keeping the first m
eigenvectors of the projection P as the basis of the space R with
reduced dimensions. There are many ways we could take a lower-
dimensional projection of our space. PCA is a favorable choice
because, by definition, it is an orthogonal linear transformation
which maximizes the variance of the projected data. Essentially,
all of the significant structure is maintained while reducing its
span to a volume more tractable for sampling and computation.

R = Q�∗

C� =
1

n
�∗T�∗

= Q3QT

Note that to extract the principal components with regard to
the covariance of �, we first shift � to be a “0-centered”
space �∗, taking the origin to be its mean. Then, we make
an eigen-decomposition on the covariance of the centered
parameter space �∗. The principle components of �∗ are what
we call the eigenvectors of the covariance matrixC� and it is used
to transform the basis of the original space� to the reduced space
R (Jolliffe and Cadima, 2016).

3.4.2. Bias Reduction: Downsampling and Inverse

Model
Even with PCA, if we build a model directly on all of the
data accumulated in 2, it would create bias. This bias arises
due to the accumulated data containing disproportionate
numbers of successes drawn from the initial stratified sampling
process. This mean-offset would result in an advantage
for the “first-come” data that decreases the likelihood
of discovering disjoint strategies. To eliminate this, we
downsample 2. Specifically, we greedily select a subset
2sub = argmax2sub⊆2,|2sub|=nsub std(2sub), that has the largest
subset among2’s subsets of same size nsub. In this way, we do not
favor frequently sampled data, instead encouraging a narrowing
of the success frequency-gap.

To further reduce bias in collected samples and allow
sparsely populated regions to be “filled-in,” we draw new samples
from an “inverse GMM model” built on the downsampled data.
Specifically, we construct the original GMMmodel with the usual
expectation maximization algorithm similar to the k-clustering
process. Then we create a “inverse model” whose weight w′

i
for its ith Gaussian is 1

wi
, which means that the Gaussian of
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highest weight would be the one with lowest weight in the
“inverse model.” This step is based on the assumption that
all of the successful samples/actions should be equally good in
terms of performing the target manipulation tasks. Thus, each
cluster in the space � should be considered as equally important.
Correspondingly, Gaussian components of our GaussianMixture
Model representation, corresponding to clusters in the parameter
space, should have evenly distributed weight wi. We used the
method of reducing the samples for high weight Gaussians and
increasing the samples for low weight Gaussians to balance
out the unevenness in the Gaussian weights by encouraging
exploration within Gaussian regions that have low probability in
the original model.

We continue this iterative process of reducing bias, by
repeatedly reducing dimension of downsampled data with PCA,
building a model on the data with reduced dimension, creating
an inverse model and sampling new data from the inverse model,
downsampling the results and adding them to the downsampled
set of data accumulated so far. This process is illustrated in
Figure 2, which shows graphically how an undersampled region
covered by a low-probability Gaussian can be populated through
the process and brought to nearly equal probability to the
Gaussian containing the larger portion of “first-come” data.
A similar phenomenon illustrated with actual data is shown
in rows 2 and 3 of Figure 3, where a sparsely populated
secondary region becomes evenly populated after the inverse
model sampling process.

The iterative process terminates when the difference
between Gaussian Components’ weight of is small enough that

maxki=1 |wi −

∑k
i=1(wi)
k

| < ǫw_std. Occasionally, if the number of
Gaussians is not a good match for the geometry of the successful
parameter space, this process may be slow to terminate. In that
case, we watch for small changes in weights and finally terminate
at a maximum total number of iterations (see Algorithm 1).

3.4.3. Reduce Variance to Elevate Success Rate
So far, models have been constructed based on successful
samples only. However, the GMM that results will also contain
failures. We observe that these failures are typically on the
boundaries of the modeled regions. To reduce failures and bring
success rate to a desired level, we propose a simple strategy of
variance reduction.

Specifically, to increase the final success rate of the model,
we linearly scale the covariance matrix 6 for each component
Gaussian of the GMM. We use binary search to search for a scale
rate r such that model GMMm,k = GMM(µ, r6) would have
success rate of approximately csucc_rate when the samples drawn
from it for planning are tested either on the physical soft hand or
in simulation. Models which cannot achieve the desired success
rate after a variance reduction of 0.2 are discarded. Over many
experiments, only one model had to be discarded due to this
criterion, indicating that the assumption of failures occurring on
the boundaries of the Gaussian regions is effective in practice.

3.5. Compare and Select Models
In section 3.4, we explained how an individual model with a
fixed m and k value is being created. In this section, we want to

elaborate on how m and k would be tuned to create the model
that best fit the space.

Ideally, we would perform a global search over all plausible
parameters m and k. There are multiple ways of doing such a
search of optimal parameters. However, empirically, what we
found to work well was to do a line search over PCA dimension
m, followed by a line search over k. After extensive informal
experimentation, we found that this process was efficient and
tended to produce a nearly optimum, if not the optimum model.

3.5.1. Squared Distance Between 2test and the GMM
The final step of the process (bottom section of Figure 2) is to
compare models and select the bst one. We compare models
based on their coverage of all of the successful test data seen so
far. To evaluate the parameter space coverage of different models,
we create a test data set2test by downsampling all successful data.
The downsampling method is the same one used in section 3.4.2.
The model that fits this data set the best should be the model that
covers the greatest amount of variance we have explored so far in
the parameter space �.

However, it is challenging to directly compare our models’
coverage of the test dataset, since they all have different
PCA dimension m. To account for the difference in models’
dimension, We need a variance comparison practice that
encourages models to preserve components of the test data that
are within their dimension-reduced space, while penalizing low-
dimensional models for reducing too much variance simply as a
result of the projection step involved in dimensionality reduction.

Thus, correspondingly, we measure the model’s variance
coverage by combining “in-model distance” and “out-of-model”
distance from each data in the test set. To check the fitness of a
model, we would project each test data point in the data set into
the model’s dimension reduced space of sizem and then calculate
its Mahalanobis Distance from each Gaussian of the model. Its
minimum Mahalanobis Distance from the Gaussian would be
considered as its “in-model distance” from the model. On the
other hand, to measure the lost variance of a dimension-reduced
model, we construct a Gaussian that tightly covers the test data in
the full parameter space and calculate the test data’s Mahalanobis
Distance from this Gaussian in the “lost” dimensions only.
This distance forms the “out-of-model” distance. The equations
describing the distance metric we use are as follows, where ⊙ is
the element-wise matrix product.

Qred = [q1 | q2 | · · · | qm]

Qlost = [qm+1 | qm+2 | · · · | qn]

where qi is the ith column vector of Q

and m is the number of PCA dimensions that

we reserve in the model

θ∗ = θ − µ�∗

where µ�∗ is the shift we used to translate space

�∗ to space �

f (θ∗) = QT
redθ

∗

g(θ∗) = QT
lostθ

∗
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FIGURE 3 | Successful experiments from left to right: Data evolution for our best models using a 2D simulation with angle rotation ranges of 18–54, 36–72, and

72–108 degrees, and a 3D simulation with angle rotation range of 18–36 degrees.
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µ̄(2test) =

∑

θ∗∈2test
g(θ∗)

|2test|

σ̄ (2test) =

√

∑

θ∗∈2test
(g(θ∗)− µ̄(2test))⊙ (g(θ∗)− µ̄(2test))

|2test|

6lost = diag(σ̄ (2test))

SS





k
∑

i=1

wiN (µi,6i)



 =

∑

θ∗∈2test

(

k
min
i=1

(

(f (θ∗)− µi)
T6−1

i (f (θ∗)− µi)
)

+
(

g(θ∗)− µ̄(2test)
)T

6−1
lost

(g(θ∗)− µ̄(2test))

)

The sum of squares of each test data’s “in-model distance” and
“out-of-model distance” forms the total squared distance between
a GMM and the test data set. The larger is this total distance,
the weaker the model is in covering the parameter space �.
Therefore, the model with the minimum total distance has the
optimal k andm value that results in the best coverage of variance
of the original parameter space.

4. RESULTS

4.1. 2D Simulation of a Soft Hand
To test the effectiveness of our method, we design a 2D
simulation of a three-finger soft hand. The manipulation goal for
the soft hand is 2D rotation of a rigid-body object. Thereby, to
fit themanipulation goal, we set up an environment that emulates
the general situation that a human hand tries to rotate a thin and
elongated object, for example, a pen, in mid air. The setup for the
2D hand is illustrated in Figure 4 (top).

The state of the system at time step t is represented by
the vector st = [xl,t , yl,t , xr,t , yr,t , xobj,t , yobj,t , vobjx ,t , vobjy ,t ,βobj,t],
which records the position of left finger tip ul,t = [xl,t , yl,t], the
position of the right finger tip ur,t = [xr,t , yr,t], the position and
the velocity of the center of mass of the rotated object, uobj,t =

[xobj,t , yobj,t] and vobj,t = [vobjx ,t , vobjy ,t], and the rotated angle of
the rigid object βobj,t .

The action command at time step t is defined as the
concatenation of the two active fingers’ positions at =

[ul,t , ur,t]. The action sequence for two fingers is generated
by two cubic Bezier splines, each of which takes four control
points as its input. Thus, the action is parameterized by
θ = [pl,1, pl,2, pl,3, pl,4, pr,1, pr,2, pr,3, pr,4] ∈ R

16, which is
a vector containing all eight control points pf={l,r},i={1,...,4}

to create two cubic Bezier curves for two active fingers.
The corresponding action generation function is at =

[Bezier([pl,1, pl,2, pl,3, pl,4], t),Bezier([pr,1, pr,2, pr,3, pr,4], t))].

Bezier([p1, p2, p3, p4], t) = (1− t)3p1 + 3(1− t)2tp2

+ 3(1− t)t2p3 + t3p4, 0 ≤ t ≤ 1

Eventually, in the 2D simulation, we want to find families
of successful rotation trajectories generated from continuous
families of parameter θ . In this experiment, we explore the
parameter space using the sampling based approach outlined
in section 3, Algorithm 1, and Figure 2. Based on this setup of
2D simulation, if we can observe a variety of successful rotation
actions being generated via our method, than we achieve our goal
of creating diverse manipulation strategies for soft hands.

To examine our methods’ ability to capture families of
strategies for a soft foam hand, we set up three experiments to
enable the simulated 2D hand to rotate a slender cuboid shaped
object over different ranges of angles around an axis parallel to
our line of sight. Those ranges are A:(18–54), B:(36–72), and
C:(72–108), with all angles measured in degrees.

Criteria for success specifically were (1) all fingers must be
in contact with the rod at the end of the action sequence, (2) the
final rotation angle falls in the designated range, and (3) there are
no collisions between fingers in the action sequence. A filmstrip
illustrating a successful manipulation is shown in Figure 5.

During initial sampling, which included both stratified
sampling and collecting samples from the relaxed Gaussian,
1,990, 2,436, and 102 successful samples were collected for tests
A, B, and C, respectively. The number of successful samples
for test C is much lower in the initial steps due to the relative
difficulty of the task. The final number of successful samples that
were collected as a result of all of the model building processes
was 31,250, 27,172, and 28,078 for tests A, B, and C, respectively.
Running times were approximately 5.5 h for collecting initial
samples and 1.6 h for building, refining, and reducing variance
for a single choice of model with a single choice of m and k on a
1.4 GHz Quad-Core Intel Core i5.

Results for three different 2D simulation tests are shown
in Table 2. Each section of the table gives results for models
having different numbers of PCA dimensions m and Gaussians
k. The table shows the amount by which variance had to be
scaled in order to reach the required success rate. It also shows
the Mahalonobis distance of the resulting model for fitting the
test dataset.

As can be seen from the table, a number of models having
PCA dimensions from 7 to 13 and number of Gaussians ranging
from 5 to 11 are seen to perform fairly well. However, there are
some clear winners: the 11-dimensional model for test A and the
9-dimensional model for tests B and C, all with 7 Gaussians. Note
that models with very small PCA dimension or very low numbers
of Gaussians tend to perform poorly.

4.2. 3D Simulation
3D soft hand simulation was also created to test this method. The
setup for the 3D simulation is shown in Figure 4 (bottom). The
3D simulation is implemented with the SOFA stdlib library, a
simulation library for deformable objects (Coevoet et al., 2017).
We design a 3D soft hand geometry shown in Figure 4, which
has three cylinder shape fingers being planted on a roof shaped
palm. The three fingers are actuated by 9 vertical tendons planted
on their surfaces. We set the goal of our 3D hand to be rotating
an object to a certain degree with respect to the y axis. Then if
our method can capture the parameter space of 3D soft hand’s
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A

B

FIGURE 4 | Illustration of 2D and 3D Rotation Tasks (top and bottom, respectively).
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action accurately, it should generate actions that can successfully
rotate an object to a fixed range of orientations in a variety
of ways.

We record the state of the 3D simulation as a vector st = qt
at time t, where qt ∈ H is the quaternion of the rigid object
being rotated.

The action command at time step t is at =
[

at,0, . . . , at,8
]

,
where and at,i is the constraint length of the ith tendon at time
step t. The action command in our setup is parameterized by the
final actuation of all nine tendons θ = [θ0, . . . , θ8] ∈ R

9, where
θi is the final actuation of the ith tendon. We generate the action
command sequence by gradually shortening the tendons toward
their final length. Assuming that ith tendon begins at an actuation
of zero and length of li, the action at time step t can be rewritten
in terms of θ and l =

[

ł0, . . . , l8
]

as at = l+ t
T θ .

To investigate the action space of this simulated 3D soft
hand, we model the distribution of parameter θ with our method.
Therefore, if our model accurately captures the behavior of
the 3D soft hand, the samples drawn from our model should
result in different families of actions successful in achieving the
rotation task.

We set up experiments to rotate a long and thin cuboid
placed on top of a platform by 30 degree about the y axis. Criteria
for success for this simulation were (1) the rotation angle is
within the designated range (18–36 degrees), and (2) the rod
rotates about an axis with magnitude difference from vertical less
than a given threshold (0.2 in our experiment). Figure 5 shows a
filmstrip of one successful manipulation.

In this case, 1,170 successful samples were collected during
initial sampling, and the final number of successful samples that
were collected as a result of all of the model building processes
was 10,575. Running times were approximately 4 h for collecting

initial samples and 7 h for building, refining, and reducing
variance for a single choice of model with a single choice of m
and k on a 3.6 GHz Intel(R) Core(TM) i7-4790 CPU.

Results for models built with different k and m and 90%
success rate are shown in the bottom section of Table 2. Here, the
5-dimensional models performed well, with the model having 5
Gaussians achieving the best results.

4.3. Visualization of Processes and Results
To provide insight into the sampling process and results, we
present data collected for all four experiments at four stages
of our method. Figure 3 records the change of sampled data
distribution and size for all four rotation tests we set up above.
Each column of the figure shows the data collected by one test,
while each row corresponds to five different stages of ourmethod.

To facilitate the visualization of the parameter space, for
2D simulation we always choose to show the same 2D slice of
data. We found dimensions 7 and 8 to be an informative slice
for the 2D simulations, showing two disconnected modes in all
three cases. This slice compares the horizontal endpoint of the
left finger to the vertical endpoint of the left finger. The region to
the top right is a region where the fingers swap places, while the
larger region toward the bottom left contains more conventional
manipulations, often with much less finger movement.

The first row of the plot records the initial data we collect
from the stratified sampling process. The second row shows
additional samples drawn from the relaxed Gaussian sampling
stage (Figure 2, second row). The third row shows the samples
that have been collected after downsampling and then refining
each model (third row in Figure 2). Note how the sparsely
populated secondary region (representing swapping locations of
the fingers) has filled out in the 2D cases. The fourth row shows

FIGURE 5 | From left to right and top to bottom, frames captured from 2D and 3D simulated manipulations.
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TABLE 2 | Simulation results identifying the best models.

PCA Dim. m Num. Gaussians

k

Variance

Reduction Scale

r

Squared_Distance

2D simulation A: 18–54 degree rotation in 2D with 97% success rate

3 7 1.0 572.9

5 7 0.49 219.7

7 7 0.39 141.9

9 7 0.4 124.0

11 7 0.4 103.9

13 7 0.3 141.8

11 5 0.29 137.1

11 9 0.4 261.3

11 11 0.35 147.8

2D simulation B: 36–72 degree rotation in 2D with 97% success rate

3 7 1.0 646.3

5 7 0.6 305.5

7 7 0.62 179.7

9 7 0.51 118.0

11 7 0.501 158.5

13 7 0.495 168.0

9 2 0.51 317.1

9 5 0.5 150.7

9 11 0.55 145.2

2D simulation C: 72–108 degree rotation in 2D with 97% success rate

3 7 1.0 480.4

5 7 0.449 282.5

7 7 0.255 149.7

9 7 0.425 138.2

11 7 1.0 262.37

9 3 0.229 204.8

3D simulation: 18–36 degree rotation in 3D with 90% success rate

3 5 0.5 0.203

5 5 0.4 0.059

5 3 0.7 0.089

The bold rows are the models with best performance for the four different experiments in
Section 4.

1,000 new samples taken from the final GMM, labeled with their
successes and types of failure (100 samples for 3D). The fifth
row shows 1,000 new samples drawn after variance reduction
(last row of Figure 2), also labeled as successes and types of
failure (100 samples for 3D). Note how few failures remain in
row 5, because the desired success rate has been achieved through
variance reduction.

5. DISCUSSION

This section discusses the results presented in section 4. We want
to demonstrate first that the dimension reduction of � helps us
to simplify the object manipulation problem and create models
that better fit the space. Afterwards, we continue the analysis of
the results by analyzing the visualization of our manipulation
control planning strategies sampled from ourmodels in section 4.

Eventually, we discuss the method’s assumptions and its
limitations in solving manipulation problems with higher-degree
parameter spaces.

5.1. Benefits of Reducing Dimension of �
The benefits of dimension reduction are evident in our results
of 2D simulation experiments. We compare our best models
against the almost full-dimensional model built with parameters
k = 7,m = 13. The best models, which have minimum distance
from the test data, always have lower dimension than the 13-
dimensional model, in all three 2D tests (Table 2). Reducing the
dimension of parameter space � gives us better models than
those built on the full-dimensional space because it helps us to
limit the sampling space in the iterative data refinement process.
The lower dimensional space allows us to focus on exploring
the variance of � in a few major dimensions, while ignoring the
variance in these less significant dimensions of the space. On the
other hand, working in the full dimensional space requires us
to explore variance of all dimensions, distracting us from fully
exploring some major directions. Given limited sampling time,
eliminating the less significant dimensions in order to refine the
model resulted in more complete exploration and coverage.

5.2. Advantages and Disadvantages of
Multiple Gaussians
We dedicate this section to analyze the visualization of our
planning strategies, in other words, the process that the simulated
soft hand follows our strategies to rotates a rod, in the
Supplementary Videos.

The visualization shows the advantage that different
Gaussians of our model can generate different families of
motions. For example, for the 72–108 degree counter-clockwise
rotation in 2D, our best model has in total 7 Gaussians, 4 of which
initiate motions that keep the left finger at its original position
and let the right finger push upward, another Gaussian makes the
two fingers exchange their positions and the last two Gaussians
force the left finger to leave its original position until the very
last moment while letting the right finger to primarily control
the rotation of the rod in this process. From the animation, we
can tell that there are not only different clusters forming in the
parameter space � as shown in section 4.3, but also different
families of motions shown in the visualization of the strategies
sampled from our model in parameter space�. The visualization
demonstrates the variety of motions could be generated from
our planning. Moreover, it demonstrates that different Gaussians
of our model can generate different families of motions. Thus,
people can use ourmodel to find different manipulation planning
strategies and select certain strategies for the hand by picking
corresponding Gaussians of our model.

However this “strategy selection by Gaussian” process is
slightly inefficient, since each individual Gaussian would not
always give rise to motions significantly different from that of
another Gaussian. Thus, to determine the Gaussians that are
generating similar motions, we need to manually check the
animation of their samples. This process could be accelerated
by a metric that automatically evaluates the difference between
the Gaussians of our model so that it can help us to decide
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if two Gaussians generate similar strategies or motions. To
design this metric, we can test our method in a lot more
different simulation and physical context, so that more data
about the correlation between soft hand motions and the
parameter space could be gathered to help us understand
the relationship between these two space. However, this also
means that the metric might only be able to work with certain
dynamics model being assigned to either the simulation or the
physical hand. The environment/dynamics model assumed by
the metric would reduce the application scope of our method
and defies our approach’s model-free nature. Therefore, for
now, the manual process is still beneficial since it keeps our
method model-free and applicable to a wider range of soft hand
planning scenarios.

5.3. Assumptions and Limitations
Our assumptions about the problem limit our method to only
controllers whose parameter space is continuous. On top of that,
our method is incapable of discovering successful parameter
θ that are far from the successful data 2succ collected in the
initial full-space sampling process. This is because later steps
of constructing the GMM assume that we have already fully
explored the boundary of the parameter space in the initial full-
space sampling process and proceed to augment the successful
data set by filling in the space around existing successful samples.
Thus, after we finish the initial full-space sampling process, little
variance would be added to the data set later in our method.

Because the coverage of our model is limited to the
variance of successful data we discovered in the full-space
sampling process, our method would perform less efficiently
for very high dimensional parameter spaces. High-dimensional
parameter spaces make it harder to hit some successful data in
the full-space sampling process, and limit the variance of motions
that our final GMM can generate. Therefore, to make our method
successful for a high dimensional parameter space, we need to
gather more samples from stratified sampling, increasing the
running time required for our method.

5.4. Future Directions
There are several future directions for us. One is to further
validate the robustness of our method by setting up the real
world scenario that our simulation tries to emulate. Testing this
method on manufactured soft robots will enable us to evaluate
the method’s effectiveness for real-world applications.

Another direction is testing out more manipulation
tasks for our method. In our current experiments, we only
test our method’s performance in rotating objects. However,
there are many other useful tasks could be considered as our
manipulation goals, e.g., grasping, throw, and catch. With more
manipulation tasks’ models being learned, we can combine these
unit manipulation tasks into some more complex behavior.

Also, our method’s application can be extended to
optimizing design of soft robotic hands. The model we
constructed can help evaluate the effectiveness of soft robotic
hands’ design in achieving certain manipulation goals.

One concrete example of future work is inspired by the
results shown in Figure 6. The 10 degree-of-freedom soft hand
in this figure was specifically designed by Coulson (2020) to
accomplish in-hand manipulation tasks. Some examples are
shown in the figure. These manipulations were programmed
in an open loop manner. Investigation of the entire suite of
manipulations showed that the majority could be performed
well on the real robot with two keyframes, operating in a
reduced-dimensional space of only three dimensions. The set of
behavior families corresponding to these manipulations could
thus be created using a six-dimensional parameter space �

and explored in simulation, on the robot, or using a mix
of the two modalities, in order to move this collection of
pre-programmed capabilities toward a suite of action families
that can robustly and flexibly accomplish these manipulations.
Apart from the expected value of improving the robustness and
flexibility of the interactions that were previously programmed
open-loop, competing hand designs can be compared and
the hand refined based on the resulting volumes of action
spaces generated.

FIGURE 6 | Ten degree-of-freedom dexterous soft foam robot hand developed by Coulson (2020), along with some of manipulations it can perform. The technique

described in this paper can be used to identify continuous families of manipulations centered around the actions shown in the future.
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We look forward to continuing this line of research and
building on these efforts. We believe there is substantial value
in attempting to represent a global space of hand capabilities
and look forward to creating such representations for soft
robot hands such as those represented in this paper. We note,
however, that the approach is fully general and can be applied
to any robot where it is possible to sample and evaluate an
action space.
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