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There has been great progress in soft robot design, manufacture, and control in recent years, and soft
robots are a tool of choice for safe and robust handling of objects in conditions of uncertainty. Still,
dexterous in-hand manipulation using soft robots remains a challenge. This paper introduces foam
robot hands actuated by tendons sewn through a fabric glove. The flexibility of tendon actuation allows
for high competence in utilizing deformation for robust in-hand manipulation. We discuss manufac-
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turing, control, and design optimization for foam robots and demonstrate robust grasping and in-hand
manipulation on a variety of different physical hand prototypes.

Keywords: Grasping and Manipulation, Novel mechanism design, Physical interaction, Soft robots,
Tendon-driven mechanism design, Robot hands.

1. Introduction

In industrial applications, robotic systems have long been successfully applied for tasks
such as loading of machines or spot welding. Reasons for this are that such tasks are highly
repeatable and are usually executed within separate workspaces for humans and machines
to avoid injuries. In contrast, future robotic systems will need to operate safely, robustly
and adaptively in complex unstructured environments.

An emerging class of robots designed to address this problem are soft robots which
are made from intrinsically soft materials. Apart from being safe, the softness and com-
pliance achieved by these robots can be exploited to reduce the complexity of interactions
with the environment. For example, the compliance of soft robots allows them to adapt to
geometric variations without the need of complex low-level control. Such an exploitation
of compliance can be observed in many biological organisms and is therefore a promising
characteristic. Soft robots have shown great ability to conform to object surfaces, produce
solid grasps, and handle fragile objects gently. However, achieving human level dexterity,
including dexterous in-hand manipulation, remains a challenge.

In this paper, we introduce fully soft foam robots actuated by tendons routed through
a fabric glove. Because these hands are constructed only of foam, they are lightweight
and compliant. Tendons can be routed anywhere along the surface of the hand, allow-
ing for complex families of deformations and facilitating dexterous in-hand manipulation.
We demonstrate the capability of foam hands by showing power and precision grasps and
in-hand dexterous manipulations on several different robot hand geometries (Figure 1, bot-
tom). Contributions of this paper include:

• Fabrication methodology for foam robots, tendon actuated soft robots, using sim-
ple molding and casting techniques and driven by servo actuated tendons,

• Fine-tuning and validation of a soft robot simulation framework,
• Evaluation and comparison of different control strategies for solving the inverse

kinematics problem of foam robots,
• Optimization and automatic design of non-trivial tendon routings to achieve de-

sired tasks,
• User study results demonstrating human ability to route tendons to achieve desired

tasks and comparison to results from the optimization algorithm,
• Experiments and demonstrations that serve to illustrate the capabilities of these

robots, such as complex manipulations, sub-millimeter repeatability, and continu-
ing functionality over 1-year later,

• Discussion of design challenges and methodology insights that shed light on the
capabilities, drawbacks, and potential of this class of robot.
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Fig. 1. (Top) Manufacturing pipeline. (Middle) Positives from life casting, CAD designs, and algorithmic pro-
cesses; a 3D printed mold. (Bottom) Hand prototypes designed and developed using this process.

This paper builds on two conference publications by the authors1, 2 and contributes sub-
stantial new material, including an algorithm for tendon optimization (Section 6, Figures 9
to 11), a user study to evaluate the ability of human subjects to achieve high quality ten-
don routings (Section 7, Figures 12 and 13), additional examples, and expanded discussion
throughout.

2. Related Works

Soft robotics has shown great potential for producing versatile robots for a variety of tasks3

that are inherently safe4 due to their compliant nature, making them ideal systems for phys-
ical human interaction.5–7 Over the years, there have been many interesting studies in soft
robotics that explored variations in geometry,8 fabrication techniques,9 and actuation.10–12

Textiles, inflatables, and foams have been investigated as materials to make robots more
suitable for human robot interaction scenarios.6, 7, 13 A variety of soft materials have been
investigated and used in medical applications for rehabilitation,14 wearables,15, 16 exoskele-
tons,17 toys,18, 19 robots that locomote and grasp,20–22 flexible sensors23, 24 and artificial
skin.25, 26

Fluidic elastomer actuators (FEA) and electroactive polymers comprise the most
commonly used actuation mechanisms in soft robotics.27–34 Controlled stiffness can be
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achieved from low-melting point alloys, shape memory materials, and granular jamming.35

Controlled adhesion may be dry adhesion,36 suction cups a or electroadhesion.37 A num-
ber of fluidic elastomer actuators have successfully been used in anthropomorphic hands
and grippers.8, 21, 27, 38–41 Dexterous soft robot hands have been constructed.8, 42 However,
dexterous manipulation utilizing completely soft hands remains a novel field and a grand
challenge.

Most tendon-driven soft robots combine rigid links with elastic hinges.43–45 Completely
soft tendon-driven systems have been developed as well,20, 46, 47 although this technology is
not commonly applied to soft robot hands. The research most closely related to ours is the
work by Bern et al.18 who developed tendon-driven plush robots using textiles. However,
these robots are intended as toys for children, and are not suitable for dexterous manipu-
lation. We move to use a cast foam interior, rather than stuffing, to improve deformation
behavior and structure in more complex 3D geometries. Furthermore, we investigate new
fabrication techniques that make use of well-developed practices from the artistic prop and
textile industries.

In terms of soft robot hand control, previous works have particularly studied the prob-
lem of inverse kinematics (IK).48–50 Model-based controllers rely on the establishment of
a kinematic model from which the actuation can be directly inferred for the desired config-
uration.38, 51–54 Model-free approaches utilize data to fit models to observed behavior.48, 55

We compare a set of alternative approaches to determine the most accurate approach to use
for modeling the foam robots introduced in this paper.

For optimization of soft robots, Deimel and colleagues56 propose a co-design method
that simultaneously optimizes morphology and control of a pneumatically actuated soft
hand. Reiffel et al.57 search for morphology, material and control parameters. Other re-
search concerned with optimizing material parameters has been introduced by Hiller et
al.,58 who obtain locomotion of their designs by finding heterogeneous material distribu-
tions with the help of evolutionary algorithms. Inouye and colleagues59 optimize anthro-
pomorphic tendon-driven robotic hands containing rigid links, focusing on improving the
grasp quality of the designs and show that robotic hands can even exceed human grasping.
Our paper explores a similar approach in the context of optimizing tendon routings on a
fully soft robot hand.

3. Fabrication

We present in this section a set of fabrication techniques and mechanisms used to create
a soft multi-fingered hand. To achieve the goal of ‘true’ softness, the robot is constructed
of only soft foams, knitted textile skins, fibrous tendons, and flexible PTFE tubes for cable
routing. All rigid mechanical components are housed away from the hand. To make the
process easily accessible to non-experts, the fabrication methodology was chosen to be
low-cost (< $100), and relies on easy to follow casting techniques that can be readily found
in step by step internet video tutorials. The mechanical devices we use consist of off-the-

aFesto Co.Ltd. Octopus Gripper
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shelf components, 3D-printed parts, and laser cut acrylic, and so should also be accessible
to the novice user.

Creating the Mold. A hand geometry and posture is chosen, evaluated in simulation, and
fine-tuned prior to manufacture. We have used life casting, algorithmic techniques, and
CAD software to produce these initial hand geometries (Figure 1, middle). Using the hand
geometry the user can either create a mold around a physical representation of the hand (or
an actual human hand) or utilize CAD software or automatic mold generation methods60, 61

to yield models that can be 3D-printed or machined.

Casting Foam Hands. A two-part urethane foam compound is used to cast the final foam
hand. A variety of densities are available; we most preferred FlexFoam-iT! X, finding it a
good balance of strength and compliance. The behavior of the foam is not always intuitive:
while casting humanlike hands we found that slightly thicker sections of the palm were
much stiffer, and slightly thinner sections of the fingers were much softer. Therefore, the
hand geometry should be carefully considered to avoid unwanted behavior. While not nec-
essary, the use of a laboratory mixing machine guarantees very consistent results from cast
to cast. We are able to go from a chosen rest pose or model to a cast foam hand in under 24
hours for a cost of a approximately $50 for the mold and only a few dollars for each foam
hand afterward.

Gloves and Sewing Tendons. A textile exterior, e.g. a glove, is used as a skin for the foam
hand, acting as a layer conducive to sewing in tendons for actuation. For anthropomorphic
hands, off the shelf gloves can be used, but for general soft robots, sewn skins from cut
felt can be used. In our case, gloves were custom knit for each hand geometry using auto-
matic processes.62 The custom gloves can be knit in under an hour with many choices of
materials, greatly complementing our rapid prototyping approach. Whatever choice of skin
is selected, it is then laminated to the foam core to prevent slip using spray-on upholstery
adhesive b. Tendons are realized in practice with PTFE coated braided fishing line, and are
sewn into the glove with a typical sewing needle, and fixed at the ends with finishing knots.

Robot Chassis. The gloved hand is fixtured to a laser-cut acrylic base with hot-melt glue.
The tendons are routed through PTFE tubes along the base of the hand to minimize friction
where they then interface with servo driven winches. Additional mounting points are placed
on the acrylic base so that the PTFE tubes can be fixtured with cable ties. The assembly is
detailed in Figure 1, top.

4. Simulation

Because they are comprised of uniform flexible material, the foam hands made using our
process can be well simulated using standard finite element techniques (FEM). We utilize
these simulations for interactive design, control, optimization, and learning. For the simu-
lation, we follow the approach of Bern et al.19 who use a finite element model to capture the

b3M Adhesive 23
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deformation behavior of soft plush toys. We transfer their representation of soft plushies
consisting of a series of contractile elements (modeled as stiff unilateral springs) to our
foam hands. Each foam hand is modeled as a discrete set of nodes denoted as x for the
statically stable deformed pose. The total deformation energy of the system is defined as:

E = E f oam +Econtractile +Epins

where E f oam is the energy due to deformations of the simulation mesh, Econtractile is the
strain energy stored by the contractile elements, and Epins models the behavior of stiff
springs that connect a small number of simulation nodes to world anchors in order to elim-
inate rigid body modes. The elastic behavior of the foam is modeled using linear finite
elements with a compressible Neo-Hookean material model. Tendons are modeled as con-
tractile elements that abstract the contraction of a tendon as changing the rest length of the
underlying unilateral spring model. A contractile element is defined as a piecewise linear
curve with two endpoints (xs,xt ) and n intermediate vertices (x1, . . . ,xn). We assume that all
points of contractile elements are bound to nodes of the simulation mesh. The initial rest
length l0 of a tendon is defined by the sum of distances between the vertices as

l0 = ||xs− x1||+
n−1

∑
i=1
||xi− xi+1||+ ||xn− xt ||

The contraction level αc of each tendon describes the contracted length as

lc = l0 · (1−αc)

In the following, the word routing refers to the choice of endpoints and intermediate ver-
tices of each tendon. The resulting deformation for a tendon routing with the contractions
αc is calculated by minimizing the total energy of the system using Newton’s method. A
detailed description of this step and the calculation of deformation energy can be found in
the work by Bern et al.19 We tuned simulation parameters through observed visual feed-
back to match qualitative behavior of the foam hands in simulation with the behavior of
physical hands. The obtained values of the material parameters are shown in Table 1 and
are validated with motion capture data in Section 8.

Table 1. Material properties used in FEM Simulation

ρ [kg/m3] E [Pa] ν

160 3e6 0.25

5. Control, and Learning

The softness and flexibility of the foam hand is advantageous for secure grasping and robust
in-hand manipulation. However, working with such a hand requires the application of new
modeling and control techniques.

Telemanipulation: Learning on the Robot. In the most basic scenario, we have only the
robot itself, with a given arrangement of tendons and motors, and a device with which
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the user wishes to control the robot. With this equipment, we must learn a mapping from
user gestures or poses to motor actuations that deform the robot in the desired manner.
We explore a straightforward mapping, where the user wears a CyberGlove and controls an
anthropomorphic hand that is similar to their own. However, we wish to allow for flexibility
when the geometries of the human and robot hands may differ significantly.

We take inspiration from research on puppeteering in computer graphics. For example,
Seol and colleagues63 present a method that allows the user to specify how they wish to
move in order to create certain character motions. As an example, they might choose to
swing their arm to move an elephant’s trunk. In the case of Seol et al.,63 an approach based
on feature mapping is used to convert from user motion to character control parameters.
In our case, we use linear regression to create a map from CyberGlove sensors to tendon
activations for the hand.

Our approach works as follows. First, a sampling of tendon activations is used to exe-
cute various poses of the foam hand. An operator imitates those poses while wearing the
calibrated CyberGlove, and the corresponding joint angles of the human hand pose are
recorded. Both random tendon activations and tendon activations corresponding to finger-
thumb oppositions and grasping postures were used to build a training set of 120 hand
poses. For generalization purposes, each pose was recorded 5 times.

A regression model, which takes the 22 joint angles from the CyberGlove as input
and predicts the corresponding tendon activation levels was trained. The model uses Ker-
nel Ridge Regression with a linear kernel. The average RMS error achieved by the model
between the measured and the predicted normalized tendon actuations was 0.0026, with
normalized tendon actuation ranging from zero to one. A normalized actuation value of
zero refers to a loose tendon and a value of one specifies the maximum actuation, which
was set individually for each tendon by qualitative observation.

Fig. 2. Top) Input poses from user wearing a CyberGlove. Bottom) Output poses from the learned mapping. Left)
Poses taken from the training set. Right) Poses not included in the training set.

Even with a small training set (120 recordings), the learned model was able to reproduce
a variety of poses with high accuracy based on qualitative evaluation. Figure 2 shows a
comparison of poses supplied by an operator and the poses realized by the foam hand.
Both poses taken from the training set and new poses are included.
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We note that in order to achieve such results, the careful selection of training poses is
crucial. While our first approach was to sample poses with only one finger contracted at a
time, we gained the insight that especially for coupled motions such a model does not gen-
eralize well. In terms of posing this means that fingertips of opposing fingers do not touch
or align for example. Adding specific poses that include coupled tendon contractions, as
shown in the trained poses of Figure 2 can significantly increase generalization. Therefore
we suggest to use poses that are related to the task that needs to be executed. Using just
three additional task-specific poses (shown in Figure 2 on the left) the learned mapping
was also precise enough to perform telemanipulation tasks, including grasping objects and
in-hand manipulations. Since during the described sampling process we rely exclusively
on the person wearing the CyberGlove to match the robot poses with their hand, this ap-
proach may be influenced by subjective impression of how well poses match. A strong
advantage of this technique however is the possibility to easily create mappings between
the human hand and different hand morphologies. Given that the human operator can create
a corresponding hand pose for each robot hand pose, this technique can even be applied to
non-anthropomorphic foam hands.

Learning in Simulation. Learning on the robot is straightforward and was successful.
However, the amount of test data that can be collected is limited and similarity in poses is
only qualitative and depends on the patience, care, and point of view of the user. If we can
learn a mapping from poses to actuations in simulation, the comparison between test poses
and learned poses can be much more exact, and we can explore how additional data may
improve the results.

Collecting data in simulation is faster and easier than collecting data on the physical
robot. Making use of the accessibility of large amount of data from the simulation, we are
able to apply learning-based methods with complex models. These methods take the con-
catenated fingertip positions as the input and output the tendon activation that is expected to
pose the hand correspondingly. Four different methods are applied and compared: 1)Near-
est neighbor, 2)Linear ridge regression, 3)Neural network using supervised learning, and
4)Deep reinforcement learning.

The Nearest neighbor method serves as a straw-man approach. It takes the tendon ac-
tivation of the pose that is nearest to the desired pose in the pose space based on Euclidean
distance and simply returns that tendon activation as the result. Linear ridge regression
is supplied in part because it was used for learning for telemanipulation as previously de-
scribed. It is perhaps the second simplest sensible approach beyond Nearest Neighbor. We
use a linear model with an additional L2 ridge regularizer. A neural network using super-
vised learning adds additional degrees of freedom and nonlinearity. We include this model
to determine whether the additional complexity can improve fit to the data. Our Neural Net-
work model is constructed with four intermediate layers, each of which has 30 units and
ReLU non-linear activations. The activation of the output layer is tanh(x) to match a linear-
normalized range [-1,1] of the output activation. The training process runs 300 epochs with
a batch size of 20, a learning rate of 0.001 and Adam optimizer with the typical parameter
values (α = 0.001, β1 = 0.9, β2 = 0.999, ε = 1× 10−8). Deep reinforcement learning
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Fig. 3. Anthropomorphic foam hand prototype in its rest pose. Left) physical foam hand prototype, Middle) Scan
of the prototype, Right) Finite element mesh used in simulation.

can be considered as an alternative approach to learning a nonlinear model. Based on the
success of learning IK on both rigid robot arms and hands,64 deep reinforcement learning
is expected to transfer to soft robots. In particular, we apply the deep deterministic pol-
icy gradient65 algorithm combined with hindsight experience replay.66 The shaped reward
function is the negative of the average distance error over all fingers. Hindsight experi-
ence replay can be considered as a way to include additional targeted results, as “failed”
solutions are reinterpreted during learning as successful solutions to a different problem.

A simulation model of the physical anthropomorphic foam hand shown in Figure 3
(Left) is obtained by using Autodesk ReMake67 to generate a surface mesh from approxi-
mately 50 images of the hand taken with a smartphone. We then run TetGen68 to build a
3D finite element mesh of the hand, shown in Figure 3 (Right).

To compare the sample efficiency of all four methods, we use the same datasets for both
training and testing. The training dataset collects 100,000 poses while the testing dataset
contains 100 poses, all of which are pre-generated in the simulation by drawing randomly
from possible tendon activations.

We plot the performance (average distance error in centimeters) with respect to the
amount of data used in training. The comparison plot is shown in Figure 4. When training
with less than 100,000 samples, the training data is extracted in sequence from the large
100,000 dataset. The plot shows that linear ridge regression is outperformed by all other
approaches especially for large datasets, implying that additional model complexity is use-
ful for this test dataset. Overall, and to our surprise, the nearest neighbor method shows the
best performance and the best sample efficiency. However, results from nearest neighbor
approaches are typically not smooth for datasets that do not comprehensively cover the
space of tendon actuations. Lastly, deep reinforcement learning outperforms supervised
learning. The main difference between these two approaches lies in the meaning of the loss
functions. In supervised learning, the network is trained to fit the target tendon activations
from the training data, hoping that the trained model can be generalized to unseen poses.
In contrast, the objective of reinforcement learning is to maximize reward and thus directly
minimize the average distance error. As a result, the loss function used in reinforcement
learning has better expressiveness for our ultimate learning task - matching the target pose.



February 4, 2020 17:6 WSPC/INSTRUCTION FILE output

10 D. Bauer et al.

Fig. 4. Performance of four different methods to learn IK in simulation.

For example, reinforcement learning can adapt to a situation where some tendon activation
levels show greater sensitivity than others for changing the final target pose and thus should
be learned with greater accuracy.

Another reason is that reinforcement learning learns from sequential steps. Though the
policy network performs poorly at the beginning of learning, every single step it takes can
be used to improve itself thanks to the actor-critic mechanism. Furthermore, the usage of
hindsight experience replay provides richer information from unsuccessful steps; unsuc-
cessful steps in effect are added to the training set, providing additional information for
learning the final mapping from pose to activation levels.

6. Tendon Optimization

The previous section showed that we can use the simulation to learn a mapping from tendon
activations to hand deformations given a foam hand morphology and a tendon routing.
However, defining a useful tendon routing is not an easy task.

We build a tendon optimization approach around the idea of randomly placing a number
of tendons on the hand mesh, contracting them and comparing the resulting pose to the
desired goal pose. As core algorithm we use a Metropolis-Hastings-Algorithm,69, 70 which
either accepts or rejects such a randomly sampled tendon routing based on its deviation
from a goal pose. To deal with the large amount of local minima, we additionally introduce
Simulated Annealing which adopts the concept of cooling a temperature. This allows the
algorithm to accept solutions in the early stages that are worse than previous solutions and
thus, escape local minima.

While the temperature T is larger than a minimum temperature Tmin the algorithm iter-
atively modifies its current state, calculates the associated costs and then either accepts or
rejects the new state. We define a state using the tuple Sk = {x,T ,A} with x containing the
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nodal positions of the contracted mesh, T the set of tendons and A the set of contractions.

Initialization. A tendon t is represented by a number of waypoints {x̂0, ..., x̂n} along which
it is routed. We term such points anchoring nodes in the following. For each tendon the op-
timization is initialized by sampling n anchoring nodes from a discrete uniform distribution
U (0,N) with N being the number of nodes in the mesh. After sampling, the corresponding
tendon is placed on the mesh by connecting the anchoring nodes along the shortest path on
the mesh. The initial contraction level α0 of each tendon is a hyperparameter with values
ranging from 0.0 to 1.0.

Creating new states. To create new states we sample a new tendon routing Tk+1 and new
contraction levelsAk+1 simultaneously. To create new tendon routings, one anchoring node
from each tendon is sampled based on a heuristic that prefers transitions to adjacent nodes
over transitions to nodes that are located further away.

This is realized by creating a set of neighboring nodes Mk which are in direct or
close adjacency to the anchoring node that is being changed. First, the adjacency depth
d ∼ U (0,D) is sampled from a discrete uniform distribution, with the maximum depth D
serving as a hyper-parameter. Then all nodes which are located within this adjacency are
added to the setMk. Finally, the new anchoring node is sampled uniformly fromMk.

In addition to sampling anchoring nodes, new contraction levels Ak+1 are created by
sampling variations δ from a normal distribution δ ∼ N (0.0, 0.05) and applying them to
the current contraction levels as follows:

Ak+1 =Ak +δ . (1)

Evaluating Candidate Solutions. Our main goal is to obtain tendon routings that can
achieve certain grasps, thus the cost ηt of a state is primarily evaluated in terms of whether
one or several goal poses are achieved. Each goal pose is described as a complete hand
pose. We evaluate the cost of a state Sk based on the average spatial deviation between the
target mesh xtarget and the current solution xk. The spatial cost ηs is defined as

ηs = ||xk−xtarget ||2L2,1
. (2)

On the physical robot, we have to connect tendons to the motors and sew tendons into
the glove. This implies that one end of each tendon has to be pinned to the wrist and
tendons should not be too erratic to minimize friction. To ensure these two conditions we
additionally introduce the following constraints to our algorithm:

• The first node of each tendon has to run through a pinned node at the base of the
mesh
• An additional regularizer cost term is introduced that penalizes large curvatures

of tendons:

ηr = T λr0
k (3)

The total cost ηt of a state is therefore defined by

ηt = λsηs +λrηr (4)
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with λs, λr0 and λr serving as a hyper-parameters.

Acceptance of new states. New tendon routings and contractions are either accepted or
rejected based on their total cost ηt . We implement a typical acceptance criterion for sim-
ulated annealing that always accepts a new state if their cost is lower than the cost of the
previous state. The probability φacc of accepting an uphill move depends on the tempera-
ture T and the magnitude of the cost difference ∆η = ηt(xk+1,Tk+1)−ηt(xk,Tk) resulting
in

φacc(ηt,k,ηt,k+1,T ) = e−
∆η

T . (5)

Meta-Structure of Algorithm. To be able to generate designs quickly we run our opti-
mization on multiple CPUs. Depending on the number of available CPUs we initialize a
number of N particles that each run the same algorithm. Each particle is initialized inde-
pendently with a random tendon routing and contraction. We allow particles to share their
current best solution with other particles after a number of Nepoch iterations. We use the
size of the neighborhood and the length of each epoch to balance the level of exploration
and exploitation of the design space.

7. Tendon Routing User Study

To allow users (and ourselves) to experiment with tendon routings, we created a user inter-
face on top of the finite element simulation. Our interface contains the following features.
Users can (1) pick nodes and drag the mesh into desired configurations to create target
poses; (2) quickly pick a set of nodes along which tendons are routed; (3) add, alter and
remove tendons from the design; (4) create hand motions by contracting tendons and (5)
record and play back the created motion sequences.

To evaluate the difficulty of manually specifying tendon routing and to gather ground
truth for the tendon optimization, we asked 20 participants without a soft robotics back-
ground to find tendon routings for a soft foam hand in simulation in order to enable that
hand to achieve a certain target pose. We asked each of the 20 participants to create ten-
don routings and contractions for five grasps (Lateral Tripod Power Grasp, Medium Wrap
Power Grasp, Prismatic 3-Finger Precision Grasp, Keypinch Power Grasp, Writing Tripod
Precision Grasp). For each pose we set a time limit of 10 min and participants were allowed
to place up to 10 tendons per grasp. Figure 5 depicts the general setup of the graphical user
interface and shows the 5 target grasps.

8. Experiments and Results

Repeatability. To test repeatability of the foam manufacturing process, a planar two-
fingered hand, shown in Figure 6 (left) was fitted with a glove and 4 tendons: 2 flexors
and 2 extensors per finger. Using a camera, the trajectories for 6 different grasps were
recorded for 800 trials each. The first 50 trials were discarded as a ‘break-in’ period. From
the remaining 750 trials, 50 random trials for each of the 6 grasps were selected for anal-
ysis. Seven black dots 6mm in diameter were attached along the gripper before testing to
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Fig. 5. (Top) Screencast of a user creating an exemplary tendon routing. The user’s task is to place and contract
tendons to match the target hand pose (depicted in darker colors). The current pose of the simulation mesh is
shown in bright colors. Within the sequence, the user places four tendons on the mesh and select contraction
levels using the slider toolbar on the top right. (Bottom) Target grasps from left to right: Lateral Tripod Power
Grasp, Medium Wrap Power Grasp, Prismatic 3-Finger Precision Grasp, Keypinch Power Grasp, Writing Tripod
Precision Grasp.

be used for motion tracking. The dots were tracked by applying a Grayscale Conversion,
Gaussian Blur, Prewitt Edge Filter, and Hough Circle Transform, in sequence, to each
frame. Then the circles were sorted using Nearest Neighbors. The final fingertip positions,
pgt , were recorded for each grasp, g ∈ {1,2, . . . ,6}, and trial, t ∈ {1,2, . . . ,50}. The nom-
inal positions for each grasp were taken as the mean over the trials, pg = (∑i∈t pgi)/50.
The error was computed as the L2 distance of the fingertips from their nominal positions,
egt = ‖pg− pgt‖2. The histogram of errors for all 600 trials is shown in Figure 6 (middle).
Upon inspection there appears to be several outliers in the data; we believe that these cor-
respond to the rare instance that motor commands are not delivered due to a faulty serial
connection, and that in the future this can be avoided with a simple program loop to verify
motor command delivery. The distribution metrics for the complete data and inlier data
(computed with the very conservative µ±3σ filter) are given below in Table 2. In the fu-
ture, higher resolution motion capture should be used, as many of the error measurements
were sub-pixel in length. Finally, by plotting the fingertip locations in order, we notice
some drift across the 800 trials, on the order of tenths of millimeters as shown in Figure 6
(right). We believe that this is due to some yield, i.e. stretch, in the textile components, and
can be reduced in the future by using stronger yarn in the glove knitting process.

Table 2. Repeatability statistics for planar gripper.

Values in [mm] µ σ median max

All Trials 0.1738 0.2293 0.1307 3.6360

Inlier Trials 0.1576 0.1210 0.1296 0.8160

Strength of the foam hands. To test strength of the foam hand, caging grasps were per-
formed on a tennis ball with two separate hands. The pullout force was measured to be 3.2N
and 5.8N, respectively, test setup is shown in Figure 7. The difference in strength is pri-
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Fig. 6. (Left) Planar gripper with markers. (Middle) Histogram of fingertip repeatability over 600 trials. (Right)
The fingertip position was observed to drift (shown as blue to yellow) over 8000 grasps.

Fig. 7. The strength of caging grasps was measured by pulling on a grasped tennis ball until grasp failure.

marily due to the hand geometries, in that grasp failure occurred due to foam compression
rather than lack of tendon strength (i.e. motor torque) indicating that a more ‘opposable’
thumb is important for power grasps.

Validation of the FEM simulation model. To quantify the accuracy of our simulation
framework, we compare fingertip trajectories of a simulated and a physical foam hand
robot. The deformations of the foam are tracked using a Vicon Motion Capture system.
The physical foam hand robot used in this experiment is a non-anthropomorphic hand
with four fingers and 10 tendons. Each finger is controlled by a pair of antagonistically
routed tendons acting as flexor and extensor. In order to introduce abduction and adduction
motions, we placed two additional tendons on the left and right side of one finger. We
record fingertip trajectories of our four-fingered foam hand using a Vicon motion capture
system with 12 cameras. To get a robust estimate of the position and to prevent occlusions
we place four markers around each fingertip as shown in Figure 8, left. For registration
purposes we additionally place markers on the platform on which the hand is mounted
and alongside each finger. After the experiment the recorded markers are registered on the
3d mesh. This is done using a standard ICP algorithm. We define each fingertip position
~p j with j = {1, . . . ,4} as the mean of the corresponding markers k with k = {1, . . . ,4}, with
a distal offset of 5mm normal to the plane spanned by the four markers:~p j =

1
4 ·∑

4
k=1 ~p jk +

0.005 · ~n j. The RMS error describing the euclidean distance between the aligned point
clouds of our ICP registration was 4.05mm.

In terms of material parameters for the FEM simulation (mass density ρ , Young’s mod-
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Fig. 8. (Left) Four-fingered hand with Vicon markers. (Left center - right) Simulated hand and motion capture
trajectories for an extensor tendon moving from 10%(left center) to 50%(right) tendon contraction. Fingertip
positions recorded by the Vicon system at each contraction level are averaged over all five trials and marked as
large green dots, fingertip positions of the simulation model are marked as red dots.

ulus E, Poisson’s ratio ν) we used the values found in Table 1.
We ran 5 trials in which each tendon is repeatedly contracted from 0% to 50% of its rest

length in steps of 10%. The tendon rest length is distinct for each tendon and is computed
in simulation.

A motion sequence of a contracting extensor tendon moving the simulated hand through
the waypoints at 10%, 30%, and 50% contraction is shown in Figure 8. The mean position
error for all fingers including all activation levels is 0.626cm. For each individual finger
median error and the quartile deviations converge to similar values at all contraction levels.
This suggests that even large deformations do not significantly decrease the accuracy of
our model. In general we identify the following sources of position errors: 1. small devi-
ations between tendon routings in simulation and reality, 2. tendon slack, 3. registration
errors in motion capture system, 4. friction between tendon and glove, and 5. slight relative
movements of foam core and glove during actuation. Most of these errors can be mitigated
during fabrication of the hand, for example by using teflon-coated tendons or different
gluing techniques. The results of this evaluation suggest that our model predicts foam de-
formations sufficiently well for simulation based learning of mapping from desired pose to
tendon actuation.

Tendon Optimization Results. First, we verify that the optimization successfully finds
optimal solutions to our problem by manually placing and contracting one tendon on the
index finger of the mesh and using the resulting pose as a target. Given the target mesh
depicted in Figure 9 a) the optimization yields exactly the same tendon and contraction
that was used to create the target.

Table 3. Tendon optimization hyper-parameters used for adjacency depth and regularizer cost term

D λr0 λs λr

4 5.0 1.0 1.35

In order to achieve a wide variety of grasps we then optimize 10 tendons for 6 different
poses (Ventral Power Grasp, Palmar Power Grasp, Lateral Tripod Power Grasp, Writing
Tripod, Power Sphere Grasp, Prismatic 3-finger Precision Grasp) that have been recorded
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a) b)

Fig. 9. Optimization result for a target pose created by contracting one tendon on the index finger. a): Target pose.
b): Pose found by optimization.

using the CyberGlove of the telemanipulation system described in Section 5. We use the
hyper-parameters presented in Table 3. The solution we obtain consists of a tendon routing
and 6 corresponding sets of contraction levels for each pose.

We build the physical robot based on our fabrication process introduced in Section 3
and transfer the contraction length lc to motor activation levels M in degrees according to

M =
(l0− lc)

πdp
360deg (6)

with the tendon rest length l0 and the pulley diameter dp.
The physical robot can closely match the poses created by our optimization in simula-

tion as shown in Figure 10. With this hand we were able to successfully execute two of the
6 target grasps, the lateral tripod and the writing tripod (Figure 11).

Fig. 10. Poses generated by tendon routing optimization in simulation (bottom) and on the physical foam hand
robot (top).

Target Simulated Grasp Foam Hand Leveraging 
Optimized Solution

Target Simulated Grasp Foam Hand Leveraging 
Optimized Solution

Fig. 11. Two examples of target grasps and the corresponding foam hands obtained by tendon optimization.
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Fig. 12. Distribution of mean distance of nodes from
target pose for all poses created by users in the study.
The mean nodal distance achieved by the optimization
is plotted as a blue dot. 1: Lateral Tripod , 2: Medium
Wrap, 3: Prismatic, 4: Keypinch, 5: Writing Tripod.

Table 4. Comparison of user study results (S) and opti-
mization (O) based on the mean distance error of nodes
from target pose for each grasp type.

Grasp Type S [cm] O [cm]
Lateral Tripod 1.03 0.71
Medium Wrap 1.36 0.73
Prismatic 3-finger 1.08 0.71
Keypinch 1.60 0.86
Writing Tripod 1.11 0.77

User Study Results. Figure 13 shows a compilation of poses created by users and the
optimization. Column (I) hereby depicts the target pose while column (II) shows an overlay
of all poses created by users for each target grasp. User-created poses with the lowest
spatial deviation from the target pose and poses resulting from optimization are depicted
in column (III) and (IV) respectively. Column (V) and (VI) show the rest pose of the mesh
with the average deviation from the target encoded in color. Based on the color distribution
shown in (V) and (VI) it can be observed that solutions found through optimization are
matching the target poses more closely and do not tend to give precedence to specific nodes.
Interestingly, participants of the user study, seem to infer which fingers are important for
a successful grasps based on the pose, although they had no knowledge of the intended
grasp. This can be best observed based on the Keypinch grasp (Figure 13, (v), row 4) for
which the average error of middle finger, ring finger and pinky is remarkably higher than
for the thumb and index finger. Overall we observed a large variance in terms of quality
of user designs. Figure 12 shows that some participants seem to have a good intuition on
how the mesh deforms when tendons are contracted while others found it more difficult to
design suitable tendon routings. For all targets the optimization outperformed even the best
tendon routings created in the user study. The quantitative errors can be found in Table 4.

Manipulation Showcase. Figure 1, bottom shows a collection of hands which we have
manufactured using this process. Figure 14 shows several static grasps, and Figure 15
shows several in-hand manipulations.

9. Discussion

This paper has described an end-to-end process of design, optimization, manufacturing and
control of soft foam robot hands. Several of the showcased manipulations were performed
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Fig. 13. (I) Target poses. (II) Overlayed visualization of all poses created by the test subjects. (III): Best user
result. (IV) Optimization Result. (V) Mean distance error of user-created poses in cm. (VI) Mean distance error
of optimized poses in cm.

Fig. 14. Demonstration of static grasping with a glue bottle (left), a screwdriver (middle) and a box cutter (right).

with the first prototype ever made, before improving designs; still the robot is capable of
achieving robust motions and in-hand manipulations right-away without the need to worry
about self-collisions, a capability not yet seen in truly soft robotic hands.

Several of the grippers presented have been in use for over one year and thousands of
trials, additionally they have been transported transcontinentally in checked luggage and
exposed to harsh weather conditions, all without a noticeable lack in performance. While
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Fig. 15. In-hand manipulation sequences of three foam robots. Top) Lateral Grasp Transition. Middle) Rocking
Motion. Bottom) Utility Knife Spinning.

this information is anecdotal, it is the opinion of the authors that these grippers demonstrate
good longevity and ruggedness overall.

Learning. Linear regression was sensible for learning on the real robot due to the extremely
small amount of data available. It is a simple and straightforward model, and performed
well in practice, both for poses that were not part of the training set and when teleoperating
real-world grasping and manipulation tasks.

When we moved to the simulation environment, we found that more complex models
– and even nearest neighbor – appeared to outperform linear regression. We experimented
extensively in simulation with direct control using supervised learning, and we found that it
behaved smoothly and intuitively in most cases. We believe, however, that linear regression
can still work well in the simulation environment, but that test poses should be selected
carefully to cover typical use cases (as was done in the real-robot learning).

Effects of Different Tendon Routings. Since soft robots do not have any joints, the variety
and complexity of achievable poses largely depends on the tendon routing. We explore the
effects of different routings in simulation by utilizing FEM tuned to match the behavior
of the foam and apply them on the physical hand. A major weakness of our initial design
is the inability of the thumb to abduct and oppose the palm. This is mainly caused by an
inefficient tendon routing with two antagonistic tendons. Changing the routing increased
the complexity of feasible motions of the thumb significantly.

Depending on the task, multi-fingered hands are required to achieve certain grasps and
motions. The motions of the hand are most importantly determined by the tendon routing.
This feature highlights an important advantage of our tendon driven approach, compared
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to e.g. pneumatically actuated designs, because of the ability to change the kinematics any
time by switching to another tendon routing by re-sewing the tendons or swapping gloves,
a ∼1 hour process.

Robot Rest Pose. Our experiments show that the rest pose of the hand design pre-defines
the range of motion independently of the tendon arrangement. Since the shape of the foam
is fixed and cannot be changed (unlike the tendons), evaluating the geometry in simulation
is an important step before fabricating the actual foam model. Depending on the underlying
task, certain poses are identified to be more suitable than others. This especially applies to
human-like hand geometries. We discovered that human-like hands with flat rest poses
have a problem grasping large objects such as tennis balls. This is due to the inability of the
fingers to curl around the object and oppose the palm. An advantage of flat rest poses over
curled rest poses is that they don’t need tendons that run on the back of the hand, because
the geometry and the compliance of the foam itself restores the hand to it’s original shape.
This makes it possible to add more tendons to the front of the fingers increasing the overall
dexterity of the design.

Additionally, aspects of the robot geometry are important to consider. It was observed
that relatively thick palms and fingers lead to (possibly undesired) localized stiffening.
These undesired features can be mitigated by iteratively changing the hand designs and
testing them in simulation, reducing the need for iteration of the physical prototypes.

Simulation brings advantages of being able to iterate and test in a rapid manner. Based
on our validation experiments, we are confident in being able to test tendon routings and
iterate on different hand geometries and tendon designs in rapid fashion. However, design-
ing tendon routings remains a challenging and non-intuitive task, especially if a hand must
reach a specific range of poses to accomplish some goal task. To overcome this challenge
we lever a tendon optimization algorithm which automatically determined the ideal setup
using our simulation framework.

Assisted design of compliant hand morphologies. While designing new soft hand models
from scratch, we found that certain types of grasps could often times not be achieved due to
short or misplaced fingers or inefficient rest poses. For example, if one desires to build a soft
hand that is able to pick up apples, the fingers of the hand should be long enough to properly
enclose the apple to firmly grasp it. In the case of an anthropomorphic hand morphology,
the foam should thus be able to assume a shape which enables similar contact points and
configurations as they occur when humans grasp an apple. This that means to design a foam
hand morphology that is able to assume a kinematically equivalent pose when grasping an
apple one needs to consider the positions of the thumb, fingers, palm and their proportions.
We found that without a proper reference that constraints the continuous design space of
the foam it is impractical to produce purposeful designs. Therefore we establish a process
that supports the design of task specific hand rest shapes, which ”grows” a new hand mesh
along a set of 3D feature points.

We obtain these feature points using a CyberGlove and the virtual human hand model
provided by the CyberGlove SDK. For a given pose, 3D positions of the MCP, PIP and DIP
joints and the distal end of the distal phalanges are recorded. An exemplary depiction of
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the resulting points is given in Figure 16 a).

a) b) d)c)

Fig. 16. ”Growing” a new hand mesh along recorded joint positions. a): 3D joint positions recorded using a
CyberGlove. b): Pointcloud obtained by path planning between the points. c): A rough surface mesh created by
surface reconstruction. d): The resulting smoothed hand mesh.

In a second step we subsequently connect the base of the palm to the recorded joint po-
sitions, representing their coordinates in a 3D grid. We then further increase the volume of
this structure by iteratively dilating occupied points towards directions of unoccupied grid
points ( Figure 16 b). In this example, a grid resolution of 200x200x200 with a cell size of
3x3x3mm is used and a total of two dilation operations were executed. Then the Delaunay
tetrahedralization of the set of 3D points is calculated using tetgen.71 The resulting convex
hull is then shaped using an alpha shaping algorithm (Figure 16 c)). As a final step we ap-
ply Laplacian smoothing72 and adjust the mesh resolution using MeshLab.73 It is possible
to refine or coarsen the mesh depending on the required accuracy of the simulation. This
naturally is a trade-off between simulation speed and accuracy. Meshes that we created for
the purpose of optimization typically consisted of 1000 to 2000 nodes.

Weaknesses and Current Limitations. A limitation of the current design is the low stiff-
ness of the foam, which limits the forces we can apply during manipulation, especially
while performing ‘pushing’ or ‘pressing’ actions. Our goal is to address this issue in future
work by embedding controllable stiffness elements. Additionally, the foam has some hys-
teresis when returning to the rest pose which we postulate to be caused by tendon-glove
friction, this can likely be mitigated with a corrective maneuver, i.e. extending beyond the
rest pose in the opposite direction.

The current method of routing tendons along the glove limits the possibilities of these
hands two-fold. 1) Geometrically: routing tendons through the foam body would allow for
more motions and increased forces by the hands. Initial attempts to route tendons through
the foam caused tearing, we would like to explore improved methods to accomplish this in
future work. 2) Mechanically: the tendons pull on the gloves, straining the adhesive layer,
limiting the maximum tendon forces that can be applied without failure. First attempts
at using gloves had no adhesive, causing the gloves to slip. We also experimented with
cyanoacrylate, which caused foam hardening. As for the foam itself, it was chosen for being
easy to work with. Nevertheless, there are many high performance textiles, adhesives, and
specifically engineered foams which could be used instead, and these will likely further
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improve the longevity, durability, and performance of these soft multi-fingered hands.
Our current control approach does not feature any sensors, which would be required

for closed-loop control and to improve the overall control accuracy. While adding sensors
to our foam hands lies beyond the scope of this paper we reserve this for future work.

In terms of optimizing foam hands, our current approach only optimizes for tendon
routings and contraction levels while the morphology and the rest shape of the hands are
not considered. After transferring the tendon routings found in simulation to the physical
robot we were able to successfully execute 2/6 grasps. While this demonstrates that there is
a gap between simulation and reality, we believe that a large portion of the gap is caused by
the optimization goals themselves, which only consist of discrete static poses that do not
include contact points with objects or forces. Incorporating dynamic object interactions into
our simulation framework will therefore likely further improve the grasping capabilities of
optimized soft foam hands.

10. Conclusions

We have introduced fully soft foam robots and their applications to robotic manipulation.
In this work we have covered our fabrication, control, and optimization methodologies and
have showcased a number of experiments and demonstrations that speak to their capabil-
ities in the robotic manipulation space. We believe that this work serves as a promising
introduction to this technology, that we are excited to see grow and evolve in the coming
years.
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