
COMPUTER ANIMATION AND VIRTUAL WORLDS
Comp. Anim. Virtual Worlds 2016; 27:262–270
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cav.1712

SPECIAL ISSUE PAPER

Predictable behavior during contact simulation: a
comparison of selected physics engines
Se-Joon Chung1* and Nancy Pollard2

1 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
2 Robotics Institute, Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

ABSTRACT

Contact behaviors in physics simulations are important for real-time interactive applications, especially in virtual reality
applications where user’s body parts are tracked and interact with the environment via contact. For these contact simula-
tions, it is ideal to have small changes in initial condition yield predictable changes in the output. Predictable simulation is
key for success in iterative learning processes as well, such as learning controllers for manipulations or locomotion tasks.
Here, we present an extensive comparison of contact simulations using Bullet Physics, Dynamic Animation and Robotics
Toolkit (DART), MuJoCo, and Open Dynamics Engine, with a focus on predictability of behavior. We first tune each
engine to match an analytical solution as closely as possible and then compare the results for a more complex simulation.
We found that in the commonly available physics engines, small changes in initial condition can sometimes induce differ-
ent sequences of contact events to occur and ultimately lead to a vastly different result. Our results confirmed that parameter
settings do matter a great deal and suggest that there may be a trade-off between accuracy and predictability. Copyright ©
2016 John Wiley & Sons, Ltd.

KEYWORDS

predictability; physics engine comparison; physics simulation; virtual worlds

*Correspondence

Se-Joon Chung, Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA.
E-mail: sejoonc@cs.cmu.edu

1. INTRODUCTION

Physics simulations are becoming more important for
real-time interactive applications, especially for virtual
reality applications where user’s body parts are tracked and
interact with the environment. Thankfully, we have many
capable physics engines available for use such as Bullet
Physics [1], Dynamic Animation and Robotics Toolkit
(DART) [2], MuJoCo [3], and Open Dynamics Engine
(ODE) [4].

However, it is often difficult to decide which one will
be best for one’s use case with so many choices of physics
engines. A recent survey in the robotics community shows
that even robotics researchers, who depend on physics sim-
ulations all the time, are divided among their choice of
primary physics engine [5]. The survey also shows that
robotics researchers are constantly seeking for better solu-
tions, with many researchers trying out other engines to
test their performance and some researchers abandoning
previously used engines in favor of others.

This difficulty in choosing which physics engine to use
is precisely what many physics engine comparison studies

aim to shed some light on [6–9]. These studies compare
various physics engines with regard to their speed, accu-
racy, and stability. Our work differs from those works
primarily by focusing on predictability of the motion, in
particular predictable variation in behavior over simulation
tests having smoothly varying parameters.

In our comparisons, we tune individual engine’s param-
eters to best match the analytical solution for a simple
simulation. Then, we compare results for a more complex
simulation where an analytical solution is hard to derive. In
this way, we aim to compare all engines under the settings
that produce the most accurate performance, because one
engine’s optimal settings may not be suitable for another.

In terms of predictability and smooth behavior, we found
that while MuJoCo performed best in our first experiment,
the same parameter setting caused it to not do well in our
second experiment. Even though they did not produce sim-
ulations close to ground truth in the first experiment, ODE
and DART produced the most predictable simulations in
our second experiment.

262 Copyright © 2016 John Wiley & Sons, Ltd.



S.-J. Chung and N. Pollard Predictable behavior during contact simulation

2. RELATED WORKS

A number of researchers have performed physics engine
comparisons, and this line of research is constantly evolv-
ing. Seugling and Rölin compared Newton Dynamics,
ODE, and NovodeX (now PhysX) with the goal of finding
a suitable physics engine to use in Virtools, a 3D author-
ing tool [6]. They compare and rank the three engines
under nine-benchmark testing accuracy of friction force,
accuracy of gyroscopic force, conservation of energy, con-
straint handling, and contact handling. Then, based on the
sum of rankings in each criterion, they concluded that
NovodeX had the best overall performance. In another
comparison work by Boeing [7], more physics engines
are compared with an additional focus on gaming technol-
ogy. They compared seven physics engines (PhysX, Bullet,
JigLib, Newton Dynamics, ODE, Tokamak, and True Axis)
using integrator, material, constraint, collision, and stack-
ing tests. They concluded that no one engine performed
best at all tasks, but of the open-source engines, Bullet
provided the best overall results for gaming. For simula-
tion purposes, however, the most important property of the
simulation should be determined first in order to select the
best engine.

Most of the physics engines compared in the afore-
mentioned studies are still undergoing active develop-
ment and call for continued efforts in evaluating them.
In a more recent study, Hummel et al. compare Bullet,
Newton Dynamics, Havok, ODE, and PhysX with focus
on high accuracy at interactive rates for assembly sim-
ulations [8]. They performed six benchmarks that test
collision, constraint stability, interpenetration, and friction.
They concluded there is no general physics engine that per-
forms best for any given task. Furthermore, they suggest
that physics engines optimized for games such as PhysX
and Havok may provide less accurate simulations because
of the optimizations they make for stability and perfor-
mance. On the other hand, Bullet, Newton, and ODE were
found to be good candidates for their assembly simulations.
In another study by Peters and Hsu, four physics engines
(Bullet, DART, ODE, and Simbody) included in Gazebo
robot simulator are compared under four benchmarks [9].
They found certain engines may perform worse on specific
benchmarks according to the contact model, joint damp-
ing, or coordinate system. However, for the most complex
robot walking simulation, all of the engines produced
similar trajectories.

Some have taken a different approach to physics engine
comparison and focused more on benchmarks with com-
plex models that can stress-test the engines. Erez et al.
compared the self-consistency of Bullet, Havok, MuJoCo,
ODE, and PhysX under identical simulation parameters
in order to measure their integration error [10]. They
found MuJoCo performed best on robotics-related tests,
which it was designed for, while gaming engines won the
gaming-related tests without a clear leader among them.

A different branch of works sought to compare the
underlying contact algorithms directly without associations

to specific physics engines. In this light, Drumwright and
Shell have evaluated different methods of modeling con-
tact in multibody simulation [11] and performance of linear
complementary problem (LCP) solvers for rigid body con-
tact problems [12]. Our work is complementary to their
works in that we consider each engine as a whole when
evaluating contact behaviors.

In order to derive an analytical solution to use as refer-
ence in our parameter tuning, we apply the rimless wheel
model in McGeer’s work [13] to a cube that we use
throughout our comparisons. We then build up on their
model to derive the relationship between angular velocity
of the cube and its rolling behavior.

3. OVERVIEW OF PHYSICS ENGINES

We utilized a modified version of the physics simulation
engine comparison framework used in the work of Erez
et al. [10] for our comparisons. We made extensions to
the framework to be able to apply active external forces.
Unlike in the previous work, Havok and PhysX were not
available to us, but we added DART, which is another pop-
ular physics engine. In the succeeding texts, we provide an
overview of each engines included in our comparisons.

Bullet. Bullet Physics [1] is an open-source physics library
developed by Erwin Coumans. The original Bullet is
based on maximal coordinates and uses a sequential
impulse (SI) solver for constraint resolution, but the
recent version provides options to use various mixed lin-
ear complementarity problem (MLCP) solvers [14]. We
explored using these MLCP solvers as well as the default
SI solver. We used Bullet Physics version 2.83.7, which
was released on 8 January 2016.

Bullet Multibody (Bullet MB). Bullet Physics includes a
generalized coordinate approach based on Feather-
stone’s algorithm [15] called multibody since version
2.82. We also include this multibody version of Bul-
let in our comparisons. Currently, the multibody version
only supports SI solver that is an optimized implementa-
tion of projected Gauss–Seidel (PGS) method. The same
2.83.7 version of Bullet is used.

DART. DART [2] is an open-source physics library cre-
ated by the Georgia Tech Graphics Lab and Humanoid
Robotics Lab. Like Bullet MB, DART uses the general-
ized coordinate Featherstone approach. Although other
MLCP solvers seem to exist in DART, the default solver
used in this version of DART was Dantzig LCP solver.
Because DART did not provide an interface to switch
solvers at runtime, we used the default Dantzig LCP
solver. We used DART version 5.1.1, which was released
on 6 November 2015.

MuJoCo Euler. MuJoCo [3], which stands for Multi-Joint
dynamics with Contact, was developed by Emo Todorov
for Roboti LLC. MuJoCo is the only closed-source
engine in our comparisons. MuJoCo is unique in the fact
that it does not use an LCP solver to resolve constraints
but formulates it as a convex optimization problem

Comp. Anim. Virtual Worlds 2016; 27:262–270 © 2016 John Wiley & Sons, Ltd. 263
DOI: 10.1002/cav



Predictable behavior during contact simulation S.-J. Chung and N. Pollard

[16,17]. In MuJoCo Euler, MuJoCo uses semi-implicit
Euler integration method to update the velocity, but posi-
tion is updated using the new velocity for stability. We
used MuJoCo version 1.22, which was released on 26
November 2015.

MuJoCo RK. MuJoCo RK uses the same MuJoCo
engine as MuJoCo Euler, but uses fourth-order
Runge–Kutta method instead of Euler’s method
for integration.

ODE. ODE [4] is an open-source physics library originally
developed by Russell Smith. Like the original Bullet
Physics, it uses a Cartesian coordinate-based approach.
ODE provides both a Dantzig LCP solver and succes-
sive over-relaxation PGS LCP solver [18]. We chose to
use the successive over-relaxation PGS solver because
Dantzig solver is slower and sometimes fails to find a
solution. We used ODE version 0.14, which was released
on 18 December 2015.

4. ROLLING CUBE

In order to compare the performance of various physics
engines, we performed a cube rolling experiment that can
be solved analytically by simplifying it as a 2D prob-
lem. This simplification holds for a rotation about one of
its edges.

4.1. Condition for Cube Rolling Over

Given a cube that is rolling down a slope on one of its
edges such that the edge becomes its rotation axis with
initial angular velocity !0 around that axis, we can com-
pute the condition of initial angular velocity !0 such that
it would roll over and potentially trigger another rotation
about a different edge. In order for this to happen, the angle
� between the cube and the surface must be able to sur-
pass �0��s before gravity can pull it down on another side
(Figure 1). Here, �s denotes the slope angle, and �0 denotes
half of the angle between point A, center of mass (point
m), and point B. In our analysis, we assume that energy is
conserved while cube is rotating about point B.

When the cube is initialized with rotational velocity !0
about point B (Figure 2(a)), its initial total energy is the

Figure 1. Gravity force acts on the cube while it rotates about
point B.

Figure 2. Cube rolling cycle around point B. (a) Initial configura-
tion, (b) peak configuration, and (c) final configuration.

sum of rotational kinetic energy KErotational D
1
2 IB!

2
0

and potential energy with respect to point B PEB D

mgl cos.�0 � �s/, where g D 9.81 m/s2 is the standard
acceleration due to gravity. Here, the moment of inertia IB

about point B can be is calculated using square’s radius
of gyration rgyr D

1p
6l

and parallel axis theorem. We
normalized rgyr by l for simplification.

IB D
�

r2
gyr C 1

�
ml2 (1)

When the cube reaches the peak (Figure 2(b)), its total
energy must be greater than the potential energy at the peak
in order for it to tip to the other side and continue rolling.
Equation 2 shows the derivation of the condition on initial
angular velocity !0 for the cube to keep rolling.

X
Einitial > PEpeak

1
2 IB!

2
0 C mgl cos.�0 � �s/ > mgl

!0 >

vuut2g.1 � cos.�0 � �s//

l
�

r2
gyr C 1

� (2)

Furthermore, if the cube does roll over, the new angu-
lar velocity right before the next impact can be calcu-
lated using a similar energy-based derivation. Because
the change in height from the initial configuration will
be
p

2l sin.�s/ as shown in Figure 2(c), the new angular
velocity ! can be calculated as in equation 3.

1
2 IB!

2
0 C
p

2l sin.�s/mg D 1
2 IB!

2

! D

s
IB!

2
0 C 2

p
2l sin.�s/mg

IB

(3)

264 Comp. Anim. Virtual Worlds 2016; 27:262–270 © 2016 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



S.-J. Chung and N. Pollard Predictable behavior during contact simulation

Table I. Parameters, their functions, default values, and candidate values.

Parameter Function Default value Candidate values

� Determines the maximum amount of friction that can be exerted at N/A 1.0, 2.0, 3.0
contact points.

ERP Specifies what proportion of the joint error will be fixed during the 0.2 0.0, 0.1, 0.2, 0.5,
next simulation step. 1.0

CFM Determines the amount constraint is allowed to be violated by an 0.0 0.0, 0.1, 0.2, 0.5,
amount proportional to CFM times the restoring force that is needed to 1.0
enforce the constraint.

Number of Number of iterations performed in the engines’ LCP solver. Higher 10 for 10, 20, 30, 50,
iterations iteration means more accuracy but takes more time. Bullet, 20 100

for ODE

MLCP Determines which MLCP solver in Bullet is used when resolving the Sequential Sequential
constraints. This parameter does not apply to Bullet MB, which only impulse impulse, Dantzig,
uses a different multibody constraint solver. Lemke, projected

Gauss–Seidel

Contact surface Contacts in ODE are allowed to sink into the surface layer up to the 0.0 0.0, 0.001, 0.01,
layer given depth before coming to rest. The default value is zero. 0.1

Increasing this to some small value (e.g., 0.001) can help prevent
jittering problems because of contacts being repeatedly made and broken.

dmin Together with dmax and width, parameterizes sigmoid system 0.9 0.85, 0.9, 0.95,
impedance function d(r) in MuJoCo. 1.0

dmax Together with dmin and width, parameterizes sigmoid system 0.95 0.9, 0.95, 1.0
impedance function d(r) in MuJoCo.

Width Together with dmin and dmax, parameterizes sigmoid system 0.001 0.0005, 0.001,
impedance function d(r) in MuJoCo. 0.002

timeconst Inversely scales the stiffness constant in MuJoCo and also inversely 0.02 0.01, 0.02, 0.03
scales the damping ratio by square of timeconst. It should be set to at
least two times larger than the simulation time step, which is 1 ms in
our case.

dampratio Inversely scales the damping ratio in MuJoCo by square of dampratio. 1.0 0.5, 1.0, 1.5
Less than 1 is under-damped, larger than 1 is over-damped, and 1 is
critically damped.

�, coefficient of friction; ERP, error reduction parameter; CFM, constraint force mixing; MLCP, mixed linear complementarity problem; LCP, linear
complementary problem; Bullet MB, Bullet Multibody; ODE, Open Dynamics Engine.

4.2. Conservation of Angular Momentum

When the cube collides with the ground and it begins to
roll on a different side, the cube loses some of its energy.
We can compute the new angular velocity after the col-
lision using conservation of angular momentum [13]. We
assume the impact with the ground to be inelastic and
without sliding.

The angular momentum before collision is given
by equation 4.

L� D ml2!� cos 2�0 C Icm!
�

D cos 2�0ml2!� C r2
gyrml2!�

D
�

cos 2�0 C r2
gyr

�
ml2!�

(4)

The angular momentum after collision is given
by equation 5.

LC D
�

Icm C ml2
�
!C

D
�

r2
gyrml2 C ml2

�
!C

D
�

1C r2
gyr

�
ml2!C

(5)

Because angular momentum must be conserved before
and after the collision, equating equations 4 and 5 yields
the angular velocity after the collision !C as a function of
angular velocity before the collision !� (equation 6). In
our case, the cosine term drops because 2�0 D 90ı.

Comp. Anim. Virtual Worlds 2016; 27:262–270 © 2016 John Wiley & Sons, Ltd. 265
DOI: 10.1002/cav



Predictable behavior during contact simulation S.-J. Chung and N. Pollard

!C D

 
cos 2�0 C r2

gyr

1C r2
gyr

!
!� (6)

5. RESULTS AND DISCUSSION

In our experiments, we used a cube with each edge
measuring 1 m, mass of 1 kg, and uniform density.
Please also look at http://www.cs.cmu.edu/~sejoonc/
papers/PredictablePhysics.html for video results and addi-
tional experiments.

5.1. Rolling Downhill

The goal of the first experiment was to find a set of param-
eters for each engine to best match the analytical solution
from section 4. In this experiment, the cube was initial-
ized with an angular velocity of !0 around the bottom right
edge and rolled down a slope. We used an initial angular
velocity of !0 D 2.4688 rad/s, which is the largest initial
angular velocity that should not tip over the cube on a flat
ground. Each set of experiments consisted of 31 different
slope angles between 0ı and 30ı in 1ı increments.

This set of experiments with various slope angles was
then repeated for each unique set of parameters in an
exhaustive manner. Because sampling over the entire space
of possible parameters would be overly time-consuming,
some reasonable candidate values for each parameters
were chosen around the recommended range of values
in each engine’s documentation. However, some parame-
ters were not included in the parameter tuning to provide
grounds for fair comparison. Time step was set to 1 ms
for all engines, and coefficient of restitution was set to
0 to meet our assumption of inelastic collisions. Coeffi-
cient of friction was not fixed because we only assumed
non-slipping behavior without any assumptions on the
magnitude of friction force. Table I explains what each
parameter does and the candidate values that were chosen
for our search.

Initially, the best set of parameters for each engine was
chosen as the set that best matched the number of cube
rolls in ground truth predictions. However, we found that
only matching the number of rolls yielded parameters for
some engines where the cube wobbled wildly as it rolled
down. Therefore, the criterion for the best set of parameters
was changed to also account for minimum average devia-
tion angle of the rotation axis from the y-axis (“wobble”).
Scores were assigned by normalizing the number of cube
roll matches and average deviation angle in the range of 0
to 1 with 1 being the best; then the set of parameters with
the maximum sum of scores was chosen.

Table II lists relevant parameters for each engine and the
final values chosen. It is worth noting that DART did not
have obvious API or documentation for tweaking internal
parameters, so only coefficient of friction was searched.
Bullet and Bullet MB’s parameters came close to default
values with the number of iterations being a little bit higher.

Table II. Engines, their parameters, and final val-
ues chosen.

Engine Parameters Final Value

Bullet

� 1.0
ERP 0.2
CFM 0.0 (no effect)

Number of
20

Iterations

MLCP solver
Projected

Gauss–Seidel

� 1.0
ERP 0.2

Bullet MB CFM 0.0 (no effect)
Number of

30
Iterations

DART � 1.0

� 3.0
dmin 0.85

MuJoCo dmax 0.95
Euler Width 0.002

timeconst 0.02
dampratio 0.5

� 3.0
dmin 0.85

MuJoCo dmax 0.9
RK Width 0.002

timeconst 0.02
dampratio 0.5

ODE

� 2.0
ERP 0.0
CFM 1.0

Number of
20

Iterations
Contact Surface

0.0 (no effect)
Layer

�, coefficient of friction; ERP, error reduction parame-
ter; CFM, constraint force mixing; MLCP, mixed linear
complementarity problem; Bullet MB, Bullet Multibody;
DART, Dynamic Animation and Robotics Toolkit; ODE,
Open Dynamics Engine.

MuJoCo Euler and MuJoCo RK preferred to have a wider
width with lower dmin for the impedance function, which
means thicker and softer contact layer around the objects.
Both also preferred to be under-damped, which suggests
that MuJoCo had to relax its constraints and preserve
more energy in order to match the ground truth. ODE also
seemed to prefer soft constraints with constraint force mix-
ing value of 1.0. It was unexpected that ODE would prefer
no error reduction with error reduction parameter of 0.0,
but this yielded the best result.

Figure 3 shows the overall results with the chosen
parameters. In Figure 3(a), each dot’s color represents the
number of times the cube rolled. Empty spaces repre-

266 Comp. Anim. Virtual Worlds 2016; 27:262–270 © 2016 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

http://www.cs.cmu.edu/~sejoonc/papers/PredictablePhysics.html
http://www.cs.cmu.edu/~sejoonc/papers/PredictablePhysics.html


S.-J. Chung and N. Pollard Predictable behavior during contact simulation

Figure 3. Cube downhill rolling simulation results with final
parameters. (a) Number of times the cube rolls down the slope
for various slope angles and engines and (b) average deviation

angle of rotation axis from the y-axis.

sent simulations in which the cube rolled indefinitely. In
Figure 3(b), each dot’s color represents the average devi-
ation angle of rotation axis from the y-axis. Even though
the cube is initialized to only rotate about the y-axis,
contact with the ground induces the rotation axis to tilt
in many simulations. Therefore, we see simulations with
less rotation axis deviation as more stable simulations. To
investigate the effect of LCP solver used, we also included
Bullet with the same parameter settings, but with each of
the LCP solvers.

Overall, all of the physics engines had very distinct
results. We found Bullet MB to have the best match in
the number of rolls, but it suffered from instability in the
rotation axis. In terms of stability, MuJoCo RK had the
least rotation axis deviation. The best overall result was
achieved by MuJoCo Euler with a good balance between
the two metrics. Even though we expected a monotonically
increasing number of rolls as the slope angle increases,
some engines such as Bullet and ODE had instances where
this was not true. In Bullet’s case, the cube suddenly lost

most of its angular velocity after the first collision on the
26ı slope. In ODE’s case, the problem was found to be on
the 21ı slope, which should have rolled only once, but rolls
twice because of not enough reduction in angular velocity
from the first impact. These can be seen as negative impacts
to the engines’ predictability.

Among Bullet’s different LCP solvers, it was surpris-
ing that Bullet’s SI solver and PGS solver yielded different
results, because SI solver was documented to be an opti-
mized version of the PGS solver. We found Bullet’s PGS
solver yielded not only better matches but also significantly
less wobble than the SI solver under the same parameters.
Bullet’s Lemke solver resulted in the most stable simu-
lations although it was not able to match the number of
rolls very well. It is also worth noting that Bullet’s Dantzig
solver results closely matched that of DART, which also
uses a Dantzig solver, even though there is a fundamental
difference in the coordinate systems the two engines use
(maximal versus generalized).

We found MuJoCo to be extremely stable within the
combinations of our tested parameter ranges. For MuJoCo
RK, the maximum average deviation angle of rotation axis
among all sets of parameters was found to be 0.3507ı.
MuJoCo Euler’s maximum average deviation angle was
found to be a little bit higher at 1.2315ı, but still much
lower than other engines’ maximum average deviation
angles, which were 64.4543ı for Bullet, 44.9917ı for
Bullet MB, 4.6051ı for DART, and 25.4984ı for ODE.
Although MuJoCo gave excellent results and stability, it
is interesting to notice that despite having not enough
initial velocity to roll over at 0ı slope, the fourth-order
Runge–Kutta integrator was the only one that does. This
did not happen for other engines which all use Euler’s
method for integration.

Figure 4. Cube in 3-D and the applied force.

Comp. Anim. Virtual Worlds 2016; 27:262–270 © 2016 John Wiley & Sons, Ltd. 267
DOI: 10.1002/cav



Predictable behavior during contact simulation S.-J. Chung and N. Pollard

5.2. Rolling on a Flat Ground
in Various Directions

As a more extensive test for predictability in simulations

with contacts, we performed a cube rolling test on a flat

plane in all directions, not just in directions orthogonal to

one of the cube edges. We did this by applying varied mag-

nitude of force at the center of cube’s top face for 0.1 s in

the specified direction. The direction is measured in rota-

tion about the z-axis, starting from the x-axis direction. For

convenience, the cube was color coded on each side with
the teal side on top initially (Figure 4).

In this test, for a fixed direction of force, we expect to
see the cube landing on a certain side until enough force
has been applied for it to be able to roll once more to an
adjacent side. Conversely, for a fixed magnitude of force,
we can expect to see the cube rolling on a certain edge until
the force direction becomes closer to an adjacent edge, in
which case it will roll on that adjacent edge. As a result
of these two expectations, we expect to see clearly defined
C-shaped regions of each side of the cube, interleaved in a

Figure 5. Cube side that ends up on top after various magnitude of force has been applied in various directions. (a) Bullet, (b) Bullet
Multibody, (c) Dynamic Animation and Robotics Toolkit, (d)MuJoCo Euler, (e) MuJoCo RK, and (f) Open Dynamics Engine.

268 Comp. Anim. Virtual Worlds 2016; 27:262–270 © 2016 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



S.-J. Chung and N. Pollard Predictable behavior during contact simulation

way such that regions corresponding to adjacent sides are
neighboring each other.

Figure 5 shows the actual results of this test for all of the
engines. We can see that our expectations are confirmed
in the lower ranges of the force with magnitude less than
50 N. For higher magnitude of forces, different smaller
patches are dominant. We think this is a direct result of the
cube spending some time airborne.

Among the different results, we can clearly see that some
engines had more irregularity in their outcome than others,
especially in the upper ranges. Bullet had the most unpre-
dictable behavior. In one instance, the cube got stuck while
standing on one of its edges at 32 N and 270ı (hence the
empty dot). We can also see the asymmetry and irregulari-
ties in the magenta, red, and green regions between 40 and
56 N range. Bullet MB fared much better than its maxi-
mal coordinates counterpart but suffered from occasionally
falling on an orthogonal edge when force is applied in diag-
onal directions (e.g., isolated points along the 45 N). DART
was one of the engines with more predictable behaviors.
Points along directions orthogonal to each of its edges and
55 N may seem like anomalies, because these are points
where cube rolls more times than its neighboring points.
This type of phenomenon seems to happen in situations
where the cube becomes airborne: The exact landing con-
figuration will strongly affect collision response forces and
angular momentum. MuJoCo Euler and RK, which were
found to be very stable in the first experiment, suffered
instability in this experiment because of the relaxed damp-
ing setting chosen during the parameter search. Because
the system was under-damped, the cube suffered instabil-
ities from too much restitution. ODE came out to have
the most predictable result in this experiment, which was
surprising given its unusual parameter setting.

While tuning the various parameters, we have observed
many instances of trade-off between accuracy in the first
experiment and the predictability of results in this exper-
iment. One example is shown in Figure 6. By simply
changing the damping parameter to 1.0 for MuJoCo RK,

Figure 6. MuJoCo RK with damping set to 1.0.

matches in number of rolls are reduced, but average axis
deviation angle decreases, and predictability of results in
the second experiment appears much better.

Other possible reasons for the difference among the
engines include differences in the collision detection algo-
rithm and the friction model used. However, the details of
actual implementation are not exposed to the user as a tun-
able parameter for most engines and were not included in
this study.

6. CONCLUSION AND
FUTURE WORK

We have provided an extensive comparison of contact sim-
ulations using Bullet Physics, DART, MuJoCo, and ODE.
First, we tested a cube downhill rolling simulation where
an analytical solution was derived through the application
of classical mechanics and the rimless model from McGeer
[13]. Then, knowing the importance of parameter tuning
for the engines’ performance, we tuned individual engine’s
parameters separately to match the analytical solution as
closely as possible without sacrificing the stability of the
engines. From the comparison of results with tuned param-
eters and ground truth, we found that while Bullet MB had
the greatest number of matches in the number of rolls and
MuJoCo RK had the least rotation axis deviation, MuJoCo
Euler achieved a good balance between the two. In the case
of Bullet and ODE, we found cases of unpredictable behav-
ior where even though the slope angle was increased, the
cube rolled fewer times than with a smaller slope angle.

In our second experiment, we performed a more exten-
sive test for predictability by rolling the cube on a flat plane
in all directions with varied magnitude of force. Here, the
expected result for an engine with good predictability was
to show a clearly repeating pattern in which side ends up
on top after the cube came to a stop. Somewhat differently
from the findings in the previous experiment, we found
that DART and ODE showed nice regular patterns that are
favorable to predictability.

As extensive as our comparisons were, there is room for
expansion in this area. First, our study can be extended to
other popular physics engines such as Havok, PhysX, or
Simbody. It would be also interesting to compare SCISim
[19], which simultaneously guarantees symmetry preser-
vation and kinetic energy conservation, while allowing
breakaway. Next, the set of complex simulations without
an analytical solution can be extended to include ani-
mated characters or robots that have internal forces arising
from actuation in addition to external contact forces. Last
but not the least, our main motivation was to find which
physics engines provide good predictability for sensitive
simulations such as virtual reality applications and iterative
learning processes. It would be encouraging to see impor-
tant criteria from these fields be reflected back in future
physics engine comparison works. In particular, we would
like to see predictability added to the standard suite of
benchmarks used for physics engine comparisons.

Comp. Anim. Virtual Worlds 2016; 27:262–270 © 2016 John Wiley & Sons, Ltd. 269
DOI: 10.1002/cav



Predictable behavior during contact simulation S.-J. Chung and N. Pollard

ACKNOWLEDGEMENTS

We would like to thank Emo Todorov, Tom Erez, Vikash
Kumar, and Yuval Tassa for providing us with the source
code to their physics engine comparison framework, a trial
license for the MuJoCo engine, and invaluable advice.

REFERENCES

1. Real-time physics simulation. Available from: http://
bulletphysics.org [Accessed on 2 February 2016].

2. DART. Available from: http://dartsim.github.io/
[Accessed on 2 February 2016].

3. MuJoCo. Available from: http://www.mujoco.org/
[Accessed on 2 February 2016].

4. Open Dynamics Engine - home. Available from: http://
www.ode.org/ [Accessed on 2 February 2016].

5. Ivaldi S, Peters J, Padois V, Nori F. Tools for simulat-
ing humanoid robot dynamics: a survey based on user
feedback. In 2014 14th IEEE-RAS International Con-
ference on Humanoid Robots (Humanoids), Madrid,
Spain, November 2014; 842–849.

6. Seugling A, Rölin M. Evaluation of physics engines
and implementation of a physics module in a
3d-authoring tool. Master’s Thesis, Umeå University,
SE-901 87 UMEÅ SWEDEN, 2006.

7. Boeing A, Bräunl T. Evaluation of real-time physics
simulation systems. In Proceedings of the 5th Interna-
tional Conference on Computer Graphics and Interac-
tive Techniques in Australia and Southeast Asia. ACM,
New York, NY, USA, 2007, GRAPHITE ’07; 281–288.

8. Hummel J, Wolff R, Stein T, Gerndt A, Kuhlen T.
An evaluation of open source physics engines for use
in virtual reality assembly simulations. In Advances
in Visual Computing, Vol. 7432. Springer Berlin
Heidelberg: Berlin, Heidelberg, 2012; 346–357.

9. Comparison of rigid body dynamic simulators for
robotic simulation in Gazebo. Available from: http://
www.osrfoundation.org/wordpress2/wp-content/
uploads/2015/04/roscon2014_scpeters.pdf [Accessed
on 5 February 2016].

10. Erez T, Tassa Y, Todorov E. Simulation tools for
model-based robotics: comparison of bullet, Havok,
MuJoCo, ODE and PhysX. In IEEE International-
Conference on Robotics and Automation, ICRA 2015,
Seattle, WA, USA, 26-30 May, 2015; 4397–4404.

11. Drumwright E, Shell DA. An evaluation of meth-
ods for modeling contact in multibody simulation.
In 2011 IEEE International Conference on Robotics
and automation (ICRA), Shanghai, China, May 2011;
1695–1701.

12. Drumwright E, Shell DA. Extensive analysis of linear
complementarity problem (LCP) solver performance
on randomly generated rigid body contact problems.

In 2012 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS), Vilamoura, Algarve,
Portugal, October 2012; 5034–5039.

13. McGeer T. Passive dynamic walking. Int. J. Rob. Res.

1990; 9(2): 62–82.

14. Exploring MLCP solvers and featherstone. Available
from: http://goo.gl/84N71q [Accessed on 4 February
2016].

15. Featherstone R. Rigid Body Dynamics Algorithms.
Springer-Verlag New York, Inc.: Secaucus, NJ, USA,
2007.

16. Todorov E. Convex and analytically-invertible dynam-
ics with contacts and constraints: Theory and imple-
mentation in MuJoCo. In 2014 IEEE International

Conference on Robotics and Automation (ICRA), Hong
Kong, China, May 2014; 6054–6061.

17. MuJoCo overview. Available from:http://www.mujoco.
org/book/overview.html [Accessed on 4 February
2016].

18. physics_ode/ODE – ROS Wiki.Available from: http://wiki.
ros.org/physics_ode/ODE [Accessed on 4 February
2016].

19. SCISim: a 2D and 3D rigid body simulation
framework with a focus on preserving core phys-
ical properties. Available from: https://github.com/
breannansmith/scisim [Accessed on 16 March 2016].

AUTHORS’ BIOGRAPHIES

Se-Joon Chung is a PhD student in
the Computer Science Department at
Carnegie Mellon University (CMU),
Pittsburgh, PA, USA, where he is
advised by Professor Nancy S. Pollard.
He has received a bachelor’s degree in
computer engineering at the University
of Illinois at Urbana-Champaign where

he also received the Bronze Tablet Award, E. C. Jordan
Award, and A. R. “Buck” Knight Award. His research
interests include hand pose prediction and virtual object
manipulation for virtual reality applications.

Nancy S. Pollard has received the PhD
degree from the Massachusetts Insti-
tute of Technology, Cambridge, MA,
USA, in 1994. She is currently an
associate professor at the School of
Computer Science, Carnegie Mellon
University (CMU), Pittsburgh, PA,
USA. Before joining CMU, she was

an assistant professor at Brown University. Dr. Pollard
received the National Science Foundation CAREER Award
in 2001 and the Okawa Research Award in 2006.

270 Comp. Anim. Virtual Worlds 2016; 27:262–270 © 2016 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

http://bulletphysics.org
http://bulletphysics.org
http://dartsim.github.io/
http://www.mujoco.org/
http://www.ode.org/
http://www.ode.org/
http://www.osrfoundation.org/wordpress2/wp-content/uploads/2015/04/roscon2014_{s}cpeters.pdf
http://www.osrfoundation.org/wordpress2/wp-content/uploads/2015/04/roscon2014_{s}cpeters.pdf
http://www.osrfoundation.org/wordpress2/wp-content/uploads/2015/04/roscon2014_{s}cpeters.pdf
https://github.com/breannansmith/scisim
https://github.com/breannansmith/scisim

	Predictable behavior during contact simulation: a comparison of selected physics engines
	Abstract
	Introduction
	Related Works
	Overview of Physics Engines
	Rolling Cube
	Condition for Cube Rolling Over
	Conservation of Angular Momentum*-4pt

	Results and Discussion
	Rolling Downhill
	Rolling on a Flat Ground in Various Directions

	Conclusion and Future Work
	Acknowledgements
	References


