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Posture optimization for pre-grasp interaction planning

Lillian Chang and Nancy Pollard

Abstract— Many manipulation tasks involve grasping objects
that are movable, not fixed, in the environment. An object’s
potential for motion does contribute to the challenge of esti-
mating its pose with sufficient certainty for robust grasping.
However, object movability also offers an opportunity for pre-
grasp interaction strategies that adjust an object’s placement in
order to improve grasping conditions. Here we highlight the
results of initial work that illustrate the potential utility of pre-
grasp interaction for object acquisition into a desired grasp. We
also present recent developments for refining the manipulator
posture for pre-grasp rotation with respect to a payload cost
metric. Optimization of the payload metric increase the safety
margin with respect to uncertainty in the estimate of object
weight.

I. I NTRODUCTION

One mode of robot interaction with the physical envi-
ronment is the movement of objects through grasping. For
example, tasks such as cleaning up toys or beverage delivery
to a human involve first object acquisition by grasping and
then transport to a new location. When the target objects are
already conveniently placed in the environment, a manipu-
lation plan consisting only of the robot arm motion may be
sufficient to reach a desired grasp while the object remains
stationary during the reaching motion. However, in more
challenging scenarios the desired grasp may not be possible
or easy to reach directly with the presented object placement.

In cases where a manipulator reaching motion alone is not
sufficient to achieve a grasp, the addition of object motion
to a new placement can make a desired grasp feasible. Our
work investigates the utility of suchpre-grasp interaction
as a strategy for manipulating movable objects in the en-
vironment. The key idea is to take advantage of the fact
that many grasped objects are also movable, not fixed, in the
environment even before grasping and that object adjustment
can improve the conditions for grasping.

In this paper, we review the results of our previous inves-
tigation of pre-grasp interaction, and specifically pre-grasp
rotation, as a manipulation strategy for grasping tasks. First,
Section II presents related literature. Section III summarizes
the highlights from our studies of human pre-grasp rotation
and the methods developed for robot pre-grasp rotation
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Fig. 1. Pre-grasp interaction adjusts the object placement in the envi-
ronment prior to grasping. For example, a cooking pan can be pivoted to
re-position the handle to a new orientation that can be reached with an
underhand grasp.

[1]–[3]. In particular, we found that pre-grasp interaction
strategies may be used to reduce uncertainty in object con-
figuration before grasping as well as the final placement of
the object (see Section III-B.1).

In addition, pre-grasp interaction may also be used to
plan grasping actions that are more tolerant to uncertainty
in estimates of object attributes such as weight. In Section
IV, we present recent work that examines methods for local
optimization of grasping postures that affect the planning
of pre-grasp rotation. Optimization of a payload cost metric
can be used to increase the safety margin against the risk of
under-estimated object weight.

Concluding remarks in Section V discuss the remaining
challenges for achieving robust pre-grasp interaction with
robot manipulators.

II. RELATED WORK

One major benefit of a pre-grasp interaction approach is
that the manipulator can often adjust object placement with
non-prehensile contact that is less constrained than grasping
contact. For example, there may be several postures that
achieve hand contact for pushing or pivoting a cooking pan
(Fig. 1) that may be more robust or easier to achieve than
postures for directly achieving the grasp of the handle for
lifting it.

The insight that shared support with the surface allows
for robust object manipulation has been examined in the
previous literature. Automated push-planning techniquespro-
posed by [4]–[6] synthesize non-prehensile manipulation
plans for moving objects along a surface. Toppling actions
[7] are another possible mode of non-prehensile pre-grasp



interaction. Planning methods for pushing manipulation have
been also demonstrated as part of multi-modal motions that
combine pushing with locomotion [8]–[10]. In addition, a
whole-body manipulation strategy for pivoting large, heavy
objects has been presented by [11] as a way for a robot to
move objects that it cannot lift.

Previous literature has also investigated the utility of
pushing and sliding actions as methods for sensing object
pose [12] or reducing uncertainty in the orientation of
objects in sensorless manipulation [13]. These methods may
be considered as potential pre-grasp interaction strategies
that increase information about the object configuration to
improve grasping success.

The combination of sliding motions with grasping and/or
lifting actions has recently been a topic of growing interest
in the manipulation community. Manipulation plans are
synthesized in [14] and [15] as sequences of object dragging
transfer actions with regrasping transit actions. A planning
method for sliding actions along constraint manifolds pre-
sented in [16] enabled lifting of heavy objects that were
already grasped but not liftable in the initial grasp posture
due to manipulator torque constraints. Recent work [17] uses
a push-grasp as a type of pre-grasp action primitive for
bringing objects into the hand during a reaching motion.
Human patterns for pre-grasp sliding have been adapted for
synthesizing pushing actions that improve the success rate
of grasp acquisition [18]. Much of our previous work [1]–
[3] has focused on pre-grasp rotation as a simple form of
pre-grasp interaction, and such object re-orientation hasalso
been used by [19] to improve grasps of hard-to-reach object
handles.

III. PRE-GRASP ROTATION OF HEAVY HANDLED OBJECTS

Planar displacement is a useful type of pre-grasp object
adjustment because grasped objects are frequently grasped
from flat surfaces such as tabletops, shelves, or the floor.
A subset of planar displacement actions are 1-degree-of-
freedom rotations of the object around a pivot axis normal
to the surface. We use pre-grasp rotation to refer to object
interactions where the sliding motion on the surface is
dominated by planar re-orientation of the object with little
translational movement. In particular, pre-grasp rotation is
useful for re-orienting objects that have a single asymmetric
handles, such as mugs, pitchers, and pans.

Here we review our previous studies of pre-grasp rotation
in human examples [1], [2] and for robot manipulation [3].

A. Lessons from human pre-grasp rotation examples

Observation of human usage of pre-grasp rotation [1],
[2] has resulted in three insights that are relevant to robot
manipulation.

1) Grasp reuse in capture region:Pre-grasp rotation en-
abled the reuse of similar grasps for a particular object by
re-orienting the object into a preferred capture region forthe
final lifting grasp [1].

2) Constraints and task difficulty:Selected object ori-
entations for lifting were more constrained for increased
task difficulty [2]. This relation suggests that the utility
of pre-grasp rotation was greater in constrained or difficult
manipulation tasks.

3) Lifting capability for posture selection:The amount of
object rotation was correlated with the increase in posture-
dependent lifting capability achievable from the initial to
selected object orientation [2]. This correlation suggests a
strength-based quality metric for selecting and optimizing
robot postures with pre-grasp rotation.

B. Robot pre-grasp rotation

Initial work on robot pre-grasp rotation has demonstrated
that large gains in grasping success are possible even with
only 1-DoF object reconfiguration. For objects with specific
desired grasping sites, or handles, re-orientation of an object
can significantly change the end-effector location required to
reach the grasp (Fig. 2).

1) Grasp reuse and workspace extension:We found pre-
viously that combining pre-grasp rotation with a well-tuned
grasping routine enabled the reuse of the routine over a wider
range of initial task conditions [1]. For a system with many
degrees of freedom such as an anthropomorphic manipulator
(Fig. 1), it is time-consuming to design, program, and tune a
new action primitive. In [1], the manually programmed grasp
routine was robust for a small set of initial object orientations
in a 45-degree capture region. Instead of planning a new
grasp routine for each region of initial object orientations, the
demonstration included a single preparatory rotation routine
that adjusted the object from any initial orientation into the
grasp region. Thus the effective workspace of the original
grasp routine was extended to robustly complete the grasping
task.

One particular benefit of the pre-grasp rotation in this
demonstration was that it reduced the uncertainty in the
object orientation before the grasp. From initial object poses
with handle directions spanning a range of 360 degrees,
the manual pivoting action reduced the handle orientation
to a 15-degree range. This reduced range was within the
45-degree range of the grasping routine, which resulted in
more robust grasps that tightly-gripped the thin pan handle.
In contrast, when only the direct grasping routine was used
without the preparatory rotation, the pan was sometimes
grasped in a looser grip that resulted in dragging or tilting
during the grasping routine. Furthermore, with pre-grasp
rotation, the increased consistency of the grasps then also
resulted in further reduced uncertainty of the pan positionto
a 6-degree orientation range after the final grasping routine
[1].

C. Posture selection for automated planning

Automated manipulation planning is needed in less struc-
tured scenarios to respond quickly to new task conditions. A
key decision for automated grasping with pre-grasp interac-
tion is the target object pose after the object adjustment. The
new object pose should be reachable by the desired grasp,



Fig. 2. The grasping posture at the time of object lifting fromthe surface
depends on the object pose. Even for a 1-DoF change of object orientation,
the allowable manipulator configurations can change significantly due to the
different end-effector poses required to reach the object handle.

and it also must be attainable by the pre-grasp interaction
from the initial object state. The inclusion of the object
pose increases the dimensionality of the search space for
motion planning of the manipulator configuration. That is,
the manipulator configuration for grasping the object depends
on the new object pose (Fig. 2). Here we usegrasping
postureto refer to combined configuration of the manipulator
and the object at the time of object lifting from the support
surface.

To make the planning tractable, the method presented in
[3] decomposes the transport task into component actions of
the pre-grasp rotation, the reach-to-grasp motion to achieve
the desired grasp, and the transport motion that satisfies the
primary objective. The method samples and optimizes the
intermediate states between the component actions in order
for the decomposition to yield a whole successful transport
plan.

An optimization metric is needed to evaluate and select
from the sampled grasping postures. The lifting capability
metric that was correlated with human pre-grasp rotation [2]
is analogous to the maximum payload rating for a particular
robot manipulator configuration. Selecting grasping postures
with high maximum payload increases the safety margin of
the actual load relative to the joint torque limits. Higher
safety margins also reduce the risk of operating near load
limits if there is uncertainty in the object weight.

In addition, in some of the examples tested in [2], the
selection of high quality grasping postures for the lift-off
time resulted in higher quality manipulator configurations
that were planned for the following transport plan. This
result occurred even though the motion planner for transport
was agnostic to the quality metric. This influence of the
grasping posture on the transport configurations suggests the
importance of selecting good candidates for key transition
points in a multi-step motion plan, an insight which has also
been observed by others for multi-modal planning [20].

IV. L OCAL REFINEMENT OF GRASP POSTURE

In the initial planning method described above, candidate
grasping postures were selected to determine intermediate

goals and synthesize a feasible object transport plan that
automatically incorporated pre-grasp rotation [2]. A finite
set of candidate postures were sampled for evaluation in
a pre-computation stage. One limitation of this method is
the restriction of the motion planning goals to the exact
sample configurations, which will miss candidate goals if
sparse sampling is used for high-dimensional configurations.
A related limitation is that the resulting motion plan was
specific to the modeled object motion. The method did not
account for uncertainty in the success of rotating the object
to the selected target orientation.

Here we review some initial results for a method that
locally refines a grasping posture for pre-grasp rotation.
Starting from an initial valid grasping posture of the object,
our method locally optimizes the payload margin metric. This
local optimization framework is also used to compare possi-
ble optimization metrics for selecting the grasping posture.
We show that in scenes where the same limiting joint restricts
most of the feasible grasping postures, a simpler objective
of minimizing a single joint torque value is a possible proxy
cost function for locally improving a grasping posture.

This method of local refinement of an initial selected
grasping posture could be used in a situation where the pre-
grasp rotation plan fails to adjust the object completely to
the desired orientation and only achieves an intermediate
orientation from the initial orientation. If a feasible grasp of
the intermediate orientation can be reached, the posture can
be optimized while maintaining a grasp of the handle during
rotation of the object on the surface. After the optimization,
the object can then be lifted from the surface using the higher
quality grasping posture.

A. Gradient-based optimization of joint torque cost

In the location optimization of a grasping posture, we
assume that an initial feasible grasping posture for the
intermediate object orientation has been reached (e.g. seethe
kettle grasp in Figure 2). The optimization goal is to improve
the posture quality metric with respect to the manipulator’s
kinematic degrees-of-freedom (DoFs) as well as the object’s
single rotational degree of freedom. The object freedoms
changed by pre-grasp rotation can be considered a passive
joint added to the manipulator. For this “extended manipu-
lator”, the new “end-effector” frame is a fixed frame in the
environment at the initial object position (i.e. a frame fixed
to the support surface). The optimization of the grasping
configuration from an initial feasible point must maintain
the extended end-effector frame at this location, since the
passive object links remain supported by the surface at all
candidate configurations during any rotation.

For example, in Figure 2, the pivot axis of the kettle
remains fixed relative to the table. The optimization changes
only the robot arm configuration (N-DoF) and the kettle
orientation (1-DoF) without lifting or translating the kettle on
the table. The grasp of the handle (the relative configuration
of the robot gripper to the object) remains fixed such that
the object is considered part of the same link as the gripper.



The new extended “end-effector” frame differs by a 1-DoF
rotation from the object frame.

Thus the configuration space for representing a single
grasping posture is (N+1)-dimensional for anN -DoF ma-
nipulator and a single pivot freedom for object rotation.
The constraint is the requirement that the extended “end-
effector” frame matches a specified frame on the support
surface defining the object location.

We found that a gradient-based search in the (N+1)-
dimensional space resulted in unacceptable drift from the
constraint manifold or increasing cost with re-projection
onto the manifold. Instead, a manipulator-specific analytical
IK solution was used in a gradient-based search within a
subspace of the redundant DoFs while satisfying the end-
effector constraint. In our example scenario (Fig. 2), the
manipulator hasN=7 DoFs, and the complete search space
thus has 8 DoFs when the passive object rotation freedom is
added. We searched in a 2-D subspace of the first manipu-
lator joint axis and the object rotation axis. A manipulator-
specific IK solution was used to convert any 2-D subspace
configuration to a corresponding full 8-DoF grasping posture
that satisfied the end-effector constraint. This approach was
used to optimize the 8-DoF configuration while staying on
the constraint manifold.

Our gradient subspace search was used to compare opti-
mization cost functions. Specifically we compared a multi-
joint payload metric with single joint cost proxies.

B. Cost functions for grasp-posture selection

The payload margin optimization metric is computed
based on the torque limits of multiple joints, but its value is
determined by the limiting or weakest joint for a particular
manipulator configuration. In an analysis of the sampled
grasping postures for example transport task scenes in [2],
the limiting joint for the payload metric was dominated
by a few particular joint axes, rather than being uniformly
distributed across the 7 joint axes of the robot arm. Since
the payload margin is determined by the limiting joint, an
alternative cost function for evaluating the grasping postures
is the torque magnitude of the predicted weakest joint.

We used the subspace gradient search described above to
compare the optimization of two types of torque-based cost
metrics for the grasping posture. The first is the payload
safety margin cost, which depends on the torque limits of
the manipulator’s multiple joints. The second is a torque
magnitude of a single selected joint expected to be the
weakest joint.

For a single scene, multiple initial grasping postures are
selected based on the discretized sampling method in [2].
The set of candidate postures are optimized separately with
respect to the multi-joint payload margin cost and the single
joint torque cost for joints 2, 5, and 6, which were most often
the limiting joint.

Figure 3 shows the change in the optimization cost
function from the initialization point to the final posture
after optimization. In the sampled initialization postures,
there were multiple grasping postures per sampled object

orientation angle. For clarity, the plots show only the final
optimized posture with the lowest cost for each group of
postures with the same initialization object angle.

For the kettle grasps (Fig. 3), the limiting joint for the
payload safety margin cost was most often joint 6, the wrist
flexion, and otherwise joint 5, the forearm roll or pronation.
Thus, joint 6 is considered the weakest joint for this task.
When the single joint 6 torque cost was used as the cost
function for optimizing the grasp postures, the resulting
object angles and postures were similar to those resulting
from the payload metric optimization (Fig. 4).

In contrast, while it was possible to achieve arm config-
urations with zero joint 5 torque, the resulting postures had
higher payload margin costs than the original initialization
postures. Optimizing the joint 2 shoulder elevation torque,
however, yielded the lowest corresponding payload costs
(see middle column of Fig. 3). This result demonstrates
that optimizing a single joint torque independently is not
sufficient to replicate the payload margin optimization, but
it can provide a simple alternative cost funciton that results
in similar object angles for target orientations of pre-grasp
rotation.

V. D ISCUSSION

The initial investigation of pre-grasp rotation suggests
promising benefits of incorporating pre-grasp interaction
strategies into the repertoire of a robot manipulator. We have
found that grasping success can be improved through reuse
of robust grasps and the extension of the effective workspace
of direct grasping.

Pre-grasp interaction may be a partial approach to address
uncertainty in manipulation tasks. First, we found experimen-
tally that a pre-grasp rotation routine reduced uncertainty in
object pose before grasping and even after transport due to
the increased consistency of the object grasp in the gripper.
Further work is needed to develop methods for planning
and predicting the pose outcomes from contact interaction,
an area that has initially been investigated for sensorless
manipulation by, e.g., [13], [21]. Second, our studies of
human pre-grasp rotation found that object adjustment may
be related to the optimization of the payload safety margin
of the grasping posture for object lifting. The optimization
of the grasping posture payload reduces the risk of operat-
ing beyond recommended actuation limits when the object
weight is unknown or uncertain. In Section IV we presented
recent results for local optimization of tje grasping posture
as part of a pre-grasp rotation task.

In this paper, we have focused on 1-DoF object re-
orientation for a single-arm manipulator. The pre-grasp ro-
tation plan consisted of a sequence of plans for object
reorientation, reaching the grasping posture, and the object
transport. Increasing the degrees of freedom for pre-grasp
object motion and/or for the manipulator will also require
decomposition methods to make planning tractable in high-
dimensional search spaces. One recent approach explored
by our group in [18] makes use of human demonstration



0 50 100 150 200
0

0.02

0.04

0.06

object angle [degrees]

payload safety margin cost (over multiple joints)

pa
yl

oa
d 

m
ar

gi
n 

co
st

 [N
−

1 ]

initial posture

optimized posture

2 4 6
0

100

200

300
payload limiting joint of optimized postures

co
un

t o
f p

os
tu

re
s

joint index

(a) Kettle on table: Payload safety margin optimization
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(b) Kettle on table: Single joint torque minimization

Fig. 3. Optimization results for grasping the kettle from a table. (a) The change in the cost versus the passive object rotation freedom for optimizing
the payload safety margin (left). For clarity, only the results with the lowest final cost from each group of postures with the same initial object angle are
shown. Joint 6 was most often the limiting joint (right) for theentire set of final optimized postures for grasping the kettle. (b) The change in the joint
torque cost versus object angle (left) when the optimizationcost function is the torque magnitude at a single joint, for joints 2, 5, and 6. The corresponding
changes in the payload margin cost are shown (center) for the postures resulting from single joint torque minimization. Thelimiting joint for the payload
cost is shown (right) for the entire set of final postures resulting from single joint torque minimization.

(a) Payload margin (b) Joint 2 torque (c) Joint 5 torque (d) Joint 6 torque

Fig. 4. Optimized grasping postures for different torque-based cost functions. The illustrated robot grasps correspond to the final optimized postures whose
object angles are shown in Fig. 3. For the kettle grasps, the object angles from payload margin optimization (a) are most similar to those for minimizing
the joint 6 torque (d).



examples to narrow the search space of promising candidate
grasps for pre-grasp pushing interactions.

A remaining challenge is to deal with the uncertainty in the
planned object adjustment at the time of action execution. We
presented initial investigation of motion planning techniques
for identifying a desired manipulation plan that includes pre-
grasp interaction. Future work is required to integrate the
motion plan together with perceptual information during exe-
cution to realize robust task completion even under modeling
uncertainty.
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