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Method for determining kinematic parameters of the
in vivo thumb carpometacarpal joint
Lillian Y. Chang Student Member, IEEE, and Nancy S. Pollard Member, IEEE

Abstract—The mobility of the thumb carpometacarpal (CMC)
joint is critical for functional grasping and manipulation tasks.
We present an optimization technique for determining from
surface marker measurements a subject-specific kinematic model
of the in vivo CMC joint that is suitable for measuring mobility.
Our anatomy-based cost metric scores a candidate joint model
by the plausibility of the corresponding joint angle values and
kinematic parameters rather than only the marker trajectory re-
construction error. The proposed method repeatably determines
CMC joint models with anatomically-plausible directions for the
two dominant rotational axes and a lesser range of motion (RoM)
for the third rotational axis. We formulate a low-dimensional
parameterization of the optimization domain by first solving
for joint axis orientation variables which then constrain the
search for the joint axis location variables. Individual CMC joint
models were determined for 24 subjects. The directions of the
flexion-extension (FE) axis and adduction-abduction (AA) axis
deviated on average by 9 degrees and 22 degrees, respectively,
from the mean axis direction. The average RoM for FE, AA,
and pronation-supination (PS) joint angles are 76, 43, and 23
degrees for active CMC movement. The mean separation distance
between the FE and AA axes was 4.6 mm, and the mean skew
angle was 87 degrees from the positive flexion axis to the positive
abduction axis.

Index Terms—subject-specific joint models, axes of rotation,
optimization, thumb mobility

I. INTRODUCTION

THE mobility of the human thumb is a critical component
of the hand’s ability to grasp and manipulate objects.

Subject-specific models can lead to more accurate evaluation
of individual thumb motion and dynamic function. In this
work we concentrate on the carpometacarpal (CMC) joint
at the base of the thumb between the trapezium bone and
metacarpal bone, which is responsible for the wide range
of thumb circumduction and opposition [1, 2]. Determining
appropriate, subject-specific models of this joint is important
for evaluating individual thumb mobility with respect to the
appropriate joint axes and creating customized hand models
for virtual rehabilitation environments.
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Previous work by Hollister et al. [3] located the anatomic
rotational axes of the in vitro CMC joint, and further studies
by Santos and Valero-Cuevas [4] simulated possible kinematic
models based on distributions of joint parameters from cadav-
eric measurement. Cooney et al. [5] also determined the orien-
tation of in vitro CMC axes from the ridges of the trapezium
bone surface in cadaver hands, and these results reported with
respect to the hand dorsum provide a single constant model
of the axis orientations to subsequently measure in vivo CMC
mobility. Non-invasive techniques proposed by Coert et al. [6]
and Zhang et al. [7] evaluate thumb circumduction based on
the observed motion of the thumb segments, without determin-
ing a kinematic model for the thumb joints. In contrast, Chèze
et al. [8] and Cerveri et al. [9] have developed techniques
for estimation of the in vivo CMC axes from isolated thumb
movements such as circumduction and flexion-extension. Our
technique uses the entire joint range of motion (RoM) to
determine an individual in vivo CMC joint model with two
dominant rotational axes that are non-intersecting and non-
orthogonal. The method accommodates any general surface
marker protocol and can be used to measure joint RoM with
respect to the subject-specific model fit to an individual’s
particular pattern of motion.

Several kinematic models have been used to describe the
thumb CMC joint [3, 5, 10, 11]. The CMC joint motion
is dominated by two degrees of freedom (DoFs) of flexion-
extension (FE) and adduction-abduction (AA) and exhibits
a lesser amount of pronation-supination (PS) [1, 5]. The
simplest models [5, 10, 12] consider these axes intersecting
and orthogonal, as part of either a two-DoF universal joint
or a three-DoF spherical joint. However, the anatomy of
the interfacing bone surfaces of the trapezium and thumb
metacarpal bones suggests a saddle joint model with two axes
that are non-intersecting and non-orthogonal (skew) [1, 3, 13],
and this has been incorporated in a five-virtual-link thumb
model for simulation [4, 11].

We use a three-DoF CMC joint model with non-intersecting
FE and AA axes whose relative skew is determined by rotation
about the PS axis. This model incorporates the complexity
of the non-intersecting and non-orthogonal axes of the CMC
saddle joint as in previous two-DoF models [3, 4, 11] while
also allowing measurement of the PS rotation as the third
DoF. Our approach optimizes an individual CMC joint model
over a low-dimensional parameter space by decomposing the
joint model into the two parts of joint axis orientation and
joint axis location. The cost metric for the optimization scores
anatomical characteristics of the CMC joint motion rather than
only evaluating the marker trajectory reconstruction error as
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used previously for similar joint models [14–16]. We find that
to achieve subject-specific models of the CMC joint which
also have anatomically-meaningful joint properties, minimiz-
ing the reconstruction error is insufficient because it leads to
inconsistent estimates of axis directions and large RoM for the
non-dominant DoF. Instead, optimizing our proposed metric
determines a joint model which has anatomically-meaningful
joint properties such as the relative RoM between the DoFs
and the proximal-distal relative location of the axes.

II. METHOD

A. Experimental protocol
The study involved a total of 24 able-bodied individuals,

consisting of 12 male (11 right-hand dominant, 1 left-hand
dominant) and 12 female (11 right-hand dominant, 1 left-hand
dominant) subjects, aged 26 ± 3.2 years (mean ± standard
deviation). A Vicon camera system tracked the positions of
reflective surface markers attached to the hand dorsum and
thumb metacarpal segment, which defined the hand technical
coordinate system (TCS) and thumb metacarpal TCS (Fig. 1a).
Markers H1, H2, and H3 define the hand dorsum TCS and
are attached, respectively, to the proximal end of the third
metacarpal, the distal end of the third metacarpal, and the distal
end of the second metacarpal. Markers T1, T2, and T3 define
the thumb metacarpal TCS and are attached, respectively, to
the proximal end of the first metacarpal on the ulnar side,
the distal end of the first metacarpal on the ulnar side, and the
distal end of the first metacarpal on the radial side. The marker
locations were chosen to be spread out over the metacarpals
of the hand dorsum and thumb to avoid, to the extent possible,
large changes in the TCS orientation due to skin motion over
the bone.

Subjects were seated at a table with the arm comfortably
extended and the ulnar part of the hand in contact with the
table surface for the data acquisition session (Fig. 1b). The
calibration movement for sampling the full space of CMC
joint configurations consisted of circumduction, a star pattern,
abduction-adduction, and flexion-extension motions (Fig. 2).
Subjects were directed to avoid motion of the other joints
of the thumb, palm, and fingers, although these joints were
not mechanically-constrained in order to encourage natural
motion of the CMC joint. Subjects performed the calibration
movement at a self-selected speed to exercise the active RoM
of the CMC joint without any external contact to the thumb.
Two repetitions of the movement pattern were recorded. The
experiment was completed for both the right hand and left
hand of each subject.

The recorded marker trajectories were lightly conditioned
before use as input data as follows. Segments of static poses
were manually clipped from the beginning and end of each
motion sequence. In addition, any time samples with occluded
markers were discarded. The resultant data sequence for one
repetition of the calibration movement had on average 4500
time samples. For each of these remaining time samples, we
computed the measured rigid transform Am of the thumb
metacarpal TCS with respect to the hand dorsum TCS (Fig.
3a), which consists of the relative orientation matrix Rm be-
tween the TCS axes and the position pm of the metacarpal TCS
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Fig. 1. (a) Marker protocol for the right hand used to measure the motion
of the CMC joint in the experimental validation. Markers H1, H2, and H3
define the TCS for the hand dorsum, and markers T1, T2, and T3 define the
TCS of the thumb metacarpal segment. A symmetric placement of markers
was used for the left hand. The same marker protocol was used for all
subjects to facilitate comparisons of the CMC axes locations, but the method
can accommodate an arbitrary choice of the hand dorsum TCS and thumb
metacarpal TCS. (b) Active RoM was measured while the subject exercised
the CMC joint without any contact to the thumb.
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Fig. 2. An example of the calibration motion pattern measured from one
subject. The trajectory of the T2 marker for the four portions of the motion
pattern segment are shown for both radial and palmar views of the hand.
(a,e) Clockwise and counter-clockwise circumduction. (b,f) A star pattern
with arcs across the joint range of motion in multiple directions. (c,g) Zig-zag
pattern with high-frequency adduction-abduction while gradually changing the
flexion-extension angle. (d,h) Zig-zag pattern with high-frequency flexion-
extension while gradually changing the adduction-abduction angle.

origin in the hand TCS frame. In addition, since the selection
of the origin marker for the metacarpal TCS is arbitrary, our
available data includes the positions (pm1, pm2, pm3) of all
three metacarpal markers in the hand TCS frame.

B. Problem statement

Given the sequence of measured relative TCS transforms
Am and marker positions (pm1, pm2, pm3) from the data
acquisition, we wish to determine the joint model which
describes the orientation and location of the functional CMC
rotational axes. In our model of the CMC joint (Fig. 3b), the
joint angles θ1, θ2, and θ3 denote three sequential rotations
about the FE axis zh, the PS axis, and the AA axis zt,
respectively. The FE axis zh is the z-axis of the hand dorsum
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Fig. 3. (a) Technical coordinate systems (TCS) and functional coordinate
systems (FCS) define the hand dorsum and thumb metacarpal segments
adjacent to the CMC joint. The transform Am(k) describing the measured
configuration of the CMC joint at time instance k is the composition of
the change-of-coordinate transform Ah, the CMC configuration expressed
relative to functional coordinate systems Aj(k), and the change-of-coordinate
transform At. (b) Model of the three rotational axes of the CMC saddle joint.
The FE axis zh is the z-axis of the hand dorsum FCS and is located through
the trapezium bone. The AA axis zt is the z-axis of the thumb metacarpal
bone FCS. The FE and AA axes are separated by distance d along their mutual
perpendicular which is the PS axis. The skew between the FE and AA axes
is defined by the rotation angle θ2 about the PS axis.

functional coordinate system (FCS), and the AA axis zt is the
z-axis of the thumb metacarpal FCS. The FE and AA axes are
separated by a distance d along the PS axis, and the value of
the PS rotation angle determines the skew between the FE axis
and AA axis. For a complete description of the joint model, we
need to solve for the hand dorsum FCS and thumb metacarpal
FCS (Fig. 3a) which express the CMC movement in terms
of functional FE, AA, and PS joint angles. We also need to
solve for the constant separation d between the dominant FE
and AA axes.

C. Optimization cost metric

To determine the joint model for an individual subject, we
will use an optimization approach to select an appropriate
set of hand FCS, thumb FCS, and separation d which result
in rotational DoFs θ1, θ2, and θ3 that both reconstruct the
joint orientation and correspond to anatomically-meaningful
FE, PS, and AA joint angles. We design our optimization cost
metric for scoring candidate models as a combination of three
cost components based on anatomical knowledge of the thumb
CMC joint. The first aspect of the CMC joint motion is that
it is dominated by FE and AA rotation with a limited amount
of PS rotation, as reflected by the two-DoF models used in
previous work [4, 11]. Thus the functional joint axes should
correspond to joint variable sequences with small variation of
θ2 values. The second aspect is that the FE RoM is generally
larger than the AA RoM for unimpaired CMC joints [5, 6].
Finally, the FE axis fixed in the hand frame is proximal to
the AA axis fixed in the thumb metacarpal frame due to the
saddle joint geometry between the metacarpal and trapezium
bones [3, 4, 11, 13]. These three anatomical aspects of the
CMC joint kinematics are incorporated into an overall cost
metric which is minimized to solve for meaningful joint axes.
All three components are used simultaneously since a single

component alone is not sufficient to satisfy all three objectives.

f = fPS + fRoM + fd (1)

The component fPS reflects the property that the observed
PS angle values should have small variation as the non-
dominant rotational freedom. We motivate this cost metric
component by a probabilistic model which assumes that the
PS angle values are normally-distributed with mean value µ2

and variance σ2
2 . To maximize the probability of observing

a sequence of θ2 values, we can equivalently minimize the
corresponding negative log likelihood function of the modeled
normal distribution, normalized by the sequence length N [see,
e.g., 17]. This is used as one component of the cost metric:

fPS =

∑N

k=1 (θ2(k) − µ2)
2

2Nσ2
2

(2)

where k indicates a single time sample in the sequence.
Since the absolute value of the angle is irrelevant for

describing the overall amount of PS rotation, there is no prior
set for µ2 and we instead use the sample mean of the joint
angle sequence,

µ2 =
1

N

N
∑

k=1

θ2(k). (3)

The resultant form of Eq. (2) can be interpreted as the sample
variance of the θ2 values, scaled by a weighting factor 2σ2

2 .
Next, the minimizing cost metric favors joint axis orienta-

tions which are aligned such that the FE RoM is maximized
relative to the AA RoM:

fRoM =
range(θ3)

range(θ1)
(4)

where

range(θi) = max
k∈(1,N)

(θi(k)) − min
k∈(1,N)

(θi(k)). (5)

The final cost component measures how meaningful the
estimated constant separation d is with respect to an assumed
normal distribution with mean µd and variance σ2

d. As before,
maximizing the probability of the estimated separation d is
equivalent to minimizing the negative log likelihood of d.

fd =
(d − µd)

2

2σ2
d

(6)

In this case, µd and σd provide intuitive weighting parameters
which represent our prior belief in the possible values for
anatomically-plausible separation distances. Selecting µd ≥ 0
represents the choice to favor CMC joint models where the
FE axis is proximal to the AA axis, to be consistent with the
CMC bone anatomy.

The overall optimization cost metric,

f =

∑N

k=1 (θ2(k) − µ2)
2

2Nσ2
2

+
range(θ3)

range(θ1)
+

(d − µd)
2

2σ2
d

, (7)

evaluates how well a candidate joint model corresponds to a
meaningful decomposition of joint angles with an appropriate
separation distance between the FE and AA axes. The three
tuning parameters (σ2, µd, σd) are used to adjust the relative
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weights of the three unitless components fPS , fRoM , and fd.
The first component locates the direction of the PS axis with
small variation in θ2 values, the second component serves
to distinguish between FE and AA directions according to
the RoM ratio, and the third component selects models with
appropriate separation distances.

D. Computation of joint parameters

In our optimization approach, we search the domain of
candidate joint models for the joint model with minimum cost
according to the anatomy-based cost metric in Eq. (7). In this
section, we present how to formulate the optimization domain
as the four-DoF set (zh, zt) specifying the orientations of
the FE and AA axes. Then, given a measured data sequence
and a candidate set (zh, zt), we can directly compute the
remaining kinematic parameters and joint variables which are
needed to evaluate the value of the cost metric. Pseudocode
for the entire cost metric computation can be found in Fig. 4.

1) Kinematic model: At any time sample k, the measured
CMC joint configuration Am(k) is related to the functional
joint configuration Aj(k) by the two change-of-coordinate
transforms (Fig. 3a):

Am(k) = AhAj(k)At (8)

where Am(k) is the measured configuration of the thumb
metacarpal TCS with respect to the hand TCS at time k, Ah is
the fixed transform of the hand FCS in the hand TCS, Aj(k) is
the functional joint configuration of the metacarpal FCS in the
hand FCS at time k, and At is the fixed transform of the thumb
metacarpal TCS in the thumb metacarpal FCS. The relation
in Eq. (8) can be expanded in terms of the each transform’s
orientation component R and location component p:

Am(k) =

[

Rh ph

~0 1

] [

Rj(k) pj(k)
~0 1

] [

Rt pt

~0 1

]

=

[

Rm(k) pm(k)
~0 1

]

. (9)

We use the robotics Denavit-Hartenberg (DH) convention
[see, e.g., 18] to parameterize Aj(k) for the kinematic model
depicted in Fig. 3b (Table I). This convention provides a
framework to describe both the joint axis orientation and joint
axis location, and it has been used previously to describe the
non-orthogonal and non-intersecting axes of the thumb joints
in recent literature [4, 11]. The FE axis zh fixed in the hand
frame is orthogonal to and intersects the PS axis, and the PS
axis is orthogonal to and intersects the AA axis zt fixed in the
thumb metacarpal frame. The distance between the intersection
points on the PS axis defines the separation d between the FE
and AA axes, and the value of the PS rotation angle determines
the skew angle between the FE and AA axes. The value for the
PS rotation angle for non-singular configurations will be near
90 degrees. The general form of Aj(k) is expressed in terms
of the fixed separation d and the three joint angles θ1, θ2, and
θ3, using the abbreviated notation ci = cos θi and si = sin θi,

Input: zh, axis orientation in hand TCS
Input: zt, axis orientation in thumb TCS
Input: Am, sequence of N measured transformations consisting of rotations

Rm and n ≥ 1 marker positions pm1, . . . , pmn

Input: v, vector denoting proximal to distal direction in the hand TCS
Output: cost metric value

1: // first estimate joint angles relative to arbitrary θ1 and θ3 values
2: Rh ←rotation of minimum angle that aligns z-axis of hand TCS to zh

3: Rt ←rotation of minimum angle that aligns z-axis of thumb TCS to zt

4: for each time sample k do
5: Rj(k) ←RT

h
Rm(k)RT

t
6: θ1(k), θ2(k), θ3(k) ←InverseKinematics(Rj(k)) solution with

θ2(k) ≥ 0
7: end for
8: // update joint angles to reference configuration
9: Rh ←Rh ∗Rotation(z, mode(θ1))

10: Rt ←Rotation(z, mode(θ3)) ∗Rt

11: for each time sample k do
12: Rj(k) ←RT

h
Rm(k)RT

t
13: θ1(k), θ2(k), θ3(k) ←InverseKinematics(Rj(k)) solution with

θ2(k) ≥ 0
14: end for
15: // use orientation parameters to estimate location parameters
16: d, ph, pt ←LeastSquaresEstimate(Rh, Rt, Rj , θ1, pm1, . . . , pmn)
17: // adjust sign of separation d to describe the proximal-distal relation

between FE and AA axes
18: xh ←x axis of Rh

19: d ←|d| sign(v · xh)
20: cost ←CostFunction( θ1, θ2, θ3, d)
21: return cost

Fig. 4. Pseudocode for the evaluation of a four-DoF solution family
(zh, zt) for a given measured sequence Am and set of n marker trajectories
(pm1, pm2, ...pmn).

TABLE I
DENAVIT-HARTENBERG PARAMETERS FOR DESCRIBING THE FUNCTIONAL

CONFIGURATION OF THE CMC JOINT MODEL. THERE ARE THREE
ROTATIONAL AXES WITH NO TRANSLATIONAL DEGREES OF FREEDOM.

SUCCESSIVE AXES ARE MUTUALLY ORTHOGONAL, AS INDICATED BY THE
LINK TWIST VALUES. THE FE AND AA AXES ARE SEPARATED BY JOINT

OFFSET d ALONG THE PS AXIS WHICH IS THE MUTUAL PERPENDICULAR.
THE SKEW BETWEEN THE FE AND AA AXES IS DEFINED BY THE

ROTATION ANGLE θ2 ABOUT THE PS AXIS.

link joint joint angle link length link twist joint offset
number axis θ a α d

1 FE θ1 0 −π
2

0
2 PS θ2 0 π

2
d

3 AA θ3 0 0 0

as:

Aj(k) =





c1c2c3 − s1s3 −c1c2s3 − s1c3 c1s2 −ds1
s1c2c3 + c1s3 −s1c2s3 + c1c3 s1s2 dc1

−s2c3 s2s3 c2 0
0 0 0 1



 .

(10)

Overall, 13 fixed parameters specifying Ah, At, and d

describe the CMC joint model, while the values of the
three joint variables at all N time samples describe a
measured motion sequence. Instead of optimizing over the
high-DoF space (Ah, At, d) and solving for the joint angles
to compute the cost metric, we can simplify the search to
a four-parameter domain for (zh, zt) by using the measured
motion Am to solve for the remaining nine parameters and
3N joint variables.
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2) Joint coordinate system orientation: We first consider
the orientation component of the model, because the orienta-
tion Rm is independent of all location parameters, as seen from
Eq. (9). The orientations of the joint axes are defined by only
four numbers specifying the pair of axis directions (zh, zt).
The FE axis zh is the z-axis of Rh, the AA rotation axis zt is
the z-axis of RT

t , and the PS axis is orthogonal to both zh and
zt. For each pair (zh, zt), there is a family of solutions for
the six-DoF set (Rh, Rt), where the corresponding functional
joint angle sequences (θ1, θ2, θ3) for a sequence of measured
rotations Rm(k) are fully defined up to a shift in the reference
angle for θ1 and θ3 and a sign change for θ2. The ambiguity in
the sign of θ2 is due to the fact that there are two sets of joints
angles, (θ1, θ2, θ3) and (θ1 +π,−θ2, θ3 +π), corresponding to
any single matrix Rj(k).

We choose a canonical set of joint angle values from the
family of solutions corresponding to a pair (zh, zt) by selecting
positive values for θ2 and reference configuration angles for
θ1 and θ3 such that the modes of the observed angle sequences
are zero (Fig. 4):

mode(θ1) = 0 (11)
θ2 > 0 (12)

mode(θ3) = 0. (13)

The mode is computed by mapping the N continuous angle
values to a discrete set of 5-degree intervals and selecting the
center value of the interval with the maximum frequency. In
effect, Eq. (11) and Eq. (13) specify the remaining two DoFs
which select a single six-DoF set (Rh, Rt) from a four-DoF
family defined by (zh, zt). The appropriate set (Rh, Rt) is
computed by first estimating the joint angle sequences from
an arbitrary choice of (Rh, Rt) within the (zh, zt) family and
then shifting the reference configuration angles by the modes
of the estimated sequences (Fig. 4, Lines 1–14). Using the
mode of the joint angle sequence approximately centers the
angle values around zero and avoids angle values near ±π.
Typically, the positive values of θ2 selected by Eq. (12) will
be near +π

2 .
Thus, for any candidate set of axis directions (zh, zt) and

a sequence of measured rotations Rm(k), we can compute
a canonical six-DoF orientation pair (Rh, Rt) and the set of
three joint variable sequences (θ1, θ2, θ3). The first part of Fig.
4 reviews this computation in pseudocode form.

3) Joint axes location parameters: The locations of the
joint axes are defined by two position vectors ph and pt (Eq.
(9)), as well as the separation distance d. The position vector
of the measured transform Am is a linear function of these
location parameters, as derived from Eq. (9):

pm(k) = ph + Rhu1(k)d + RhRj(k)pt (14)

where

u1(k) =

[

−s1(k)
c1(k)

0

]

. (15)

Given a candidate set of orientations (Rh, Rt) which define
the joint angle values, we can solve directly for the loca-
tion values (ph, pt, d) that minimize marker reconstruction

error as a linear least squares problem. Each time sample
k provides the following set of equations for the positions
(pm1, pm2, pm3) of the three markers on the metacarpal seg-
ment:
[

pm1(k)
pm2(k)
pm3(k)

]

=

[

I3 Rhu1 RhRj(k) 03 03

I3 Rhu1 03 RhRj(k) 03

I3 Rhu1 03 03 RhRj(k)

]







ph

d
pt1
pt2
pt3







(16)

where I3 is the 3× 3 identity matrix and 03 is a 3× 3 matrix
of zeros. The measurements from all N time samples are
combined in an overdetermined system of equations which
is solved in a least squares manner for the 13 × 1 location
parameter vector (ph, d, pt1, pt2, pt3). This completes the full
specification of (Ah, At) defining the orientation and location
of the CMC joint axes and in addition provides the separation
distance d between the FE and AA axes.

Conceptually, the axis orientations (zh, zt) are defined by
two bidirectional lines, but in practice the parameterization
using directed vectors results in multiple equivalent solutions
in the four-DoF space which differ by a sign change. For a
physical interpretation of the separation distance d, we denote
d ≥ 0 when the AA axis is distal to the FE axis and d < 0
when the AA axis is proximal to the FE axis. The middle
section of Fig. 4 (Lines 15–19) reviews this calculation in
pseudocode form.

E. Data analysis

We determined individual CMC joint models from the
experimental data by optimizing the cost metric defined in Eq.
(7), whose three components model prior anatomic knowledge
of the CMC joint. The tuning parameters were set to σ2 = 5
degrees, µd = 5 mm, and σd = 5 mm. The small value of
σ2 corresponds to small amounts of PS rotation. The positive
value of µd reflects the anatomic joint property that the AA
axis is distal to the FE axis, and the value of σd indicates
the expected variation in the anatomically-plausible separation
distances. With these values, the cost metric components are
of approximately the same magnitude, as determined from
sensitivity tests of the parameter values.

We also tested three other competing approaches for deter-
mining the axis orientations of an individual CMC joint. First,
we consider a constant set of in vitro axis orientations which
is applied to all individuals. Cooney et al. [5] measured the
CMC axes based on in vitro bone surface geometry for 10
cadavers and reported the mean orientations of the trapezium
axes with respect to the hand dorsum coordinate frame. We
converted the reported results from Cooney et al. [5] for a
fixed-axis rotation convention, where joint axes are fixed in
the trapezium frame, to a moving-axis rotation convention for
comparison to our model, where the AA axis is fixed in the
metacarpal frame and moves relative to the trapezium. The
joint coordinate system reported by Cooney et al. [5] only
defines the axis orientation but not the axis locations. We will
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calculate the location parameters for each individual using the
joint angles corresponding to the set of constant axis directions
(zh, zt) converted from the Cooney et al. [5] results (further
described below).

Second, we test an optimization approach whose minimiza-
tion cost metric is the marker trajectory reconstruction error
for a three-DoF joint model. For a candidate set of joint axis
directions (zh, zt), the full set of three joint angles and the
location parameters were computed as described previously
for our method. The cost for the set (zh, zt) is then calculated
from the joint angles and location parameters as the root-mean-
square (RMS) distance between the measured and predicted
marker positions over all the markers and all time samples.

The third approach we tested is an optimization of the
marker trajectory reconstruction error for a two-DoF joint
model. We use this model to investigate how model constraints
affect the optimization of reconstruction error. To perform this
optimization, we computed reconstruction error as follows.
After solving for the full set of three joint angles and location
parameters given a pair (zh, zt), the value of θ2 was fixed
to the mean joint angle. The marker reconstruction error was
then computed from the two-DoF joint angle values of θ1 and
θ3, the constant value of θ2, and the location parameters.

The optimization method used for the three optimization ap-
proaches was implemented in MATLAB (R2006a, Mathworks,
Inc.; Natick, MA) using the built-in simplex optimization
algorithm fminsearch to minimize the cost metric. The four-
dimensional search domain represents the set of axis directions
(zh, zt). The two numbers for each z-axis direction are the
x and y components of an axis-angle rotation which aligns
the current z-axis to the new z-axis direction. To improve
the quality of the solution and address the problem of local
minima, the search was initialized ten times. For each ini-
tialization, the two axis-angle rotations defining the directions
(zh, zt) were chosen randomly from a uniform distribution
of (x, y) points within a circle of radius π

2 . This distribution
corresponds to one hemisphere of possible z-axis distributions.
The best overall local minimum from the ten initializations
was selected as the final solution for the given data sequence.
Preliminary testing on a small sample of the available data
determined the choice of ten initializations to be sufficient for
repeatable optimization results.

For all three optimization approaches, the optimization
technique was applied separately to the two repetitions of
the calibration movement. The two resulting joint models
were compared in two-fold cross validation where the cost
metric was evaluated on the motion of one repetition using
the optimization result for (zh, zt) from the other repetition.
The solution with the lower cross-validation cost was selected
as the final single CMC model for the particular subject hand.

For each of the four approaches, the solution for (zh, zt)
was then used to compute the corresponding joint variable
values and the location parameters from the combined data
set of both calibration movement repetitions. The average
skew between the FE and AA axes is the mean value of
the PS angle θ2 from the recorded movement. RoM for all
three joint angles was measured as the difference between
the maximum and minimum values, as in Eq. (5). The RMS

marker position reconstruction error can be computed from
the estimated location parameters and joint angle values. Note
that for the marker reconstruction optimization approach of
the two-DoF model, the value of θ2 is only fixed to the mean
joint angle for computing the cost metric, but for reporting
results, the full set of varying values for θ1, θ2, and θ3 is used
for evaluation of the RoM, location parameters, and marker
reconstruction error.

For the three optimization approaches, the mean direction
of the axes zh and zt was calculated by representing each
subject-specific direction as a point on the unit sphere and
using the spherical averaging technique developed by Buss and
Fillmore [19]. The results for the left hand were converted to
the right hand coordinate frame, such that a single distribution
of axis orientations included results for both hands of all
subjects. The mean direction z̄ was compared to the constant
in vitro joint axis direction zc reported by Cooney et al. [5].
Inter-subject variability is measured from the angular deviation
of an individual axis orientation z relative to the mean axis
orientation z̄.

III. RESULTS

Optimizing the anatomy-based cost metric resulted in an
intuitive alignment of the CMC axes due to the qualitative
characteristics modeled in the cost metric (Fig. 5). The av-
erage axis directions from our proposed optimization method
differed from the constant in vitro axis directions by 20 degrees
and 35 degrees for zh and zt, respectively (Table II). The
deviation of a subject-specific axis to the mean axis was at
most 27 degrees and 53 degrees for zh and zt. In contrast, the
optimization of marker reconstruction error for both the three-
DoF and two-DoF joint models failed to consistently estimate
anatomically-plausible directions. For the reconstruction op-
timization of a three-DoF model, the deviation of a subject-
specific axis was as much as 105 and 96 degrees zh and zt

respectively, indicating a lack of consistent axis directions.
The reconstruction optimization of the two-DoF model also
resulted in large maximum deviations of 105 and 95 degrees
for zh and zt respectively, and the average location of the AA
axis in the metacarpal frame differed unacceptably from zc by
72 degrees.

For all four approaches, the resulting RoMs (Table III)
decrease in order of FE, AA, and PS movement, as in previous
descriptions of the functional CMC motion [1]. However, the
RoMs determined from our anatomy-based optimization were
the most consistent with the concept that the CMC joint is
predominantly a two-DoF joint. The PS RoM was on average
23 degrees and at most 34 degrees using our approach, while
for the other three approaches the average was at least 28
degrees and the maximum was at least 49 degrees. In addition,
the anatomy-based optimization measured overall larger FE
RoM than the other two models due to the alignment of
the axis orientations to each subject’s specific movement. In
a comparison of the marker reconstruction optimization for
a three-DoF model and two-DoF model, the constraint in
the two-DoF model results in a smaller PS RoM. Since the
optimization of marker reconstruction error for the three-DoF
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Fig. 5. (a,b) CMC joint model results for our anatomy-based optimization
approach are represented by average directions of the FE axis and AA axis
over 48 hands from 24 subjects. The cone denotes the mean angular deviation
from the mean direction (Table II). (c,d) Close-up views of the CMC joint
model for one example subject. (c) In the radial view, the separation distance
between joint axes is nearly orthogonal to the page. (d) In the dorsal view,
the white line highlights the separation distance between the FE and AA axis
locations.

model is the least constrained with respect to possible joint
angle values, for two individual thumbs the optimization result
with the least reconstruction error occurred near the rotation
singularities θ2 = π such that the FE RoM and AA RoM were
greater than 145 degrees.

The anatomy-based optimization also resulted in models
where the FE axis was always proximal to the AA axis, unlike
the other models which resulted in the FE axis distal to the AA
axis for 10%, 35%, and 67%, respectively, of the thumbs for
the constant axis orientation model, marker reconstruction op-
timization of the three-DoF model, and marker reconstruction
optimization of the two-DoF model. Overall, for our anatomy-
based approach, the separation distance between the FE and
AA axes of each individual CMC joint model was 4.6 mm
on average, with 1.2 mm standard deviation across all hands.
The mean value of the PS angle θ2, representing skew between
the FE and AA axes, was 87 ± 17 degrees (mean ± standard
deviation) from the positive flexion axis to the positive abduc-
tion axis. Average RMS reconstruction error for the calibration
movement was 2.4 mm per marker, which was only slightly
greater than 2.2 mm, 1.9 mm, and 2.0 mm for the constant axis
orientation model, marker reconstruction optimization of the
three-DoF joint model, and marker reconstruction optimization

of the two-DoF joint model, respectively.
Repeatability of the methods is measured by the difference

between the optimized parameter values for the two separate
repetitions of the calibration movement (Table IV). By defini-
tion, the constant axis orientation model is 100% repeatable
for the axis orientations since it models zero inter- and intra-
subject variability. In comparing the three optimization ap-
proaches, the resulting FE axis direction with maximum RoM
estimated from our anatomy-based approach was repeatable
for at least an additional 31% of the individual hands than that
from either of the two marker reconstruction optimizations.
The difference in repeatability of the AA axis with medium
RoM was less clear with respect to the reconstruction approach
for the two-DoF model. This suggests that the FE axis with
maximum RoM is more well-defined than the AA axis with
medium RoM. For the relative configurations of the FE and
AA axes, our anatomy-based approach had the maximum
repeatability of all three approaches for values of the mean
θ2 skew angle within 1 degree and the separation distance
d within 0.5 mm. Overall, our optimization of the anatomy-
based cost metric allowed for inter-subject variation of the
joint axis directions and in addition resulted in improved intra-
subject repeatability of the separation distance and skew angle
between the dominant axes.

IV. DISCUSSION

Our method fits a subject-specific CMC joint model for
evaluating CMC mobility with respect to axes that are aligned
to an individual’s particular motion. The anatomy-based cost
metric reflects the preference for consistency with known
CMC characteristics over purely minimizing the marker recon-
struction error, which may result in anatomically-implausible
parameter estimates. A convenient feature of the method is
the simplified parameterization of the problem such that the
pair of axis orientations (zh, zt) are sufficient to determine
the entire joint model, including axis locations, separation
distance between axes, and skew angle between axes. The
low-dimensional parameterization of candidate joint models
simplifies the complexity of the search space which reduces
the computational expense of the optimization, and a rea-
sonable optimum solution is found with a small number of
reinitializations.

A. Description of thumb kinematics

Measurements of the functional joint angles across 48 hands
from 24 subjects show that CMC mobility can be described by
two dominant DoFs of FE rotation and AA rotation. However,
the amount of PS rotation is not necessarily negligible given
that the PS RoM for active movement was 23 degrees on aver-
age and as high as 34 degrees for one individual. Investigation
of the joint angle trajectories for a subset of the measured
sequences did not find that any specific part of the calibration
motion consistently exhibited greater PS rotation. PS move-
ment was present throughout the calibration movement, and
the PS RoM differed by only a few degrees between the four
parts. Our technique provides a way to determine the two
dominant axes of rotation without precluding measurement of
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TABLE II
DISTRIBUTION OF CMC FE AXIS AND AA AXIS DIRECTIONS OVER 48 HANDS OF 24 SUBJECTS FOR THE THREE OPTIMIZATION APPROACHES. WE
COMPARE THE MEAN DIRECTION FROM EACH SET OF OPTIMIZED AXES TO FIXED AXIS ORIENTATIONS DETERMINED FROM in vitro BONE SURFACE
GEOMETRY BY COONEY ET AL. [5]. THE MEAN AND MAXIMUM DEVIATION OF THE OPTIMIZED AXES REFLECT THE AMOUNT OF INTER-SUBJECT

VARIABILITY CORRESPONDING TO EACH MODEL.

Model Angular deviation (degrees) from mean axis z̄ to

�

���
�

�

�� Constant axis zc from Subject-specific axis z

in vitro joint model, γ mean δ [maximum ∆]

zh (FE) zt (AA) zh (FE) zt (AA)

Marker reconstruction optimization, three-DoF model 26 7 44 [ 105 ] 45 [ 96 ]
Marker reconstruction optimization, two-DoF model 40 72 38 [ 105 ] 38 [ 95 ]
Anatomy-based optimization (our method) 20 34 9 [ 27 ] 22 [ 53 ]

TABLE III
MEASURED RANGE OF MOTION FOR ACTIVE MOVEMENT OF THE CMC JOINT FOR FOUR MODELING APPROACHES: CONSTANT AXIS ORIENTATIONS FOR
ALL SUBJECTS BASED ON in vitro MEASUREMENTS [5], SUBJECT-SPECIFIC AXES FITTED FROM OPTIMIZING THE MARKER RECONSTRUCTION ERROR FOR

A THREE-DOF JOINT MODEL, SUBJECT-SPECIFIC AXES FITTED FROM OPTIMIZING THE MARKER RECONSTRUCTION ERROR FOR A TWO-DOF JOINT
MODEL, AND SUBJECT-SPECIFIC AXES FITTED FROM OPTIMIZING AN ANATOMY-BASED COST METRIC (OUR METHOD).

Model Active range of motion (degrees)
mean [ maximum ]

θ1 (FE) θ2 (PS) θ3 (AA)

Constant axis orientation model 69 [ 87] 29 [49] 46 [ 77]
Marker reconstruction optimization, three-DoF model 66 [182] 44 [71] 62 [164]
Marker reconstruction optimization, two-DoF model 71 [146] 28 [51] 66 [112]
Anatomy-based optimization (our method) 76 [ 98] 23 [34] 43 [ 69]

TABLE IV
REPEATABILITY OF KINEMATIC PARAMETER ESTIMATES BASED ON THE DIFFERENCE BETWEEN PARAMETER VALUES ESTIMATED FROM TWO SEPARATE

REPETITIONS OF THE ACTIVE ROM CALIBRATION MOVEMENT. THE RESULTS OF USING OUR ANATOMY-BASED COST METRIC ARE COMPARED TO
RESULTS OBTAINED FROM THE CONSTANT AXIS ORIENTATION MODEL REPORTED BY COONEY ET AL. [5] AND TWO OPTIMIZATION APPROACHES WHICH

MINIMIZE MARKER TRAJECTORY RECONSTRUCTION ERROR.

Estimated parameter Model Percent of hands where difference be-
tween two estimates is within

Orientation parameters 5 degrees 10 degrees 20 degrees

zh (FE axis) direction Constant axis orientation model 100 100 100
Marker reconstruction optimization, three-DoF model 8 25 38
Marker reconstruction optimization, two-DoF model 33 58 69
Anatomy-based optimization (our method) 65 94 100

zt (AA axis) direction Constant axis orientation model 100 100 100
Marker reconstruction optimization, three-DoF model 17 27 46
Marker reconstruction optimization, two-DoF model 31 52 67
Anatomy-based optimization (our method) 23 54 88

1 degree 5 degrees 10 degrees

Mean θ2 value, Constant axis orientation model 35 60 92
defining skew between Marker reconstruction optimization, three-DoF model 4 23 40
FE and AA axes Marker reconstruction optimization, two-DoF model 27 44 60

Anatomy-based optimization (our method) 77 88 98

Location parameter 0.5 mm 1 mm 2 mm

Separation d between Constant axis orientation model 60 98 100
FE and AA axes Marker reconstruction optimization, three-DoF model 23 52 65

Marker reconstruction optimization, two-DoF model 44 73 81
Anatomy-based optimization (our method) 88 100 100
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the PS RoM, as would be necessary for previous models which
assume a priori that the joint has only two rotational DoFs.

Our non-invasive technique fits a subject-specific model to
motion data which samples the entire space of in vivo CMC
joint configurations, rather than determining the axis orienta-
tions from simplified movements restricted to, for example,
only flexion or circumduction. We found that the AA axis
was less well defined than the FE axis, and future studies are
needed to explore whether this is explained by the anatomical
joint constraints. In addition, our method can measure the
average skew angle and separation distance between the FE
axis and AA axis, and our estimates for both values were
anatomically-plausible.

B. Crafting a reliable cost metric

Our choice of optimization cost metric components is based
on anatomic CMC joint properties, rather than a minimization
of only the marker trajectory reconstruction error as used in
prior work [14–16]. Optimizing the reconstructed marker po-
sitions was insufficient for fitting an anatomically-meaningful
model, since there may be several candidate solutions with low
reconstruction error but whose corresponding joint angle val-
ues are inconsistent with functional anatomical descriptions.
In addition, using the reconstruction error as the cost metric
resulted in decreased repeatability of the estimated kinematic
parameters (Table IV). The loss in the anatomical plausibility
and repeatability corresponds to only a slight improvement
in the mean RMS reconstruction error from 2.4 mm for our
method to 1.9 mm in the best alternative we tested. It is
possible that the small scale of the hand complicates the
applicability of evaluating only marker reconstruction error
to fit anatomically-meaningful joint axes, which has been
successfully accomplished for other joints of the body [14–
16].

Our anatomy-based approach allowed us to incorporate prior
knowledge about the CMC joint to solve for anatomically-
plausible joint parameters, and the results of our method do
depend on the selected values of the weighting parameters
used to tune the cost metric. Adjusting the weights, and thus
relative magnitudes, of the cost components will bias the result
toward joint models which satisfy the modeled constraints to
different degrees. Our experience was that even in the reduced
dimensionality of the search space, there may be several
near-optimum solutions associated with each individual cost
component such that an unbalanced relative weighting may not
satisfy all of the constraints reasonably. For example, choosing
σ2 = 10 degrees in our sensitivity tests relaxes the constraint
for small variation in the PS angle which for some subjects led
to a solution where the AA and PS axes were misaligned to
achieve a smaller value of fRoM . The parameters of µd and σd

were also critical for weighting the cost metric toward positive
values of the separation distance without compromising the
metrics on the joint angles. Selecting µd = 10 mm and
σd = 5 mm, for example, did result in larger separation
distance values, but the axis orientations were misaligned for
a few subjects such that the AA RoM was greater than the
FE RoM or the PS RoM was greater than the AA RoM.

Given the importance of selecting appropriate weights for
the optimization, the sensitivity to optimization parameters
might be further investigated using Monte Carlo simulations
to determine the distribution of possible parameter values.
In addition, the weighting parameters in this study reflect
prior knowledge of unimpaired CMC joints, and more work
is needed to determine how to change the parameters and cost
metric for evaluation of pathological joints.

C. Marker protocol considerations
Although our experiments used the same marker protocol

for all subjects for the purpose of reporting inter-subject
variability with respect to a consistent reference frame, the
presented optimization framework is general and can work
with any arbitrary choice of the hand TCS and thumb TCS
that define the configurations of trapezium bone and thumb
metacarpal bone. When using surface marker techniques, how-
ever, the marker placement should still be designed carefully
to minimize systematic error due to the difference between the
TCS on the skin surface and the ideal coordinate system of
the bone. The quality of the optimization result is also limited
by the amount of non-rigidity of the marker set.

For our experimental protocol, relative motion between the
trapezium bone and the metacarpal bones or between the
second and third metacarpal bones are potential sources of
systematic artifacts in the TCS measurement. Skin movement
relative to the bone also affects the reliability of the TCS
measurement. We tried to reduce these artifacts by spacing out
marker positions over the segments and directing subjects to
avoid motion of other hand joints during the calibration move-
ment. The motion artifacts may be interpreted as additional
rotation or translation of the coordinate frames, but our re-
sults suggest that the optimization method finds anatomically-
plausible orientations of the joint axes which can be used
to reasonably evaluate the joint RoM. Further investigation
is required to determine the robustness to additional skin
artifacts resulting from more functionally-relevant calibration
movements which include motion of the other hand joints.

Another point of caution is that the cost metric component
modeling the variance of the PS angle and the least squares
estimate of the location parameters are sensitive to outliers
in the marker trajectories. The perturbation due to outliers
was reduced by omitting any time samples with occluded
markers rather than manually filling the trajectory gaps. This
was possible since our method requires only a set of multiple
CMC joint configurations that is not necessarily a continuous
motion trajectory. In addition, the least squares estimate of
the location parameters uses the positions of multiple markers
on the thumb metacarpal instead of only the single marker
denoting the thumb TCS frame origin. While this does not
account for systematic error affecting the entire marker set, we
are able to estimate the parameters describing the location and
separation between joint axes which are consistent with the
CMC joint anatomy even in the presence of skin deformation.

D. Extensions for further study
Although we use one specific DH parameterization of

the motion transform Aj , the method can be adapted for
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other representations of three sequential rotations about the
coordinate system axes. In all cases the orientation of the joint
axes are independent of the position parameters of the joint
model. Regardless of the order of coordinate axes rotation used
to parameterize Rj , one column vector of Rh denotes the first
axis of rotation and one vector in RT

t denotes the third axis of
rotation. Thus, the reduced four-DoF parameterization for the
joint axes can be used with other rotation conventions.

Our method solves for a set of joint axes which are
aligned to an individual’s pattern of motion, and it is suitable
for objectively and non-invasively measuring the CMC joint
mobility from the three joint angle RoMs. In addition, the
method can be used in a skeletal-fitting procedure to auto-
matically construct a subject-specific kinematic hand model
for applications such as haptic interfaces, virtual rehabilitation
systems, and computer graphics. The developed framework is
not limited to surface marker techniques, as it can accommo-
date any experimental technology which measures the relative
transform between a TCS defining the trapezium frame and a
TCS defining the thumb metacarpal bone frame. A potential
avenue for further research is to use the optimization method
together with medical imaging techniques which measure the
bone configurations directly to investigate the relationship
between the axes derived from the motion pattern and the axes
defined by bone surface geometry. The estimation of the joint
axes orientation and location parameters may then be used
for periodic evaluation of the bone surface wear, soft tissue
deterioration, and changes in thumb mobility.

ACKNOWLEDGMENT

The authors thank Justin Macey for his assistance with
the data acquisition and Moshe Mahler for creating the hand
models.

REFERENCES

[1] I. A. Kapandji, The Physiology of the Joints, 2nd ed. Edinburgh: E &
S Livingstone, 1970, vol. 1.

[2] T. Imaeda, K.-N. An, and W. P. Cooney, “Functional anatomy and
biomechanics of the thumb.” Hand Clin., vol. 8, no. 1, pp. 9–15, 1992.

[3] A. Hollister, W. L. Buford, L. M. Myers, D. J. Giurintano, and
A. Novick, “The axes of rotation of the thumb carpometacarpal joint.”
J. Orthop. Res., vol. 10, no. 3, pp. 454–460, May 1992.

[4] V. J. Santos and F. J. Valero-Cuevas, “Reported anatomical variability
naturally leads to multimodal distributions of Denavit-Hartenberg pa-
rameters for the human thumb.” IEEE Trans. Biomed. Eng., vol. 53,
no. 2, pp. 155–163, February 2006.

[5] W. P. Cooney, M. J. Lucca, E. Y. Chao, and R. L. Linscheid, “The
kinesiology of the thumb trapeziometacarpal joint.” J. Bone Joint Surg.
Am., vol. 63, no. 9, pp. 1371–1381, December 1981.

[6] J. H. Coert, H. G. van Dijke, S. E. Hovius, C. J. Snijders, and M. F.
Meek, “Quantifying thumb rotation during circumduction utilizing a
video technique.” J. Orthop. Res., vol. 21, no. 6, pp. 1151–1155,
November 2003.

[7] X. Zhang, P. Braido, S. W. Lee, R. Hefner, and M. Redden, “A normative
database of thumb circumduction in vivo: center of rotation and range
of motion.” Hum. Factors, vol. 47, no. 3, pp. 550–561, 2005.
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