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Abstract

This tutorial focuses on establishing an intuitive visual understanding of the relationship between
ordinary 3D rotations and their quaternion representations. We begin building this intuition by
showing how quaternion-like properties appear and can be exploited even in 2D space. Quater-
nions are then introduced in several alternative representations that do not necessarily require ab-
stract mathematical constructs for their visualization. We then proceed to develop visualizations
of quaternion applications such as orientation splines, streamlines, and optimal orientation frames.
Finally, for the strong-hearted, we briefly discuss the problem of generalizing quaternion concepts
to higher dimensions using Clifford algebras.
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General Information on the Tutorial

Course Syllabus

Summary: This mixed-level tutorial will deal with visualizable representations of quaternion
features, technology, folklore, and applications. The introduction will focus on visually under-
standing quaternions themselves. Starting from this basis, the tutorial will proceed to give visual-
izations of advanced quaternion dynamics and optimization problems.

Prerequisites: Participants should be comfortable with and have an appreciation for conven-
tional mathematical methods of 3D computer graphics and geometry used in graphics transfor-
mations and rendering. The material will be of most interest to those wishing to deepen their
intuitive understanding of quaternion-based animation, moving coordinate frames, and 3D curves
and surfaces appearing in graphics and scientific visualization applications.

Objectives: Participants will learn the basic facts relating quaternions to ordinary 3D rotations,
as well as methods for examining the properties of quaternion constructions using interactive visu-
alization methods. A variety of applications, including quaternion splines and moving coordinate
frames for curves and surfaces, will be examined in this context. Finally, a few facts about the
deeper relationship between quaternions and Clifford algebras in higher dimensions will be pre-
sented.

Outline: This is a two-hour tutorial and the material will be arranged approximately as follows:

I. (45 min) Introduction to Rotation Representations. Develop formulas and techniques
for seeing how 2D rotations, orientation frames, and their time evolution equations can be
visualized and studied using ordinary complex variables. Develop the parallel relationship
between 3D rotations and quaternions.

II. (15 min)Visualization Techniques for Quaternions.Visualizing static and moving quater-
nion frames as 4D geometric objects.

III. (45 min)Applications of Quaternion Visualization. Extend this intuition into the quater-
nion representation of 3D rotation splines and moving orientation frames for curves and
surfaces.

IV. (15 min)Clifford Algebras: the Bigger Picture. Start to see how it all fits into Clifford
algebras.
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1 Overview

Practitioners of computer graphics and animation frequently represent 3D rotations using the
quaternion formalism, a mathematical tool that originated with William Rowan Hamilton in the
19th century, and is now an essential part of modern analysis, group theory, differential geometry,
and even quantum physics. Quaternions are in many ways very simple, and yet there are enormous
subtleties to address in the process of fully understanding and exploiting their properties. The
purpose of this Tutorial is to construct an intuitive bridge between our intuitions about 2D and 3D
rotations and the quaternion representation.

The Tutorial will begin with an introduction to rotations in 2D, which will be found to have
surprising richness, and will proceed to the construction of the relation between 3D rotations and
quaternions. Quaternion visualization methods of various sorts will be introduced, followed by
some applications of the quaternion frame representation to problems of interest by graphicists
and visualization scientists. Finally, we will briefly touch on the relationship between Clifford
algebras and quaternion rotation representations. An extensive bibliography of related literature
is included, as well as several relevant reprints and technical reports and the Meshview software
system for viewing 4D objects.

2 Fundamentals of Quaternions

We will begin with a basic introduction to rotations in general, showing how 2D rotations contain
the seeds for what we need to understand about 3D rotations; see, for example, [38]. We will
then proceed to look at a variety of methods for understanding quaternions and making meaningful
pictures of constructs involving them. These methods will range from some of the ideas introduced
by Hart, Francis, and Kauffman [52] for motivating the need for double-valued parameterizations
of rotations, to theoretical background given in [45, 46, 39, 49].

Traditional treatments of quaternions range from the original works of Hamilton and Tait [34,
79] to a variety of recent studies such as those of Altmann, Pletincks, Juttler, and Kuipers [2, 67,
58, 61]. The 4D frames of the quaternions themselves, in contrast to the relationship between 3D
frames and quaternions, are treated in the German literature, e.g., [12, 63].

In our treatment, we will focus on the use of 2D rotations as a rich but algebraically simple
proving ground in which we can see many of the key features of quaternion geometry in a very
manageable context. The relationship between 3D rotations and quaternions is then introduced as
a natural extension of the 2D systems.

3 Visualizing Quaternion Geometry

In order to clearly understand our options for making graphical visualizations of quaternions, we
next look at the ways in which points on spheres can be viewed in reduced dimensions, discovering
luckily that 3D graphics isjustsufficient to make a usable interactive workstation system for look-
ing at quaternions, quaternion curves, and even quaternion surfaces. The basic “trick” involves
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the observation that if we have a four-vector quaternionq = (q0;q) obeyingq � q = 0, then the
four-vector lies on the three-sphere S3 and has only three independent components: if we display
justq, we can in principleinfer the value ofq0 =

p
1� q � q. We supply a viewer, the Meshview

system [50] developed by the presenter and his students, which allows the input and interactive
examination of quaternion objects.

4 Quaternion Frames

In this section, we study the nature of quaternions as representations of frames in 3D. Our visu-
alizations again exploit the fact that quaternions are points on the three-sphere embedded in 4D;
the three-sphere (S3) is analogous to an ordinary ball or two-sphere (S2) embedded in 3D, except
that the three-sphere is a solid object instead of a surface. To manipulate, display, and visualize
rotations in 3D, we may convert 3D rotations to 4D quaternion points and treat the entire problem
in the framework of 4D geometry. The methods in this section follow closely techniques intro-
duced in Hanson and Ma [45, 46] for representing families of coordinate frames on curves in 3D
as curves in the 4D quaternion space. The extensions to coordinate frames on surfaces and the
corresponding induced surfaces in quaternion space are studied in [39, 49].

The same methods extend to the study of quaternion animation splines, introduced to the graph-
ics community originally by Shoemake [71]. We give an overview of the issues of constructing
splines with various desirable continuity properties following the method of Schlag [69] applied
to quaternion Bezier, Catmull-Rom, and uniform B-splines. Alternative approaches that have ap-
peared in the literature such as those of Barr et al. and Kim et al.[10, 68, 59] are mentioned but not
treated in detail.

5 Clifford Algebras

The quaternion-based formalism for handling and visualizing rotations works well in dimensions 2,
3, and 4 because in those dimensions the Spin group, the double covering of the orthogonal group,
has simple topology and geometry. Going beyond four dimensions is of course much harder.
Clifford algebras form the basis used in pure mathematics to treat the Spin groups in arbitrary
dimensions (see, e.g., [3, 57]); furthermore, viewed in the context of arbitrary dimensions, studying
the Clifford algebra approach provides additional depth to our understanding of dimensions 2, 3,
and 4 — we can get a better feeling for what properties are accidents of the low dimension and
which are in fact general and extensible concepts.

Acknowledgments
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Visualizing Quaternions

Andrew J. Hanson

Computer Science Department

Indiana University
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1

GRAND PLAN

I: Fundamentals of Quaternions

II: Visualizing Quaternion Geome-

try

III: Quaternion Frames

IV: Clifford Algebras

2

I: Fundamentals
of

Quaternions

� Motivation

� 2D Frames: Simple example, complex
numbers.

� 3D Frames: Rotations and quaternions.

3

II: Visualizing Quaternion
Geometry

� The Spherical Projection Trick: Visual-
izing unit vectors.

� Quaternion Frames

� Quaternion Curves

� 4D Interactive Rotations
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III: Quaternion Frames

� Quaternion Curves: generalize the Frenet

Frame

� Quaternion Surfaces

� Quaternion Splines smoothly interpo-

late orientation maps

5

IV: Clifford Algebras

� Clifford Algebras: Generalize quater-

nion structure to N-dimensions

� Reflections and Rotations: New ways

of looking at rotations

� Pin(N), Spin(N), O(N), and SO(N)

6

Visualizing Quaternions

Part I: Fundamentals
of

Quaternions

Andrew J. Hanson

Indiana University

7

Part I: OUTLINE

� Motivation

� 2D Frames: Simple example, complex
numbers.

� 3D Frames: Rotations and quaternions.
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Motivation

� Quaternion methods are now common-

place in graphics.

� Quaternions are used in animation as a

“black box” — we don’t think about them!!

� Quaternions are very geometric, but we

seldom attempt to visualize their proper-

ties geometrically.

� That’s going to be our job today!

9

Basic Issues

� The fundamental problem: Understand

Rotations .

� Basic fact number 1: Rotation matrices

are Coordinate Frame Axes.

� Basic fact number 2: Rotation matrices

form groups, which have geometric prop-

erties.

� Exploit this: the geometry should help
us to visualize the properties of rotations.

10

Simple Example:

2D Rotations

� 2D rotations give a geometric origin for

complex numbers.

� Complex numbers are in fact a special

subspace of quaternions.

� Thus 2D rotations introduce us to quater-

nions and their geometric correspondence

in the simplest possible context.

11

Frames in 2D

The tangent and normal to 2D curve move continu-
ously along the curve:

θ

T̂

N̂
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Frame Matrix in 2D

This motion is described at each point (or

time) by the matrix:

R2(�) =

2
4 cos � � sin �
sin � cos �

3
5 :

13

Another 2D Frame

If we did not know about cos2 �+sin2 � = 1,

we might represent the frame differently, e.g.,

as:

R2(A;B) =

2
4 A �B
B A

3
5 :

with the constraint A2+B2 = 1.

14

The Belt Trick:

Is There a Problem?

Demonstration: Rotations “want to be

doubled” to get back where you started.

See: Hart, Francis, and Kauffman.

15

Half-Angle Transform:

A Fix for the Problem?

R2(�) =

2
66666664

cos2 �
2 � sin2 �

2 �2cos �
2 sin

�
2

2cos �
2 sin

�
2 cos2 �

2 � sin2 �
2

3
77777775
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Half-Angle Transform:

A Fix for the Problem?

Or, with a = cos(�=2), b = sin(�=2),

(i.e., A = a2 � b2, B = 2ab),

we could parameterize as:

R2(a; b) =

2
4 a2 � b2 �2ab

2ab a2 � b2

3
5 :

where orthonormality implies

(a2+ b2)2 = 1

which reduces back to a2+ b2 = 1.

17

Half-Angle Transform:

So the pair (a; b) provides an odd double-

valued parameterization of the frame:

h
T̂ N̂

i
=

2
4 a2 � b2 �2ab

2ab a2 � b2

3
5 :

where (a; b) is precisely the same frame as
(�a; �b).

18

Frame Evolution in 2D

Examine time-evolution of 2D frame (on our

way to 3D): First in �(t) coordinates:

h
T̂ N̂

i
=

2
4 cos � � sin �
sin � cos �

3
5 :

Differentiate to find frame equations:

_̂T(t) = +�N̂

_̂N(t) = ��T̂ ;

where �(t) = d�=dt is the curvature .

19

Frame Evolution in 2D

Rearrange to make a “vector matrix:”
2
64 _̂T(t)
_̂N(t)

3
75 =

2
4 0 +�(t)
��(t) 0

3
5
2
4 T̂(t)
N̂(t)

3
5
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Frame Evolution in (a; b):

Using the basis (T̂; N̂) we have Four equa-

tions with Three constraints from orthonor-

mality, for One true degree of freedom.

Major Simplification occurs in (a; b) coor-

dinates!!

_̂T = 2

2
4 a _a� b_b
a_b+ b _a

3
5 = 2

2
4 a �b
b a

3
5
2
4 _a
_b

3
5

21

Frame Evolution in (a; b):

But this formula for _̂T is just �N̂, where

�N̂ = �

2
4 �2ab

a2 � b2

3
5 = �

2
4 a �b
b a

3
5
2
4 �b

a

3
5

or

�N̂ = �

2
4 a �b
b a

3
5
2
4 0 �1
1 0

3
5
2
4 a
b

3
5

22

2D Quaternion Frames!

Rearranging terms, both _̂T and _̂N eqns re-

duce to2
4 _a
_b

3
5 = 1

2

2
4 0 ��
+� 0

3
5 �

2
4 a
b

3
5

This is the square root of frame equations.

23

2D Quaternions . . .

So one equation in the two “quaternion” vari-

ables (a; b) with the constraint a2 + b2 = 1

contains both the frame equations

_̂T = +�N̂

_̂N = ��T̂

) this is much better for computer imple-
mentation, etc.

24



Rotation as Complex
Multiplication

If we let (a+ ib) = exp (i �=2)we see that

rotation is complex multiplication!

“Quaternion Frames” in 2D are just complex

numbers, with

Evolution Eqns = derivative of exp (i �=2)!

25

Rotation with no matrices!

This is the miracle:

a+ ib = ei�=2

represents rotations “more nicely” than the

matrices R(�).

(a0+ ib0)(a+ ib) = ei(�
0+�)=2 = A+ iB

where if we want the matrix, we write:

R(�0)R(�)=R(�0+�)=

2
4A2 �B2 �2AB

2AB A2 �B2

3
5

26

The Algebra of 2D Rotations

The algebra corresponding to 2D rotations is

easy: just complex multiplication!!

(a0; b0) � (a; b) �= (a0+ ib0)(a+ ib)

= a0a� b0b+ i(a0b+ ab0)

�= (a0a� b0b; a0b+ ab0)

= (A; B)

27

The Geometry of 2D Rotations

(a; b) with a2 + b2 = 1 is a point on the
unit circle , also written S1. Rotations are
just complex multiplication , and take you
around the unit circle like this:

(1,0)

(a’a-b’b, a’b+ab’) (a’, b’)

(a,b)

θ

’θ + θ
’θ

28



Quaternion Frames

In 3D, repeat our trick: take square root of

the frame:

but now we must use quaternions to handle

the additional angles.

� Write down the 3D frame.

� Convert to a double-valued quadratic

form.

� Rewrite linearly in the new variables.

29

The Geometry of 2D Rotations

We begin with a basic fact:

Euler theorem: every 3D frame can be writ-
ten as a spinning by � about a fixed axis n̂,
the eigenvector of the rotation matrix:

θ

n̂

30

Quaternion Frames . . .

Matrix giving 3D rotation by � about axis n̂:

R3(�; n̂) =

2
64 c+ (n1)

2(1� c) n1n2(1� c)� sn3 n3n1(1� c) + sn2
n1n2(1� c) + sn3 c+ (n2)

2(1� c) n3n2(1� c)� sn1
n1n3(1� c)� sn2 n2n3(1� c) + sn1 c+ (n3)

2(1� c)

3
75

where c = cos �, s = sin �, and n̂ � n̂ = 1.

31

Quaternion Frame Parameters

To find � and axis n̂, given any rotation matrix

or frame M , we need two steps:

TrM = 1+ 2cos �

) solve for �.

M �M t =

2
664

0 �2n3 sin � +2n2 sin �
+2n3 sin � 0 �2n1 sin �
�2n2 sin � +2n1 sin � 0

3
775

) solve for n̂ as long as � 6= 0.
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Quaternions and Rotations

Some set of axes can be chosen as the iden-
tity matrix:

0

1

1

0

z

00

0

0

��������
��������
��������
��������

��������
��������
��������
���������

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

=

�
�
�
�
�
�
�

�
�
�
�
�
�
�

1

y

x
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Quaternions and Rotations

Any arbitrary set of axes forms the columns
of an orthogonal rotation matrix:

x

z

y

x
a

b
z

c

b

yy

z

x

a
����������
����������
����������

����������
����������
����������

����
����
����
����
����
����

����
����
����
����
����
����

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

=

a

a c

c

b

cb

34

Quaternions and Rotations

By Euler’s theorem, that matrix has an eigen-
vector n̂, and so is representable as a sin-
gle rotation about n̂ applied to the identity:

x

z

y

x
a

b
z

c

b

yy

z

x

a
����������
����������
����������

����������
����������
����������

����
����
����
����
����
����

����
����
����
����
����
����

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

=

a

a c

c

b

cb =
θ

n̂

�
0

1

1

0

z

00

0

0

��������
��������
��������
��������

��������
��������
��������
��������

=

1

y

x
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Rotations and Quadratic Polynomials

Remember R2(�) =

"
a2 � b2 �2ab

2ab a2 � b2

#
?

What if we try a 3� 3 matrix R3 instead of 2� 2?

2
64q
2
0
+ q2

1
� q2

2
� q2

3
2q1q2 � 2q0q3 2q1q3+2q0q2

2q1q2+2q0q3 q2
0
� q2

1
+ q2

2
� q2

3
2q2q3 � 2q0q1

2q1q3 � 2q0q2 2q2q3+2q0q1 q2
0
� q2

1
� q2

2
+ q2

3

3
75

Hint: set q1 = q2 = 0 or any other (i 6= j) pair to
see a familiar sight!
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Quaternions and Rotations

Why does this matrix parameterize a rota-

tion? Because Columns of R3(q0; q1; q2; q3)

are orthogonal:

coli � colj = 0 for i 6= j

What is LENGTH of 3-vector column?

coli � coli = (q20 + q21 + q22 + q23)
2

37

Quaternions and Rotations . . .

So if we require q20 + q21 + q22 + q23 = 1 ,

orthonormality is assured and R3(q0; q1; q2; q3)

is a rotation.

This implies q is a point on 3-sphere in 4D .

NOTE: q ) �q gives same R3().

38

Quaternions and Rotations . . .

CLAIM: q = (q0; q) represents rotations “more

nicely” than the matrices R(�).

EXAMINE the action of two rotations

R(q0)R(q) = R(Q)

EXPRESS in quadratic forms in q and LOOK
FOR an analog of complex multiplication:

39

Quaternions and Rotations . . .

RESULT: the following multiplication rule
q0 � q = Q yields exactly the correct 3 � 3
rotation matrix R(Q):2
6664
Q0 =

�
q0 � q

�
0

Q1 =
�
q0 � q

�
1

Q2 =
�
q0 � q

�
2

Q3 =
�
q0 � q

�
3

3
7775 =

2
6664
q0

0
q0 � q0

1
q1 � q0

2
q2 � q0

3
q3

q0

0
q1+ q0

1
q0+ q0

2
q3 � q0

3
q2

q0

0
q2+ q0

2
q0+ q0

3
q1 � q0

1
q3

q0

0
q3+ q0

3
q0+ q0

1
q2 � q0

2
q1

3
7775

This is Quaternion Multiplication.
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Algebra of Quaternions

= 3D Rotations!

2D rotation matrices are represented

by complex multiplication

3D rotation matrices are represented

by quaternion multiplication

41

Algebraic 2D/3D Rotations

Therefore in 3D, the 2D complex multiplica-

tion

(a0; b0) � (a; b) = (a0a� b0b; a0b+ ab0)

is replaced by 4D quaternion multiplication:

q0 � q = (q00q0 � q01q1 � q02q2 � q03q3;

q00q1+ q01q0+ q02q3 � q03q2;

q00q2+ q02q0+ q03q1 � q01q3;

q00q3+ q03q0+ q01q2 � q02q1)

42

Algebra of Quaternions . . .

The is easier to remember by divid-

ing it into the scalar piece q0 and the

vector piece ~q:

q0 � q = (q00q0 �
~q0 �~q;

q00~q+ q0
~q0+ ~q0 �~q)

43

Quaternions and Rotations

Another miracle: let us generalize the 2D equa-

tion

a+ ib = ei�=2

How? We set

q = (q0; q1; q2; q3)

= q0+ iq1+ jq2+ kq3

= e(I�n̂�=2)

with q0 = cos(�=2) and ~q = n̂ sin(�=2)
and I = (i; j;k).

44



Quaternions and Rotations . . .

Then if we take i2 = j2 = k2 = �1, and

i � j = k (cyclic), quaternion multiplication

rule is automatic!

) q = q0 + iq1 + jq2 + kq3 is the stan-
dard representation for a quaternion, and we
can also use 2� 2 Pauli matrices in place of
(i; j;k) if we want.

45

Key to Quaternion Intuition

Fundamental Intuition: We know

q0 = cos(�=2); ~q = n̂ sin(�=2)

We also know that any coordinate frame M
can be written as M = R(�; n̂).

Therefore

~q points exactly along the axis we have to

rotate around to go from identity I to M ,

and the length of ~q tells us how much to

rotate.

46

Quaternion Frames
Just as in 2D, let columns of R be a frame : (T;N;B);
this is three 3-vectors, or a system of nine compo-
nents.

Then derivatives of the i-th column Ri in quaternion
coordinates have the form
_Ri = Wi � [ _q(t)] where i = 1;2;3 and, e.g.,

W1 =

2
64 q0 q1 �q2 �q3

q3 q2 q1 q0
�q2 q3 �q0 q1

3
75

(rows form mutually orthonormal basis).

When we simplify by eliminating Wi . . .

47

Quaternion Frames . . .

we find the square root of the 3D frame eqns!

Tait (1890) derived the resulting quaternion equation
that makes all 9 3D frame equations reduce to :

2
6664

_q0
_q1
_q2
_q3

3
7775 =

1

2

2
6664

0 �� �k2 �k1
� 0 k1 k2
k2 �k1 0 �
k1 �k2 �� 0

3
7775 �

2
6664
q0
q1
q2
q3

3
7775

48



Quaternion Frames . . .

Properties of Tait’s quaternion frame equations:

� Antisymmetry ) q(t) � _q(t) = 0 as required to
keep constant unit radius on 3-sphere.

� Nine equations and six constraints become four
equations and one constraint, keeping quaternion
on the 3-sphere. ) Good for computer imple-
mentation.

� Analogous treatment (given in Hanson Tech Note
in Course Notes) applies also to the Weingarten
equations, allowing a direct quaternion treatment
of the classical differential geometry of surfaces
as well.

49

Summarize Quaternion Properties

� Unit four-vector. Take q = (q0; q1; q2; q3) =

(q0; ~q) to obey constraint q � q = 1.

� Multiplication rule. Let q � p be the quaternion
product of two quaternions q and p, where2
6664
[q � p]0
[q � p]1
[q � p]2
[q � p]3

3
7775 =

2
6664
q0p0 � q1p1 � q2p2 � q3p3
q0p1+ q1p0+ q2p3 � q3p2
q0p2+ q2p0+ q3p1 � q1p3
q0p3+ q3p0+ q1p2 � q2p1

3
7775

) q � p = (q0p0 � ~q � ~p; q0~p+ p0~q+ ~q� ~p)

50

Quaternion Summary . . .

Quaternion property summary, contd:

� Rotation Correspondence. The unit quaternions
q and �q correspond to a single 3D rotation R3:

2
64q
2
0
+ q2

1
� q2

2
� q2

3
2q1q2 � 2q0q3 2q1q3+2q0q2

2q1q2+2q0q3 q2
0
� q2

1
+ q2

2
� q2

3
2q2q3 � 2q0q1

2q1q3 � 2q0q2 2q2q3+2q0q1 q2
0
� q2

1
� q2

2
+ q2

3

3
75
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Quaternion Summary . . .

Quaternion summary, contd:

� Rotation Correspondence. Let

q = (cos
�

2
; n̂ sin

�

2
) ;

with n̂ a unit 3-vector, n̂ � n̂= 1. Then R(�; n̂) is
usual 3D rotation by � in the plane ? to n̂.

� Inversion. Any 3 � 3 matrix R can be inverted
for q up to a sign. Carefully treat singularities!
Can choose sign, e.g., by local consistency, to
get continuous frames.
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Summary

� Complex numbers represent 2D frames.

� Complex multiplication represents 2D

rotation.

� Quaternions represent 3D frames.

� Quaternion multiplication represents 3D

rotation.

� Moving frame equations can be expressed

more simply as “square root” complex

or quaternion equations.
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Visualizing Quaternions

Part II: Visualizing

Quaternion Geometry

Andrew J. Hanson

Indiana University

1

Part II: OUTLINE

� The Spherical Projection Trick:
Visualizing unit vectors.

� Quaternion Frames

� Quaternion Curves

� 4D Interactive Rotations: The 4D
“Rolling Ball.”

2

The Geometry of Quaternions

Recall (a; b)with a2+b2 = 1 is a unit-length
complex number or a point on the unit cir-
cle S1.

(1,0)

(a’a-b’b, a’b+ab’) (a’, b’)

(a,b)

θ

’θ + θ
’θ

3

The Geometry of Quaternions . . .

Similarly, q = (q0; ~q) with q0
2+ ~q2 = 1 is

a unit-length quaternion or a point on the
unit 3-sphere S3.

4



The Geometry of Quaternions . . .

Rotations combine by taking the quaternion
product of the geometric values of 4D points
on S3:

(1,0)

(q0, q)

(q0’, q’)

q’ * q

5

Visualizing a Quaternion??

Learn how to Visualize a quaternion by start-
ing with a visualization of a point on S1, the
circle:

cos

^ sin

q (seen)

n

2−
θ

2−
θ

q  (unseen)

2−
θ

0

Demo: Axis1D.list

6

Visualizing a Quaternion?? . . .

Next, visualize a point on S2, the ordinary
sphere using only the projection ~q:

q0
q

q

����
�
�
�
�

����
��

7

Visualizing a Quaternion?? . . .

Finally, visualize a point on S3, the quater-

nion space: DISPLAY only ~q, but INFER

q0 =

r
1 � (q1)

2
� (q2)

2
� (q3)

2

�
�
�
�

q

��
��
��
��
��

����

Demo: Axis4D.list
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Visualize Quaternion Rotations

Each 4D quaternion point q = (cos �

2
; n̂ sin �

2
)

is a frame — a 3 � 3 rotation matrix gener-

ated by applying R(�; n̂) to the identity frame.

Identity Matrix is the quaternion q = (1;0;0;0).

Visualize q using only the VECTOR part ~q,
so Identity is the zero vector.

9

Visualize Quaternion Rotations . . .

The quaternion rotation by � about n̂:

q = (q0; q) = (cos(�=2); n̂ sin(�=2))

represents the matrix R(�; n̂).

Action of rotating Identity by � about n̂:

q � (1;0;0;0) gives Vector part:

~0 ) n̂ sin(�=2)

Demo: QuatRot panel

10

Represent Families of Frames

Each orientation is a 4D point on the 3-sphere

representing a quaternion.

Thus families of frames, which are really ro-

tation matrices, become curves on the 3-

sphere.

) treat these curves just like any other curve. . .

11

Families of Quaternion Frames, . . .
Example: torus knot and its (twice around) quaternion
Frenet frame:

-1
-0.5

0

0.5

1
-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1
-0.5

0

0.5

1

see: Hanson and Ma, “Quaternion Frame Approach to
Streamline Visualization,” IEEE Trans. on Visualiz. and
Comp. Graphics, 1, No. 2, pp. 164–174 (June, 1995).
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Displaying spherical points
Displaying a point on a sphere is ambiguous:

N

S

h

-h

q

The same horizontal projection is shared by
the North vector (h;~q) and the South vector
(�h;~q).

13

Displaying S3

A quaternion point can be displayed in

� Parallel Projection: so q = (h;~q) lines

up with q = (�h;~q),

� Polar projection: so only the “north pole”

projects within the unit sphere, and “south

pole” is at 1 of R3.

14

Displaying S3 . . .

��
��
��
��

����

����

��

�
�
�
�

�
�
�
�

����

�
�
�
�

��

(a) (b) (c)
(a) Usual vector quaternion point. (b) Orbits
through northern and southern hemispheres.
(c) Polar projection: north pole at origin, south
pole at infinity.

15

Interacting with Quaternion

Frames

Rotating the 4D view: Even if we “see” the

~q (or (x; y; z)) projection, we may want to

check the other projections (say, (w; y; z),

(x;w; z), or (x; y; w) ).

Mix the axes: Use motion in, say, the x-

direction, to mix the displayed components

of the qx and q0 components, e.g.,
2
4 cos � � sin �
sin � cos �

3
5
2
4 q0
qx

3
5

16



3D case

x

y

Suppose we are in 3D: if q0 is the z direction
coming out of the screen, “rolling” a cube by
pulling in the x or y direction exposes hidden
surfaces to view, namely the planes at x =
�1 and y = �1.

17

4D case

x

z

y

Contrast with 4D hypercube: “rolling” a 3D
mouse in the x or y or z direction exposes
hidden blocks — the hyperplanes at x =
�1 , and y = �1, and and z = �1.

18

SUMMARY

� The Spherical Projection Trick:

Visualizing unit vectors.

� Quaternion Frames: n̂ in quater-

nion tells how to make frame.

� Quaternion Curves: are like any

other curve.

� 4D Interactive Rotations: The 4D

“Rolling Ball” allows examination of

quaternion from any viewpoint.
19



Visualizing Quaternions

Part III: Quaternion Frames

Andrew J. Hanson

Indiana University

1

Part III: OUTLINE

� Quaternion Curves: generalize the Frenet

Frame

� Quaternion Surfaces

� Quaternion Splines: smoothly interpo-

lated orientation maps

2

What are Frames used For?

� Moving objects and object parts in an an-

imated scene.

� Moving the camera generating the ren-

dered viewpoint of the scene.

� To attach tubes and textures to thickened

lines, oriented textures to surfaces.

� To compare the shapes of similar curves.

3

Motivating Problem: Framing a
Curves

The (3,5) torus knot.

� Line drawing � useless.

� Tubing based on parallel transport, not periodic.

� Closeup of the non-periodic mismatch.

4



Motivating Problems: Curves

A
A
A
A
A
A
A
A
A
A
AK

Closeup of the non-periodic mismatch.
Can’t apply texture.

5

Motivating Problems: Surfaces

A smooth 3D surface patch: two ways to get bottom
frame.

No unique orthonormal frame is derivable from the pa-
rameterization.

6

3D Curves: Frenet and PT Frames

Now give more details of 3D frames: Classic Moving
Frame:

2
64
T0(t)
N0(t)
B0(t)

3
75=

2
64

0 k1(t) k2(t)
�k1(t) 0 �(t)
�k2(t) ��(t) 0

3
75

2
64
T(t)
N(t)
B(t)

3
75 :

Serret-Frenet frame: k2 = 0, k1 = �(t) is the curva-
ture, and �(t) = �(t) is the classical torsion. LOCAL.

Parallel Transport frame (Bishop): � = 0 to get mini-
mal turning. NON-LOCAL = an INTEGRAL.

7

3D curve frames, contd

Frenet frame is locally defined, e.g., by

B(t) =
x0(t)� x00(t)

kx0(t)� x00(t)k

but has problems on the “roof.”

N

N

B

T

T

B

B

NB

???

N
T

T

8



3D curve frames, contd

Bishop’s Parallel Transport frame is integrated over
whole curve, non-local, but no problems on “roof:”

N1

N1

N1
N1

N1

N2

N2

N2

N2

N2

T

T

T

T

T

9

3D curve frames, contd

Geodesic Reference Frame is the frame found by tilt-
ing North Pole of “canonical frame” along a great circle
until it points in desired direction (tangent for curves,
normal for surfaces).

10

Sample Curve Tubings and their
Frames

Tubings based on Frenet, Geodesic Reference, and
Parallel Transport frames.
Easily see PT has least “Twist,” but lacks periodicity.

11

Quaternion Frames

As before, extend 2D rotation and complex numbers
to 3D rotations and quaternions.

Summary of Quaternion Frame properties:

� Unit four-vector. Take q = (q0; q1; q2; q3) =

(q0;q) to obey constraint q � q = 1.

� Multiplication rule. Let q � p be the quaternion
product of two quaternions q and p, where
2
6664

[q � p]0
[q � p]1
[q � p]2
[q � p]3

3
7775=

2
6664

q0p0 � q1p1 � q2p2 � q3p3
q0p1+ q1p0+ q2p3 � q3p2
q0p2+ q2p0+ q3p1 � q1p3
q0p3+ q3p0+ q1p2 � q2p1

3
7775

12



Quaternion Frames . . .

Quaternion Frame properties, contd:

� Quaternion Correspondence. The unit quater-
nions q and �q correspond to a single 3D rotation
R3(q):

2
64
q2
0
+ q2

1
� q2

2
� q2

3
2q1q2 � 2q0q3 2q1q3+2q0q2

2q1q2+2q0q3 q2
0
� q2

1
+ q2

2
� q2

3
2q2q3 � 2q0q1

2q1q3 � 2q0q2 2q2q3+2q0q1 q2
0
� q2

1
� q2

2
+ q2

3

3
75

� Rotation Correspondence. Let q = (cos �

2
; n̂ sin �

2
),

with n̂ a unit 3-vector, n̂ � n̂= 1. Then R(�; n̂) is
usual 3D rotation by � in the plane perpendicular
to n̂.

13

Example of a Quaternion Frame
Curve

Left Curve = torus knot tubed with Frenet frame; Right
Curve is projection from 4D of (twice around) quater-
nion Frenet frames:

-1
-0.5

0

0.5

1
-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1
-0.5

0

0.5

1

see: Hanson and Ma, “Quaternion Frame Approach to
Streamline Visualization,” IEEE Trans. on Visualiz. and
Comp. Graphics, 1, No. 2, pp. 164–174 (June, 1995).

14

Geometric Construction of Space of Frames:

� R(�; T̂) leaves T̂ invariant, but doesn’t have T̂
as Last Column.

� Use Geodesic Reference to construct one instance
of such a frame: R(ẑ � T̂; ẑ� T̂).

15

Geometric Construction of Space of Frames:

q(�; T̂) � q(ẑ � T̂; ẑ � T̂) generates the correct
family of quaternion curves:

T

T
^

^^

^

x

z

z

16



Invariant Quaternion Frames . . .

Invariant frame for trefoil knot: Left: Red fan = tan-
gents; Magenta arc = tangent map; Green vectors =
geodesic reference starting points for invariant spaces.
Right: Short segment of invariant space.
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3-Manifold of Frames for a Patch

For surfaces, we simply replace a curve’s tangent by
a surface’s normal.

Basic patch with the available rings of frames for cor-
ners:

18

3-manifold of frames for a patch . . .

Each point on patch generates a ring in quaternion
map:
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Minimizing Quaternion Length
Solves Periodic Tube

Quaternion space optimization of the non-periodic par-
allel transport frame of the (3,5) torus knot.
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Likewise for Optimal Quaternion
Frame on Patch
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sult.
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Summary

� Quaternions can represent frames.

� Curve frames ) quaternion curves.

� Surface patch frames ) quaternion sur-

face patches.

� Minimizing quaternion length or area

finds parallel transport “minimal turn-

ing” set of frames.

22

Quaternion Interpolations

Shoemake (Siggraph ’85) proposed using quater-
nions instead of Euler angles to get smooth
frame interpolations: animate using rotations
represented on S3 by quaternions

23

Interpolating on Sphere

Classic building block of uniform-angular-

velocity interpolation is a constant angular

velocity spherical interpolation, the “SLERP”

between two directions, n̂1 and n̂2:

n̂12(t) = Slerp(n̂1; n̂2; t)

= n̂1
sin((1� t)�)

sin(�)
+ n̂2

sin(t�)

sin(�)

where cos � = n̂1 � n̂2.

(This formula is simply the result of apply-
ing a Gram-Schmidt decomposition while en-
forcing unit norm in any dimension.)

24



Quaternion Interpolations

Many variations have been proposed since

then; simplest is simply to apply the formula

iteratively to give analog of the de Casteljau

spline construction:

3423

12

123

4

32

1

final point

1234
234
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Spline Families

Schlag (in Graphics Gems II (1991)) gives re-

cursive form for several splines:

S(x1; x2; x3; x4; t) =
L(L(L(x1; x2; f12(t)); L(x2; x3; f23(t));

f123(t));
L(L(x2; x3; f23(t)); L(x3; x4; f34(t));

f234(t));
f(t))

26

Spline Families . . .

For Euclidean space , the interpolator is

L(a; b; t) = a(1� t) + bt

while for Spherical space , the interpolator is

L(a; b; t) = a
sin((1� t)�)

sin �
+ b

sin(t�)

sin �

where a � b = cos �.

27

Spline Families . . .

Then

Catmull-Rom

f12 = t+1 f23 = t f34 = t� 1

f123 =
(t+1)
2 f234 =

t
2

f = t

28



Spline Families . . .

Bezier

f12 = t f23 = t f34 = t

f123 = t f234 = t

f = t

29

Spline Families . . .

Uniform B-spline

f12 =
(t+2)
3 f23 =

(t+1)
3 f34 =

t
3

f123 =
(t+1)
2 f234 =

t
2

f = t

30

Plane Interpolations

In Euclidean space, these three basic splines
look like this:
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The differences are in the derivatives: Bezier
has to start matching all over at every fourth
point; Catmull-Rom matches the first deriva-
tive; and B-spline is the cadillac, matching all
derivatives but no control points.
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Spherical Interpolations
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Quaternion Interpolations
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Quaternion Interpolations, contd

This is only a small selection: a number of

other approaches can be found in bibliogra-

phy. Other literature includes:

� Barr et al. Global optimization emulat-

ing vanishing 4th derivative of Euclidean

cubic splines.

� Kim, Kim, and Shin: control derivatives

by using Lie algebra form of rotation.

34

Summary

� Quaternions are useful for 3D frame

applications

� 3D frames ) interpolatable quaternion

curves in 4D.

� Applications: Optimal tubing, surface fram-

ing, object motion, and animation of cam-

era motion.
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Visualizing Quaternions

Part IV: Clifford Algebras

Andrew J. Hanson

Indiana University

1

Part IV: OUTLINE

� Clifford Algebra: Introduction to generalizing
complex numbers and quaternions.

� Reflections vs Rotations: How to make
a rotation.

� Pin(N), Spin(N), O(N), and SO(N): Dou-
ble coverings of N-dimensional rotations.

2

Motivation

� Quaternions are too special. Complex

numbers and quaternions run out of steam

after dimensions 2,3,4.

� Search for some generalizable idea. How

does the (a2� b2), etc., form generalize

to N-dim rotation matrices?

� Clifford Algebra: Clifford found the gen-

eralization, but the really interesting rela-

tion to spin 1/2 elementary particles came

much later.

3

Foundations

� In N-dimensional space, vectors are just

real numbers multiplying basis vectors ei,

i = 1; : : : ; N.

� A vector looks like

V =
X

i

viei

� And the length is found from the familiar

inner product:

kV k2 =< V; V >=
X

ij

vigijvj

where gij would just be the identity matrix

in Euclidean space.
4



Foundations . . .

� But the basis vectors obey a strange mul-

tiplication rule:

eiej + ejei = �2gij

� This is the CLIFFORD ALGEBRA.

� (Note: physicists would recognize these

formulas as those obeyed by the Pauli

matrices or the Dirac matrices.)

5

Clifford Algebra . . .

� How does this odd product concern us??

1. Because it contains in any dimension a

way of expressing rotations as multiple

reflections about a plane.

2. Because these expressions of rotations

are natural square roots of the familiar

N�N orthogonal matrix approach to writ-

ing rotations.

6

Clifford Algebra

implements reflections

If A =
P
aiei is any vector with kAk = 1,

then, using the Clifford multiplication rule,

A � V � A = V � 2A < A; V >

This is just a reflection of the component of

V lying in the direction of A about the plane

< A; X >= 0

7

Clifford Algebra reflections

V 0 = A � V �A = V � 2A < A; V >

V

.= V - 2 A(A V)

.

V’(reflected)

A(A V)

^
A

reflection 
plane

^

^ ^

^

8



Clifford Algebra rotations

Now let B =
P
biei be another vector with

kBk = 1:

Repeating the Clifford multiplication rule,

V 00 = B � V 0 � B
= A �B � V �B � A
= V 0 � 2B < B; V 0 >

= V � 2A < A; V >

�2B < B; V � 2A < A; V >>

9

Clifford Algebra rotations

This can be shown (e.g, in Mathematica) to

be a proper rotation of the vector V , that is

V 00 = A � B � V �B �A =
X

ij

Rijvjei

where Rij is an orthonormal matrix of unit
determinant.

10

Clifford Algebra rotations

Graphically, we have this:

V 00 = A �B � V � B �A
=

X

ij

Rijvjei

V

.^   ^
B (B  V’)

V’(reflected)

V"(rotated)

plane
^
A

^
B

^
A

reflection 

��
��
��
����

��
��
��

B
^

plane
reflection 

11

Clifford Algebra rotations

NOTE that in higher dimensions, you may

need more than a single (A; B) pair to ex-

haust all possible rotations:

N pairs params constraints freedom
2 1 2 � 2 3 1
3 1 2 � 3 3 3
4 2 4 � 4 10 6
5 2 4 � 5 10 10
6 3 6 � 6 21 15
7 3 6 � 7 21 21
. . . . .

N p=bN2 c 2p �N p(2p+1) N(N�1)
2

12



Examples of Clifford Algebras

N = 1: The basis (1; e1) with (e1)
2 = �1

is just the complex numbers. But be care-
ful: there is only one dimension, so the only
possible reflection is x ! �x. This is not
enough to do 2D rotations!

13

Examples of Clifford Algebras . . .

� N = 2: The basis (1; e1; e2; e1e2) ex-

hausts all possible Clifford products. Since

e1e2e1e2 = �1, we can identify this ba-

sis with the quaternions (1; i; j;k)! But

be careful: there are only two dimensions,

so this is not enough to do 3D rotations!

� Where is 2D Rot? True basis of rotations

is the even part of the family of all Clifford

products, or (1; e1e2) !!

14

2D Rotations done right

� What is i? What we called i =
p�1 is

really i = e1e2.

� How do we rotate in 2D? Let

R = a+ be1e2, Ry = a� be1e2:

R � V �Ry = v01e1+ v02e2

where V 0 now means a rotation, and
2
4 v

0
1
v02

3
5 =

2
4 a

2 � b2 �2ab
2ab a2 � b2

3
5
2
4 v1
v2

3
5

15

2D Rotations done right

So the half-angle formula is mandatory!

Our 2D transformation was not so silly after

all; nothing else generalizes toN-dimensions.

The Clifford algebra for N = 2 automatically

produces:

R2(a; b) =

2
4 a

2 � b2 �2ab
2ab a2 � b2

3
5 :

where a2+b2 = 1, and we have the solution
a = cos(�=2) b = sin(�=2).

16



3D Rotations done right

3D is of course a little trickier: here the full

basis of all Clifford products is 8-dimensional:

(1; e1; e2; e3; e2e3; e3; e1; e1e2; e1e2e3)

� Even part is rotations. To exclude re-

flections, we keep only the even part:

(1; e2e3; e3e1; e1e2)

� These are the quaternions: identify these

with (1; i; j;k).

17

3D Rotations done right . . .

� General 3D Rotation: with R = q0 +

q1e2e3+ q2e3e1+ q3e1e2 we have

R � V �Ry =
4X

i=1
v0iei

where the coefficients of v0i are precisely

our old quaternion formula.

18

Higher dimensions:

As one might expect, higher dimensions are

much more complicated, and do not work out

so neatly, except for a convenient accident in

N = 4, which allows a “double-quaternion”

form.

But we can do a little counting to see what is

going on in N dimensions, where we know

that the number of rotational degrees of free-

dom is N(N � 1)=2:

19

Higher dimensions:

Degrees of freedom in higher dimensional Spin
representations:

N Dim(even

Clifford)

Dim(Rotations) Constraints

(the differ-

ence)
1 1 0 1
2 2 1 1
3 4 3 1
4 8 6 2
5 16 10 6
6 32 15 17
7 64 21 43
8 128 28 100
. . . .

N 2N�1 N(N � 1)=2 2N�N2+N
2

20



Pin(N), Spin(N), O(N), SO(N)
and all that . . .

Spin representations of all the orthogonal

groups follow from the Clifford Algebra Cl(N).

(So do spinors — but some other time . . . )

� Pin(N). G is “Pin” if it’s a general multi-

ple reflection; G includes all elements of

Cl(N).

� Spin(N). G is “Spin” if it’s a general ro-

tation; G contains only even elements of

Cl(N).

� O(N). G � V �Gy is “O” if G is in Pin and

result is a vector reflection.

� SO(N). G � V �Gy is “SO” if G is in Spin

and result is a vector rotation. 21

GRAND CONCLUSION

� Rotation Matrices: can be represented

by a “square root” object with simpler ge-

ometric properties than rotations (= quater-

nions for N = 2;3;4).

� Visualization of Quaternions: is pos-

sible using sphere projection trick and a

solid unit sphere.

� Quaternion Curves, Surfaces, Volumes:

embedded in that sphere represent ani-

mations, flows, curve tubings, etc.

� Clifford Algebras: form the rigorous ba-

sis for the whole set of concepts.
22
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Geometry for N-Dimensional
Graphics

Andrew J. Hanson
Computer Science Department
Indiana University
Bloomington, IN 47405
hanson@cs.indiana.edu

} Introduction }

Textbook graphics treatments commonly use special notations for the geometry of 2 and 3
dimensions that are not obviously generalizable to higher dimensions. Here we collect a family
of geometric formulas frequently used in graphics that are easily extendible toN dimensions
as well as being helpful alternatives to standard 2D and 3D notations.

What use are such formulas? In mathematical visualization, which commonly must deal
with higher dimensions — 4 real dimensions, 2 complex dimensions, etc. — the utility is self-
evident (see, e.g., (Banchoff 1990, Francis 1987, Hanson and Heng 1992b, Phillips et al. 1993)).
The visualization of statistical data also frequently utilizes techniques ofN -dimensional display
(see, e.g., (Noll 1967, Feiner and Beshers 1990a, Feiner and Beshers 1990b, Brun et al. 1989,
Hanson and Heng 1992a)). We hope that publicizing some of the basic techniques will encour-
age further exploitation ofN -dimensional graphics in scientific visualization problems.

We classify the formulas we present into the following categories: basic notation and the
N -simplex; rotation formulas; imaging inN -dimensions;N -dimensional hyperplanes and vol-
umes;N -dimensional cross-products and normals; clipping formulas; the point-hyperplane dis-
tance; barycentric coordinates and parametric hyperplanes;N -dimensional ray-tracing meth-
ods. An appendix collects a set of obscure Levi-Civita symbol techniques for computing with
determinants. For additional details and insights, we refer the reader to classic sources such as
(Sommerville 1958, Coxeter 1991, Hocking and Young 1961) and (Banchoff and Werner 1983,
Efimov and Rozendorn 1975).

} Definitions — What is a Simplex, Anyway? }

In a nutshell, anN -simplex is a set of(N + 1) points that together specify the simplest non-
vanishingN -dimensional volume element (e.g., two points delimit a line segment in 1D, 3
points a triangle in 2D, 4 points a tetrahedron in 3D, etc.). From a mathematical point of view,

149
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1 2 3 4
Figure 1. 2D projections of simplexes with dimension 1–4. AnN -simplex is defined by (N+1) linearly
independent points and generalizes the concept of a line segment or a triangular surface patch.

there are lots of differentN -dimensional spaces: here we will restrict ourselves to ordinary flat,
real Euclidean spaces ofN dimensions with global orthogonal coordinates that we can write as

~x = (x; y; z; : : : ; w)

or more pedantically as

~x = (x(1); x(2); x(3); : : : ; x(N)) :

We will use the first, less cumbersome, notation whenever it seems clearer.
Our first type of object inN -dimensions, the0-dimensionalpoint ~x, may be thought of as

a vector from the origin to the designated set of coordinate values. The next type of object is
the 1-dimensionalline, which is determined by giving two points(~x0; ~x1); the line segment
from ~x0 to ~x1 is called a1-simplex. If we now take three noncollinear points(~x0; ~x1; ~x2), these
uniquely specify aplane; the triangular area delineated by these points is a2-simplex. A 3-
simplex is a solid tetrahedron formed by a set of four noncoplanar points, and so on. In figure
1, we show schematic diagrams of the first few simplexes projected to 2D.

Starting with the(N + 1) points(~x0; ~x1; ~x2; : : : ; ~xN ) defining a simplex, one then connects
all possible pairs of points to form edges, all possible triples to form faces, and so on, resulting
in the structure of component “parts” given in table 1. The next higher object uses its predeces-
sor as a building block: a triangular face is built from three edges, a tetrahedron is built from
four triangular faces, a 4-simplex is built from 5 tetrahedra.

The general idea should now be clear:(N + 1) linearly independent points define ahy-
perplaneof dimensionN and specify the boundaries of anN -dimensional coordinate patch
comprising anN -simplex(Hocking and Young 1961). Just as the surfaces modeling a 3D ob-
ject may be broken up (ortessellated) into triangular patches,N -dimensional objects may be
tessellated into(N � 1)-dimensional simplexes that define their geometry.
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Table 1. Numbers of component structures making up an N -simplex. For example, in 2D, the basic
simplex is the triangle with 3 points, 3 edges, and one 2D face.

Dimension of Space

Type of Simplex N = 1 N = 2 N = 3 N = 4 . . . N

Points (0D) 2 3 4 5 . . .

�
N + 1

1

�
= N + 1

Edges (1D simplex) 1 3 6 10 . . .

�
N + 1

2

�

Faces (2D simplex) 0 1 4 10 . . .

�
N + 1

3

�

Volumes (3D simplex) 0 1 5 . . .

�
N + 1

4

�

...
...

...
...

...
.. .

...

(N � 2)D simplex . . .

�
N + 1

N � 1

�

(N � 1)D simplex . . .

�
N + 1

N

�
= N + 1

ND simplex 1 . . .

�
N + 1

N + 1

�
= 1

} Rotations }

In N Euclidean dimensions, there are
�
N
2

�
= N(N � 1)=2 degrees of rotational freedom

corresponding to the free parameters of the groupSO(N). In 2D, that means we only have one
rotational degree of freedom given by the angle used to mix thex andy coordinates. In 3D,
there are 3 parameters, which can be thought of as corresponding either to three Euler angles
or to the three independent quaternion coordinates that remain when we represent rotations in
terms of unit quaternions. In 4D, there are 6 degrees of freedom, and the familiar 3D picture of
“rotating about an axis” is no longer valid; each rotation leaves an entire plane fixed, not just
one axis.

General rotations inN dimensions may be viewed as a sequence of elementary rotations.
Each elementary rotation acts in the plane of a particular pair, say(i; j), of coordinates, leaving
an(N � 2)-dimensional subspace unchanged; we may write any such rotation in the form

x0(i) = x(i) cos � � x(j) sin �

x0(j) = �x(i) sin � + x(j) cos �

x0(k) = x(k) (k 6= i; j) :

It is important to remember thatorder matterswhen doing a sequence of nested rotations; for
example, two sequences of small 3D rotations, one consisting of a(2; 3)-plane rotation followed
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x̂(1)

û(1)

x̂
(N)

x

u

Origin

f(N)

(N)
d

Image

Camera

Figure 2. Schematic view of the projection process for an N -dimensional pinhole camera.

by a(3; 1)-plane rotation, and the other with the order reversed, will differ by a rotation in the
(1; 2)-plane. (See any standard reference such as (Edmonds 1957).)

We then have a number of options for controlling rotations inN -dimensional Euclidean
space. Among these are the following:

� (i; j)-space pairs.A brute-force choice would be just to pick a sequence of(i; j) planes
in which to rotate using a series of matrix multiplications.

� (i; j; k)-space triples. A more interesting choice for an interactive system is to provide
the user with a family of(i; j; k) triples having a 2D controller like a mouse coupled to
two of the degrees of freedom, and having the 3rd degree of freedom accessible in some
other way — with a different button, from context using the “virtual sphere” algorithm
of (Chen et al. 1988), or implicitly using a context-free method like the “rolling-ball” al-
gorithm (Hanson 1992). The simplest example is(1; 2; 3) in 3D, with the mouse coupled
to rotations about thêx-axis (2; 3) and theŷ-axis (3; 1), giving ẑ-axis (1; 2) rotations as
a side-effect. In 4D, one would have four copies of such a controller,(1; 2; 3), (2; 3; 4),
(3; 1; 4), and(1; 2; 4), or two copies exploiting the decomposition ofSO(4) infinitesimal

rotations into two independent copies of ordinary 3D rotations. InN dimensions,
�
N
3

�

sets of these controllers (far too many whenN is large!) could in principle be used.

} N -dimensional Imaging }

The general concept of an “image” is a projection of a point~x = (x(1); x(2); : : : ; x(N)) from
dimensionN to a point~u of dimension(N � 1) along a line. That is, the image of a 2D world
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nearnear

far

near

far
far

Figure 3. Qualitative results of perspective projection of a wire-frame square, a cube, and a hypercube
in 2D, 3D, and 4D, respectively.

is a projection to 1D film, 3D worlds project to 2D film, 4D worlds project to 3D film, and so
on. Since we can rotate our coordinate system as we please, we lose no generality if we assume
this projection is along theN -th coordinate axis. An orthographic or parallel projection results
if we simply throw out theN -th coordinatex(N) of each point. A pinhole camera perspective
projection (see figure 2) results when, in addition, we scale the first(N � 1) coordinates by
dividing by (dN � x(N))=fN , wheredN is the distance along the positiveN -th axis to the
camera focal point andfN is the focal length. One may need to project this first image to
successively lower dimensions to make it displayable on a 2D graphics screen; thus a hierarchy
of up to(N � 2) parameter setsf(fN ; dN ); : : : ; (f3; d3)g may be introduced if desired.

In the familiar 3D case, we replace a vertex(x; y; z) of an object by the 2D coordinates
(xf=(d� z); yf=(d � z)), so that more distant objects (in the negativez direction) are shrunk
in the 2D image. In 4D, entire solid objects are shrunk, thus giving rise to the familiar wire-
frame hypercube shown in figure 3 that has the more distant cubic hyperfaces actually lying
insidethe projection of the nearest cube.

As we will see a bit later when we discuss normals and cross-products, the usual shading
approaches allow only(N � 1)-manifolds to interact uniquely with a light ray. That is, the
generalization of a viewable “object” toN dimensions is a manifold of dimension(N � 1) that
bounds anN -dimensional volume; only this boundary is visible in the projected image if the
object is opaque. For example, curves in 2D reflect light toward the focal point to form images
on a “film line,” surface patches in 3D form area images on a 2D film plane, volume patches in
4D form volume images in the 3D film volume, etc. The image of this(N � 1)-dimensional
patch may be ray traced or scan converted. Objects are typically represented as tessellations
which consist of a collection of(N�1)-dimensional simplexes; for example, triangular surface
patches form models of the visible parts of 3D objects, while tetrahedral volumes form models
of the visible parts of 4D objects. (An interesting side issue is how to display meaningful
illuminated images of lower dimensional manifolds — lines in 3D, surfaces and lines in 4D,
etc.; see (Hanson and Heng 1992b) for further discussion.)
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Figure 4. The line from ~x0 to ~x1 whose points obey the equation n̂ � (~x� ~x0) = 0. The constant c is
just n̂ � ~x0.

} Hyperplanes and Volume Formulas }

Implicit Equation of a Hyperplane. In 2D, a special role is played by the single linear
equation defining a line; in 3D, the analogous single linear equation defines a plane. InN -
dimensions, the following implicit linear equation describes a set of points belonging to an
(N � 1)-dimensional hyperplane:

n̂ � (~x� ~x0) = 0 : (1)

Here~x0 is any point on the hyperplane and conventionallyn̂ � n̂ = 1. The geometric interpre-
tation of this equation in 2D is the 1D line shown in figure 4. In general,n̂ is a normalized unit
vector that is perpendicular to the hyperplane, andn̂ � ~x0 = c is simply the (signed) distance
from the origin to the hyperplane. The point~xc = cn̂ is the point on the hyperplane closest to
the origin; the point closest to some other point~P is ~xc = ~P + n̂fn̂ � (~x0 � ~P )g.

Simplex Volumes and Subvolumes. The volume (by which we always mean theN -
dimensional hypervolume) of anN -simplex is determined in a natural way by a determinant of
its (N + 1) defining points (Sommerville 1958):

VN =
1

N !
det

2
6666664

x1 x2 � � � xN x0
y1 y2 � � � yN y0
...

...
. . .

...
...

w1 w2 � � � wN w0

1 1 � � � 1 1

3
7777775
: (2)



II.6 Geometry for N-Dimensional Graphics } 155

The bottom row of 1’s in eq. (2) corresponds to the familiar homogeneous coordinate used with
4 � 4 projection matrices in 3D graphics. We will attempt to convince the reader in a mo-
ment that disastrous sign inconsistencies result unless the global origin~x0 of theN -simplex’s
coordinate system is in the last column as shown.

The expression for the volume in eq. (2) issigned, which means that it implicitly defines the
N -dimensional generalization of theRight-Hand Ruletypically adopted to determine triangle
orientation in 3D geometry. For example, we observe that if~x0 = (0; 0; : : : ; 0) is the origin
and we choose~x1 = (1; 0; : : : ; 0), ~x2 = (0; 1; 0; : : : ; 0), and so on, the value of the determinant
is +1. If we had put~x0 in the first row in eq. (2), the sign would alternate from dimension to
dimension! We will exploit this signed determinant shortly to defineN -dimensional normal
vectors, and again later to formulateN -dimensional clipping.

First, we use the standard column-subtraction identity for determinants to reduce the dimen-
sion of the determinant in eq. (2) by one, expressing it in a form that is manifestlytranslation-
invariant:

VN =
1

N !
det

2
6666664

(x1 � x0) (x2 � x0) � � � (xN � x0) x0
(y1 � y0) (y2 � y0) � � � (yN � y0) y0

...
...

. . .
...

...
(w1 � w0) (w2 � w0) � � � (wN � w0) w0

0 0 � � � 0 1

3
7777775

=
1

N !
det

2
6664

(x1 � x0) (x2 � x0) � � � (xN � x0)
(y1 � y0) (y2 � y0) � � � (yN � y0)

...
...

. . .
...

(w1 � w0) (w2 � w0) � � � (wN � w0)

3
7775 : (3)

These formulas forVN can be intuitively understood as generalizations of the familiar 3D triple
scalar product,

[(~x1 � ~x0)� (~x2 � ~x0)] � (~x3 � ~x0) ;

which gives the volume of the parallelepiped with sides((~x1� ~x0); (~x2� ~x0); (~x3� ~x0)). The
corresponding tetrahedron with vertices at the points(~x0; ~x1; ~x2; ~x3) has one-sixth the volume
of the parallelepiped. The analogous observation inN dimensions is that the factor of1=N ! in
eq. (3) is the proportionality factor between the volume of theN -simplex and the volume of
the parallelepiped whose edges are given by the matrix columns.

Invariance. The volume determinant is invariant under rotations. To see this explicitly, let
jXj be the matrix in eq. (3) and letjRj be any orthonormal rotation matrix (i.e., one whose
columns are of unit length and are mutually perpendicular, with unit determinant); then, letting
jX 0j = jRj � jXj, we find

det jX 0j = det(jRj � jXj) = det jRjdet jXj = det jXj = N !VN ;
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since the determinant of a product is the product of the determinants.
A manifestly translationand rotation invariant form for the square of the volume element is

(VN )2 =

�
1

N !

�2
det jXt �Xj

=

�
1

N !

�2
det

2
6664

v(1; 1) v(1; 2) � � � v(1; N)
v(2; 1) v(2; 2) � � � v(2; N)

...
...

. . .
...

v(N; 1) v(N; 2) � � � v(N;N)

3
7775 ; (4)

wherev(i; j) = (~xi � ~x0) � (~xj � ~x0).
This invariant form is not presented as an idle observation; we now exploit it to show how to

construct volume forms forsubspacesofN -dimensional spaces, for which the defining vertices
of the desired simplex cannot form square matrices!

The trick here is to note that whileVK , for K < N , is not expressible in terms of a square
matrix of coordinate differences the wayVN is, we may writeVK as the determinant of a square
matrix in one particular coordinate frame, and multiply this matrix by its transpose to get a form
like eq. 4, which does not depend on the frame. Since the form is invariant, we can transform
back to an arbitrary frame to find the following expression forVK in terms of itsK basis vectors
(~xk � ~x0) of dimensionN :

(VK)2 =

�
1

K!

�2

det

2
6664

~x1 � ~x0
~x2 � ~x0

...
~xK � ~x0

3
7775 �

�
~x1 � ~x0 ~x2 � ~x0 � � � ~xK � ~x0

�

=

�
1

K!

�2

det

2
6664

v(1; 1) v(1; 2) � � � v(1;K)
v(2; 1) v(2; 2) � � � v(2;K)

...
...

. . .
...

v(K; 1) v(K; 2) � � � v(K;K)

3
7775 : (5)

That is, to compute a volume of dimensionK in N dimensions, find theK independent basis
vectors spanning the subspace, and form a squareK � K matrix of dot products related to
V 2
K by multiplying theN � K matrix of column vectors by its transpose on the left. When
K = 1, we see that we have simply the squared Euclidean distance inN dimensions,v(1; 1) =
(~x1 � ~x0) � (~x1 � ~x0).

} Normals and the Cross-Product }

A frequently asked question inN -dimensional geometry concerns how to define a normal vec-
tor as a cross-product of edges for use in geometry and shading calculations. To begin with,



II.6 Geometry for N-Dimensional Graphics } 157

you must have an(N � 1)-manifold (a line in 2D, surface in 3D, volume in 4D) in order to
have a well-defined normalvector; otherwise, you may have a normalspace(a plane, a vol-
ume, etc.). Suppose you have an ordered set of(N � 1) edge vectors(~xk � ~x0) tangent to this
(N � 1)-manifold at a point~x0; typically these vectors are the edges of one of the(N � 1)-
simplexes in the tessellation. Then the normal~N at the point is ageneralized cross-product
whose components are cofactors of the last column in the following (notationally abusive!)
determinant:

~N = Nxx̂+Nyŷ +Nz ẑ+ � � � +Nwŵ

= det

2
6666664

(x1 � x0) (x2 � x0) � � � (xN�1 � x0) x̂

(y1 � y0) (y2 � y0) � � � (yN�1 � y0) ŷ

(z1 � z0) (z2 � z0) � � � (zN�1 � z0) ẑ

...
...

. . .
...

...
(w1 � w0) (w2 � w0) � � � (wN�1 � w0) ŵ

3
7777775
: (6)

As usual, we can normalize usingk ~Nk, the square root of the sum of the squares of the co-
factors, to form the normalized normaln̂ = ~N=k ~Nk. A quick check shows that if the vectors
(~xk � ~x0) are assigned to the first(N � 1) coordinate axes in order, this normal vector points
in the direction of the positiveN -th axis. For example, in 2D, we want the normal to the vector
(x1�x0; y1�y0) to be ~N = (�(y1�y0); (x1�x0)) so that a vector purely in thex direction
has a normal in the positivey direction; placing the column of unit vectors(x̂; ŷ; ẑ; : : : ; ŵ) in
the first column fails this test. The 3D case can be done either way because an even number
of columns are crossed! It is tempting to move the column of unit vectors to the first column
instead of the last, but one must resist: the choice given here is the one to use for consistent
behavior across different dimensions!

The qualitative interpretation of eq. (6) can now be summarized as follows:

� 2D: Given two points(~x0; ~x1) determining a line in 2D, the cross-product of asingle vector
is the normal to the line.

� 3D: Given three points defining a plane in 3D, the cross-product of the two 3D vectors
outlining the resulting triangle is the familiar formula(~x1�~x0)� (~x2�~x0) for the normal
~N to the plane.

� 4D: In four dimensions, we use four points to construct the three vectors(~x1 � ~x0); (~x2 �
~x0); (~x3 � ~x0); the cross product of these vectors is afour-vector that is perpendicular
to each vector and thus is interpretable as the normal to the tetrahedron specified by the
original four points.

From this point on, the relationship to standard graphics computations should be evident:
If, in N -dimensional space, the(N � 1)-manifold to be rendered is tessellated into(N � 1)-
simplexes, use eq. (6) to compute the normal of each simplex for flat shading. For interpolated
shading, compute the normal at each vertex (e.g., by averaging the normals of all neighboring
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simplexes and normalizing or by computing the gradient of an implicit function specifying the
vertex). Compute the intensity at a point for which you know the normal by taking the dot
product of the appropriate illumination vector with the normal (e.g, by plugging it into the last
column of eq. (6)). If appropriate, set the dot product to zero if it is negative (pointing away
from the light). Back face culling, to avoid rendering simplexes pointing away from the camera,
is accomplished in exactly the same way: plug the camera view vector into the last column of
eq. (6) and discard the simplex if the result is negative.

Dot Products of Cross Products. We conclude this section with the remark that some-
times computing the dot product between a normal and a simple vector is not enough; if we
need to know the relative orientation of two face normals (e.g., to determine whether a finer
tessellation is required), we must compute the dot products of normals. In principle, this can
be done by brute force directly from eq. (6). Here we note an alternative formulation that is the
N -dimensional generalization of the 3D formula for the decomposition of the dot product of
two cross products; in the 3D case, if one normal is given by the cross product~X = ~A� ~B and
the other by~Y = ~C � ~D, we can write

~X � ~Y = ( ~A� ~B) � ( ~C � ~D) = ( ~A � ~C)( ~B � ~D)� ( ~A � ~D)( ~B � ~C) : (7)

We note that the degenerate case for the square of a cross product is

( ~A� ~B) � ( ~A� ~B) = ( ~A � ~A)( ~B � ~B)� ( ~A � ~B)2 ;

which, if � is the angle between~A and~B, reduces to the identityk ~Ak2k ~Bk2 sin2 � = k ~Ak2k ~Bk2�

k ~Ak2k ~Bk2 cos2 �.
The generalization of this expression toN dimensions can be derived from the product of

two Levi-Civita symbols (see the Appendix). If~X and~Y are two cross products formed from
the sets of vectors~x1; ~x2; : : : ; ~xN�1 and~y1; ~y2; : : : ; ~yN�1, then

~X � ~Y =
X

all indices
x
(i1)
1 x

(i2)
2 : : : x

(iN�1)
N�1 y

(j1)
1 y

(j2)
2 : : : y

(jN�1)
N�1

det

2
6664

�i1j1 �i1j2 � � � �i1jN�1
�i2j1 �i2j2 � � � �i2jN�1

...
...

. . .
...

�iN�1j1 �iN�1j2 � � � �iN�1jN�1

3
7775 ; (8)

where the Kronecker delta,�ij , is defined as

�ij = 1 i = j
= 0 i 6= j :

It is easy to verify that forN = 3 this reduces to eq. (7).
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More remarkable, however, is the fact that this formula shows that the square magnitude of
the normal ~N of a hyperplane given in eq. (6) is thesubvolumeof the corresponding paral-
lelepiped specified by eq. (5). That is, not only does thedirectionof eq. (6) have an important
geometric meaning with respect to the(N � 1)-simplex specifying the hyperplane, but so does
its magnitude! We find

~N � ~N = det

2
6664

v(1; 1) v(1; 2) � � � v(1; N � 1)
v(2; 1) v(2; 2) � � � v(2; N � 1)

...
...

. . .
...

v(N � 1; 1) v(N � 1; 2) � � � v(N � 1; N � 1)

3
7775 = ((N � 1)! VN�1)

2 :

} Clipping Tests in N Dimensions }

Now we can exploit the properties of the volume formula to define clipping (“which side”) tests
in any dimension. If we replace(~xN � ~x0) by (~x � ~x0), eq. (3) becomes afunctionVN (~x).
Furthermore, this function has the remarkable property that it is an alternative form for the
hyperplane equation, eq. (1), whenVN (~x) = 0.

We can furthermore determineon which sideof the(N � 1)-dimensional hyperplane deter-
mined by(~x0; ~x1; : : : ; ~xN�1) an arbitrary point~x lies simply by checking the sign ofVN (~x).
That is,

� VN (~x) = 0 ) the point~x lies on a hyperplane and solves an equation of the form eq. (1).
� VN (~x) > 0 ) the point~x lies above the hyperplane.
� VN (~x) < 0 ) the point~x lies below the hyperplane.

Note: The special caseVN = 0 is of course just the general criterion for discoveringlinear
dependenceamong a set of(N +1) vector variables. This has the following elegant geometric
interpretation: In 2D, we use the formula to compute the area of the triangle formed by 3
points(~x0; ~x1; ~x); if the area vanishes, the 3 points lie on a single line. In 3D, if the volume
of the tetrahedron formed by 4 points(~x0; ~x1; ~x2; ~x) vanishes, all 4 points are coplanar, and
so on. VanishingN -volume means the points lie in a hyperplane of dimension no greater than
(N � 1).

These relationships between the sign ofVN (~x) and the relative position of~x are precisely
those we are accustomed to examining when weclip vectors (e.g., edges of a triangle) to lie on
one side of a plane in a viewing frustum or within a projected viewing rectangle. For example,
a 2D clipping line defined by the vector~x1 � ~x0 = (x1 � x0; y1 � y0) has a right-handed
(unnormalized) normal~N = (�(y1 � y0); (x1 � x0)). Writing the 2D volume as the areaA,
eq. (3) becomes

A(~x) =
1

2
det

�
(x1 � x0) (x� x0)
(y1 � y0) (y � y0)

�
=

1

2

h
~N � (~x� ~x0)

i
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Figure 5. In 2D, the line through ~x0 to ~x1 defined by n̂ � (~x � ~x0) = 0 partitions the plane into two
regions, one where this expression is positive (e.g., for~x+) and another where it is negative (e.g., for ~x�).
In 3D, the analogous procedure uses the plane defined by (~x0; ~x1; ~x2) to divide 3-space into two half
spaces. The same pictures serve to show how the distance h from a point to a hyperplane is computable
from the ratio of the simplex volume to the lower-dimensional volume of its base, i.e., 2A=L or 3V=A.

for some arbitrary point~x, and so we recover the form of eq. (1) as

n̂ � (~x� ~x0) =
2A

k~x1 � ~x0k
;

wheren̂ = ~N=k ~Nk; the relationship of~x to the clipping line is determined by the sign.
In 3D, when clipping a line against a plane, everything reduces to the traditional form, namely

the dot product between a 3D cross-product and a vector from a point~x0 in the clipping plane
to the point~x being clipped. The normal to the plane through(~x0; ~x1; ~x2) is

~N = (~x1 � ~x0)� (~x2 � ~x0) (9)

=

�
+det

�
(y1 � y0) (y2 � y0)
(z1 � z0) (z2 � z0)

�
;

�det

�
(x1 � x0) (x2 � x0)
(z1 � z0) (z2 � z0)

�
;+det

�
(x1 � x0) (x2 � x0)
(y1 � y0) (y2 � y0)

��
;

and we again find the same general form,

n̂ � (~x� ~x0) =
6V

k ~Nk
;

whose sign determines where~x falls. Figure 5 summarizes the relationship of the signed vol-
ume to the clipping task in 2D and 3D.
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Hyperplanes for clipping applications in any dimension are therefore easily defined and
checked by choosing~xN to be the test point~x and checking the sign of eq. (3). If~N and a
point ~x0 are easy to determine directly, then the procedure reduces to checking the sign of the
left hand side of eq. (1).

The final step is to find the desired point on the truncated, clipped line. Since the clipped
form of a triangle, tetrahedron, etc., can be determined from the clipped forms of the component
lines, we need only consider the point at which a line straddling the clipping hyperplane inter-
sects this hyperplane. If the line to be clipped is given parametrically as~x(t) = ~xa+t(~xb�~xa),
where~xa and~xb are on opposite sides of the clipping hyperplane so0 � t � 1, then we simply
plug~x(t) into V (~x) = 0 and solve fort:

t =
det

�
~x1 � ~x0 ~x2 � ~x0 � � � ~xa � ~x0

�
det

�
~x1 � ~x0 ~x2 � ~x0 � � � ~xa � ~xb

� =
n̂ � (~xa � ~x0)

n̂ � (~xa � ~xb)
: (10)

Heren̂ is of course just the normal to the clipping hyperplane, discussed in detail above.

} Point-Hyperplane Distance }

The general formula for the volume of a parallelepiped is the product of the base and the height,
W = Bh. In N dimensions, if we takeWN = N !VN to be the volume of the parallelepiped
with edges(~x1 � ~x0); (~x2 � ~x0); : : : ; (~xN�1 � ~x0); (~x� ~x0), this generalizes to

WN = hWN�1 ;

whereh is the perpendicular distance from the point~x to the(N�1)-dimensional parallelepiped
with volumeWN�1 = (N � 1)!VN�1 and edges(~x1 � ~x0); (~x2 � ~x0); : : : ; (~xN�1 � ~x0). We
may thus immediately compute the distanceh from a point to a hyperplane as

h =
WN

WN�1
=

N !VN
(N � 1)!VN�1

=
N VN
VN�1

: (11)

Note! Here one must use the trick of eq. 4 to expressWN�1 in terms of the square root of a
square determinant given by the product of two non-square matrices.

Thus in 2D, the area of a triangle(~x0; ~x1; ~x) is

A = V2 =
1

2
W2 =

1

2
det

�
(x1 � x0) (x� x0)
(y1 � y0) (y � y0)

�

and the length-squared of the base isL2 = (~x1 � ~x0) � (~x1 � ~x0) so, withA = (1=2)hL,
the height becomesh = 2A=L = W2=L = W2=W1. In 3D, the volume of the tetrahedron
(~x0; ~x1; ~x2; ~x) is V = V3 = (1=6)W3 and the areaA = (1=2)W2 of the triangular base may be
written

(2A)2 = (W2)
2 = det

�
(~x1 � ~x0) � (~x1 � ~x0) (~x1 � ~x0) � (~x2 � ~x0)
(~x2 � ~x0) � (~x1 � ~x0) (~x2 � ~x0) � (~x2 � ~x0)

�
:
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Figure 6. Barycentric coordinates in N dimensions.

We knowV = (1=3)hA, and soh = 3V=A = 6V=2A = W3=W2. (See figure 5.) We note
for reference that, as we showed earlier, the base(N � 1)-volume is related to its normal by
~N � ~N = W 2

N�1.
Here we also typically need to answer one last question, namelywhereis the point~p on the

base hyperplane closest to the point~x whose distanceh we just computed? This can be found
by parameterizing the line from~x to the base hyperplane along the normaln̂ to the hyperplane
as~x(t) = ~x+ tn̂, writing the implicit equation for the hyperplane asn̂ � (~x(t)� ~x0) = 0, and
solving for the mutual solutiontp = n̂ � (~x0 � ~x) = �h. Thus

~p = ~x+ n̂(n̂ � (~x0 � ~x))

= ~x� hn̂ :

} Barycentric Coordinates }

Barycentric coordinates (see, e.g., (Hocking and Young 1961), chapter 5) are a practical way to
parameterize lines, surfaces, etc., for applications that must compute where various geometric
objects intersect. In practice, the barycentric coordinate method reduces to specifying two
points (~x0; ~x1) on a line, three points(~x0; ~x1; ~x2) on a plane, four points(~x0; ~x1; ~x2; ~x3) in
a volume, etc., and parameterizing the line segment, enclosed triangular area, and enclosed
tetrahedral volume, etc., respectively, by

~x(t) = ~x0 + t(~x1 � ~x0) (12)

~x(t1; t2) = ~x0 + t1(~x1 � ~x0) + t2(~x2 � ~x0) (13)

~x(t1; t2; t3) = ~x0 + t1(~x1 � ~x0) + t2(~x2 � ~x0) + t3(~x3 � ~x0) (14)

� � � :
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The line and plane geometries are shown in figure 6. The interpolated point then lies within the
N -simplex defined by the specified points provided

0 � t � 1

0 � t1 � 1; 0 � t2 � 1; 0 � (1� t1 � t2) � 1

0 � t1 � 1; 0 � t2 � 1; 0 � t3 � 1; 0 � (1� t1 � t2 � t3) � 1

: : :

Center of What? However, this is really only half the story of barycentric coordinates. For
the other half, we seek a geometric interpretation of the parametersti when we aregiven the
value of~x.

First let us look at the simple case when~x lies on the line segment between~x0 and~x1.
Solving eq. (12) fort directly gives

t =
(~x� ~x0) � (~x1 � ~x0)

(~x1 � ~x0) � (~x1 � ~x0)
:

That is,t is the fraction of the distance that~x has traveled along the line, theratio between the
length from~x0 to ~x and the total length. But, since~x1 � ~x0 = ~x1 � ~x+ ~x� ~x0, we easily see
that an alternative parameterization would be to taket1 = t and

t0 =
(~x1 � ~x) � (~x1 � ~x0)

(~x1 � ~x0) � (~x1 � ~x0)

so that1 = t0 + t1 and eq. (12) for~x becomes

~x(t0; t1) = t0~x0 + t1~x1 :

If t0 = 1, then the entire fraction of the distance from~x1 to ~x is assigned tot0 and~x = ~x0. If
t1 = 1, then the entire fraction of the distance from~x0 to ~x is assigned tot1 and~x = ~x1.

Next, suppose we know~x in a plane and wish to compute its barycentric coordinates by
solving eq. (13) for(t1; t2). Once we realize that(~x1�~x0) and(~x2�~x0) form the basis for an
affine coordinate system for the plane specified by(~x0; ~x1; ~x2) in any dimension, we see that
we may measure the relative barycentric coordinates by taking the dot product with each basis
vector:

(~x� ~x0) � (~x1 � ~x0) = t1k~x1 � ~x0k
2 + t2(~x2 � ~x0) � (~x1 � ~x0)

(~x� ~x0) � (~x2 � ~x0) = t1(~x1 � ~x0) � (~x2 � ~x0) + t2k~x2 � ~x0k
2 :

Extending the previously introduced abbreviation to the formv(x; j) = (~x � ~x0) � (~xj � ~x0)
and solving this pair of equations by Cramer’s rule, we get

t1 =

det

�
v(x; 1) v(1; 2)
v(x; 2) v(2; 2)

�

det

�
v(1; 1) v(1; 2)
v(2; 1) v(2; 2)

�
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t2 =

det

�
v(1; 1) v(x; 1)
v(1; 2) v(x; 2)

�

det

�
v(1; 1) v(1; 2)
v(2; 1) v(2; 2)

� :

The denominator is clearly proportional to thesquareof the area of the triangle(~x0; ~x1; ~x2),
and the numerators have the form of squared areas as well. InN dimensions, the numerators
reduce to determinants of products of non-square matrices, and so maynot be expressed as
two separate determinants! However, if we transform to a coordinate system that contains the
triangle within the plane of two coordinate axes, or ifN = 2, an effectively square matrix is
recovered; one factor of area in the denominator then cancels out, giving the intuitively expected
result that the barycentric coordinates are ratios of two areas:t1 = A(~x; ~x0; ~x1)=A(~x0; ~x1; ~x2),
t2 = A(~x; ~x2; ~x0)=A(~x0; ~x1; ~x2). This leads us to introduce the generalized version oft0 for
the line, namely,

t0 = 1� t1 � t2 =
A(~x1; ~x2; ~x)

A(~x0; ~x1; ~x2)

=

det

�
(~x1 � ~x0) � (~x1 � ~x) (~x1 � ~x0) � (~x2 � ~x)
(~x2 � ~x0) � (~x1 � ~x) (~x2 � ~x0) � (~x2 � ~x)

�

det

�
v(1; 1) v(1; 2)
v(2; 2) v(2; 2)

� :

Here we used the squaring argument given above to extendt0 from its special-coordinate-
system interpretation as the fraction of the area contributed by the triangle(~x; ~x1; ~x2) to the
invariant form. This form obviously has the desired property thatt0 = 1 when~x = ~x0, and we
finally have the sought equation (with1 = t0 + t1 + t2)

~x(t0; t1; t2) = t0~x0 + t1~x1 + t2~x2 :

It is amusing to note that the determinant identity1 = t0+ t1+ t2 and its higher analogs, which
are nontrivial to derive, generalize the simple identity~x1� ~x0 = ~x1� ~x+ ~x� ~x0 that we used
in the 1D case.

Thus we can construct barycentric coordinates in any dimension which intuitively correspond
to fractions of hypervolumes; each barycentric coordinate is the hypervolume of anN -simplex
defined by the point~x and all but one of the other simplex-defining points divided by the volume
of the whole simplex. The actual computation, however, is best done using the squared-volume
form because only that form is independent of the chosen coordinate system.

Note: The volumes aresigned; even if~x lies outside theN -simplex volume, the ratios remain
correct due to the cancellation between the larger volumes and the negative volumes. We also
remark that the generalized formulas forti in any dimension, with1 =

PN
i=0 ti, give an elegant

geometric interpretation of Cramer’s rule as ratios of simplex volumes.
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Figure 7. Schematic diagram comparing an ordinary camera ray and a planar “thick ray” used in N -
dimensional ray-tracing methods.

} Ray Tracing }

It is often useful to compute the intersection of a ray passing through two points (typically the
camera focal point~C and an image point~P ) with a geometrical object. InN dimensions, this
object will typically be an(N � 1)-simplex defining an oriented visible “face” with a normal
vector computable as described above. We need to do several things: compute the intersection
of the ray with the hyperplane containing the “face,” check to see whether the point lies within
the simplex’s boundaries (observe that this is a clipping problem), and see whether the normal
vector points in the direction of the ray (making it visible).

We formulate this procedure by first writing

~X(t) = ~C + t(~P � ~C)

for the position of a point on the camera ray, as illustrated in figure 7. Then we consider a single
(N � 1)-simplex of the tessellation to be described either by a known normal or by using the
set ofN points giving its vertices to define its normal via eq. (6); in either case, we can write
the equation of anyotherpoint~x lying within the simplex as

n̂ � (~x� ~x0) = 0 :

Plugging in the parametric ray equation, we solve for the point~X(t) in the simplex that lies on
the ray:

t =
n̂ �

�
~x0 � ~C

�

n̂ �
�
~P � ~C

� :

A useful generalization of ray-tracing toN -dimensions follows from the observation that a
“thick ray” is cast into space by an open-ended simplex that is essentially a barycentric coordi-
nate form with the restriction0 � (1�t1�t2�: : :) � 1 relaxed (see, e.g., (Hanson and Cross 1993)).
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A planar ray such as that shown in figure 7 then has two parameters,

~X(t1; t2) = ~C + t1(~P1 � ~C) + t2(~P2 � ~C) ;

with obvious generalizations to volume rays, etc. Intersecting such a planar ray with an(N�2)-
dimensional manifold (describable using(N�2) barycentric parameters) results inN equations
with N unknown parameters, and thus a uniquepoint is determined as the mutual solution. In
3D, a plane intersects a line in one point, in 4D two planes intersect in a single point, while in
5D a plane intersects a volume in a point. Other generalizations, including rays that intersect
particular geometries in lines and surfaces, can easily be constructed. For example, the inter-
section of a planar ray with the single hyperplane equation for a 3-manifold in 4D leaves one
undetermined parameter, and is therefore a line.

} Conclusion }

Geometry is an essential tool employed in the creation of computer graphics images of every-
day objects. Statistical data analysis, mathematics, and science, on the other hand, provide
many problems whereN -dimensional generalizations of the familiar 2D and 3D formulas are
required. TheN -dimensional formulas and insights into the nature of geometry that we have
presented here provide a practical guide for extending computer graphics into these higher-
dimensional domains.

} Appendix: Determinants and the Levi-Civita Symbol }

One of the unifying features that has permitted us throughout this treatment to extend formulas
to arbitrary dimensions has been the use ofdeterminants. But what if you encounter an expres-
sion involving determinants that has not been given here and you wish to work out its algebraic
properties for yourself? In this appendix, we outline for the reader a useful mathematical tool
for treating determinants, the Levi-Civita symbol. References for this are hard to locate; the
author learned these techniques by apprenticeship while studying general relativity, but even
classic texts like Møller (Møller 1972) contain only passing mention of the methods; somewhat
more detail is given in hard-to-find sources such as (Efimov and Rozendorn 1975).

First we define two basic objects, the Kronecker delta,�ij ,

�ij = 1 i = j
= 0 i 6= j

and the Levi-Civita symbol,�ijk:::, which is the totally antisymmetric pseudotensor with the
properties

�ijk::: = 1 i; j; k; : : : in an even permutation of cyclic order
= �1 i; j; k; : : : in an odd permutation of cyclic order
= 0 when any two indices are equal.
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All indices are assumed to range from1 to N , e.g.,i = f1; 2; : : : ; (N � 1); Ng, so that, for
example, (1234,1342,4132,4321), are even permutations and (1324,2134,1243,4312) are odd
permutations.

We can use the Kronecker delta to write the dot product between twoN -dimensional vectors
as a matrix product with the Kronecker delta representing the unit matrix,

~A � ~B =
NX
i=1

NX
j=1

Ai�ijBj =
NX
i=1

Ai

0
@ NX

j=1

�ijBj

1
A =

NX
i=1

AiBi ; (15)

and the Levi-Civita symbol to write the determinant of a matrixjM j as

det [M ] =
X

all ik indices
�i1i2:::iNM1;i1M2;i2 � � �MN;iN :

The fundamental formula for the product of two Levi-Civita symbols is:

�i1i2:::iN �j1j2:::jN = det

2
6664
�i1j1 �i1j2 � � � �i1jN
�i2j1 �i2j2 � � � �i2jN

...
...

. . .
...

�iN j1 �iN j2 � � � �iN jN

3
7775 :

(Note that if we setfj1j2 : : : jNg = f1; 2; : : : ; Ng, the second Levi-Civita symbol reduces to
+1, and the resulting determinant is an explicit realization of the antisymmetry of the Levi-
Civita symbol itself as a determinant of Kronecker deltas!)

With this notation, the generalized cross product~N of eq. (6), simplified by setting~x0 = 0,
can be written

~N =
X

all indices
�i1i2:::iN�1iNx

(i1)
1 x

(i2)
2 � � � x

(iN�1)
N�1 x̂

(iN ) ;

wherex̂(iN ) are the unit vectors(x̂; ŷ; : : : ; ŵ) of the coordinate system. The dot product be-
tween the normal and another vector simply becomes

~N � ~L =
X

all indices
�i1i2i3:::iN�1iNx

(i1)
1 x

(i2)
2 x

(i3)
3 � � � x

(iN�1)
N�1 L(iN ) :

The reader can verify that, in 2D,Nk =
P2

i=1 x
(i)�ik = (�y; +x), and so on. We conclude

with two examples of applications:
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Rotations of Normals. Is the normal~N a vector?Almost. To check this, we must rotate
each column vector in the cross product formula usingx0(i) =

PN
j=1Rijx

(j) and compute the

behavior of~N . Using the identity ((Efimov and Rozendorn 1975), p. 203),

�i1i2:::iN�1iN det [R] =
X

all jk indices
�j1j2:::jN�1jNRj1i1Rj2i2 � � �RjN�1iN�1RjN iN ;

we find

N 0(i) =
X

all indices
excepti

�i1i2:::iN�1iRi1j1x
(j1)
1 Ri2j2x

(j2)
2 � � �RiN�1jN�1x

(jN�1)
N�1

=
NX
j=1

RijN
(j) det [R] :

Therefore ~N is a pseudotensor, and behaves as a vector for ordinary rotations (which have
det [R] = 1), but changes sign if[R] contains an odd number of reflections.

Contraction Formula. The contraction of two partial determinants of(N�K)N -dimensional
vectors can expanded in terms of products of Kronecker deltas as follows:

X
iN�K+1:::iN

�i1i2:::iN�K iN�K+1:::iN �j1j2:::jN�K iN�K+1:::iN =

K! det

2
6664

�i1j1 �i1j2 � � � �i1jN�K
�i2j1 �i2j2 � � � �i2jN�K

...
...

. . .
...

�iN�Kj1 �iN�K j2 � � � �iN�K jN�K

3
7775 :

The expression eq. (8) for the dot product of two normals is a special case of this formula.
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Rotations for N-Dimensional
Graphics

Andrew J. Hanson
Computer Science Department
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Bloomington, IN 47405
hanson@cs.indiana.edu

} Introduction }

In a previous Gem (Hanson 1994), “Geometry forN -Dimensional Graphics,” we described a
family of techniques for dealing with the geometry ofN -dimensional models in the context
of graphics applications. Here, we build on that framework to look in more detail at rotations
in N -dimensional Euclidean space. In particular, we give a naturalN -dimensional extension
of the 3D rolling ball technique described in an earlier Gem (Hanson 1992), along with the
corresponding analog of the Virtual Sphere method (Chen et al. 1988). Next, we touch on
practical methods for specifying and understanding the parameters ofN -dimensional rotations.
Finally, we give the explicit 4D extension of 3D quaternion orientation splines.

For additional details and insights, we refer the reader to classic sources such as (Som-
merville 1958,Coxeter 1991,Hocking and Young 1961,Efimov and Rozendorn 1975).

} The Rolling Ball in N Dimensions }

Basic Intuition of the Rolling Ball. The basic intuitive property of a rolling ball (ortan-
gent space) rotation algorithm in any dimension is that it takes a unit vectorv̂0 = (0; 0; : : : ; 0; 1)
pointing purely in theN -th direction (towards the “north pole” of the ball) and tips it in the di-
rection of an arbitrary unit vector̂n = (n1; n2; : : : ; nN�1; 0) lying in the(N�1)-plane tangent
to the ball at the north pole, thus producing a new, rotated unit vectorv̂, where

v̂ = MN � v̂0 = n̂ sin � + v̂0 cos � ;

as indicated schematically in Figure 1a. (Note: for notational simplicity, we choose to write the
components of column vectors as horizontal lists.)

If we choose the convention that positive rotations are right-handed and progress counter-
clockwise, a positive rotation of the north pole actually tilts it into the negative direction of the
remaining axis of the rotation plane. That is, if the 2D “rolling circle” acts onv̂0 = (0; 1) and
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(a) (b)
Figure 1. Tilting the “north pole” vector v̂0 in the direction of the tangent vector n̂, as though rolling a
ball by placing one’s finger directly on the north pole and pulling in the direction n̂.

n̂ = (�1; 0) as shown in Figure 1b, then

v̂ = M2 � v̂0 = n̂ sin � + v̂0 cos � = (� sin �; cos �) ;

where the rotation matrixM2 can be written

M2 =

�
cos � � sin �
+sin � cos �

�
=

�
c �s
+s c

�

=

�
c +nxs

�nxs c

�
: (1)

If we choose a right-handed overall coordinate frame, the sign ofn̂ will automatically generate
the correct sign convention.

Synopsis:Qualitatively speaking, if we imagine looking straight down at the north
pole, the rolling ballpulls the unseenN -th component of a vector along the direc-
tion n̂ of the(N � 1)-dimensional controller motion, bringing the unseen compo-
nent gradually into view.

Implementation.In practice, we choose a radiusR for the ball containing the object or scene
to be rotated and move our controller (slider, 2D mouse, 3D mouse, . . . ) a distancer in the
tangent direction̂n, as indicated in Figure 2a. Working from the simplified diagram in Figure
2b, we defineD2 = R2 + r2 and choose the rotation parametersc = cos � = R=D and
s = sin � = r=D.

For interactive systems, this choice has the particular advantage that, however rapidly the
user moves the controller,0 � (r=D) < +1, so0 � � < �=2. Depending upon the desired
interface behavior, an alternative choice would be to take� = r=R. This requires comput-
ing a trigonometric function instead of a square root, and may cause large discontinuities in
orientation for large controller motion.

3D. The explicit 3D rolling ball formula can be derived starting from an arbitrary 2D mouse
displacement~r = (x; y; 0) = (rnx; rny; 0), wheren2x + n2y = 1. Then one replaces Equation
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D R
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+ North

θ
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R 0v̂
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θ

(a) (b)
Figure 2. The notation used in implementing the rolling ball rotation model for N dimensions.

(1) with nx = +1 by the analogous 3�3 matrixR0 for (x; z) rotations and encloses this in
a conjugate pair of rotationsRxy that transform the 2D mouse displacement~r into the strictly
positivex-direction and back. Since even~r = (�1; 0; 0) is rotated to the positivex-direction
beforeR0 acts, all signs are correct. With the explicit matrices

Rxy =

2
4 nx �ny 0
ny nx 0
0 0 1

3
5 ; R0 =

2
4 c 0 +s

0 1 0
�s 0 c

3
5 ;

we find an alternative derivation of the formula in our earlier Gem (Hanson 1992):

M3 = RxyR0(Rxy)
�1

=

2
4 c+ (ny)

2(1� c) �nxny(1� c) nxs
�nxny(1� c) c+ (nx)

2(1� c) nys
�nxs �nys c

3
5

=

2
4 1� (nx)

2(1� c) �nxny(1� c) nxs
�nxny(1� c) 1� (ny)

2(1� c) nys
�nxs �nys c

3
5 : (2)

4D. The 4D case takes as input a 3D mouse motion~r = (x; y; z; 0) = (rnx; rny; rnz; 0), with
n2x + n2y + n2z = 1. Then one first transforms(ny; nz) into a purey-component, rotates that
result to yield a purex-component, performs a rotation by� in the (x;w)-plane, and reverses
the first two rotations. Defining the required matrices as

Ryz =

2
6664

1 0 0 0
0

ny
ryz

� nz
ryz

0

0 nz
ryz

ny
ryz

0

0 0 0 1

3
7775 ; Rxy =

2
664

nx �ryz 0 0
ryz nx 0 0
0 0 1 0
0 0 0 1

3
775 ; R0 =

2
664

c 0 0 +s
0 1 0 0
0 0 1 0
�s 0 0 c

3
775 ;

(3)
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wherer2yz = n2y + n2z, we find

M4 = RyzRxyR0(Rxy)
�1(Ryz)

�1

=

2
664

1� (nx)
2(1� c) �(1� c)nxny �(1� c)nxnz snx

�(1� c)nxny 1� (ny)
2(1� c) �(1� c)nynz sny

�(1� c)nxnz �(1� c)nynz 1� (nz)
2(1� c) snz

�snx �sny �snz c

3
775 : (4)

ND. The extension of this procedure to any dimension is accomplished by having the con-
troller interface supply an(N � 1)-dimensional vector~r = (rn1; rn2; : : : ; rnN�1; 0) with
~r �~r = r2 andn̂ � n̂ = 1 and applying the rotation

MN = RN�2;N�1RN�3;N�2 � � �R1;2R0(R1;2)
�1 � � � (RN�3;N�2)

�1(RN�2;N�1)
�1

=

2
6666664

1� (n1)
2(1� c) �(1� c)n2n1 � � � �(1� c)nN�1n1 sn1

�(1� c)n1n2 1� (n2)
2(1� c) � � � �(1� c)nN�1n2 sn2

...
...

.. .
...

...
�(1� c)n1nN�1 �(1� c)n2nN�1 � � � 1� (nN�1)

2(1� c) snN�1
�sn1 �sn2 � � � �snN�1 c

3
7777775

(5)

Recall that the controller input~r = rn̂ that selects the direction to “pull” also determines
c = cos � = R=D, s = sin � = r=D, with D2 = R2 + r2, or, alternatively,� = r=R.

} Controlling the Remaining Rotational Degrees of Freedom }

There areN(N � 1)=2 parameters in a generalN -dimensional orthogonal rotation matrix, one
parameter for each possible pair of axes specifying aplane of rotation(the 3D intuition about
“axes of rotation” does not extend simply to higher dimensions). The matrixMN in Equation
(5) has only(N � 1) independent parameters: we must now understand what happened to the
other(N � 1)(N � 2)=2 degrees of freedom needed for arbitrary rotations.

In fact, the non-commutativity of the rotation group allows us to generate all the other ro-
tations bysmall circular motionsof the controller in the(N � 1)-dimensional subspace of
~r = rn̂. Moving the controller in circles in the(1; 2)-plane,(1; 3)-plane, etc., of the(N � 1)-
dimensional controller space exactly generates the missing(N�1)(N�2)=2 rotations required
to exhaust the full parameter space. In mathematical terms, the additional motions are generated
by the commutation relations of theSO(N) Lie algebra fori; j = 1; : : : ; N � 1,

[RiN ; RjN ] = �ijRNN � �jNRiN + �iNRjN � �NNRij

= �Rij :
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The minus sign in the above equation means thatclockwisecontroller motions in the(i; j)-plane
inevitably producecounterclockwiserotations of the object, and vice-versa. Thus the philoso-
phy (Hanson 1992) of achieving the full set of context-free rotation group transformations with
a limited set of controller moves extends perfectly toN -dimensions.Implementation Note: In
practice, the effectiveness of this technique varies considerably with the application; the size of
the counter-rotation experienced may be relatively small for parameters that give appropriate
spatial motion sensitivity with current 3D mouse technology.

Alternative Context Philosophies. The rolling ball interface is acontext-freeinterface
that allows the user of a virtual reality application to ignore the absolute position of the con-
troller and requires no supplementary cursor context display; thus one may avoid distractions
that may disturb stereography and immersive effects in a virtual reality environment. However
some applications are better adapted tocontext-sensitiveinterfaces like the Arcball method
(Shoemake 1994) or the Virtual Sphere approach (Chen et al. 1988). The Virtual Sphere
approach in particular can be straightforwardly extended to higher dimensions by using the
rolling ball equations inside a displayed spatial context (typically a sphere) and changing over
to an(N � 1)-dimensional rolling ball outside the context; that is, as the controller approaches
and passes the displayed inner domain context sphere, the rotation action changes to one that
leaves theN -th coordinate fixed but changes the remaining(N � 1) coordinates as though an
(N � 1)-dimensional rolling ball controller were attached to the nearest point on the sphere.
Similar flexibility can be achieved by using a different controller state to signal a discrete rather
than a continuous context switch to the(N � 1)-dimensional controller.

} Handy Formulas for N -Dimensional Rotations }

For some applications the incremental orientation control methods described above are not as
useful as knowing a single matrix for the entireN -dimensional orientation frame for an object.
We note three ways to represent such an orientation frame:

Columns are new axes. One straightforward construction simply notes that if the default
coordinate frame is represented by the orthonormal set of unit vectorsx̂1 = (1; 0; : : : ; 0),
x̂2 = (0; 1; 0; : : : ; 0), . . . , x̂N = (0; : : : ; 0; 1), and the desired axes of the new (orthonormal)
coordinate frame are known to bêa1 = (a

(1)
1 ; a

(2)
1 ; : : : ; a

(N)
1 ), â2, . . . , âN , then the rotation

matrix that transforms any vector to that frame just has the new axes as its columns:

M =
�
â1 â2 � � � âN

�
:

The orthonormality constraints giveM the requiredN(N � 1)=2 degrees of freedom.
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Concatenated subplane rotations. Rotations in the plane of a pair of coordinate axes
(x̂i; x̂j), i; j = 1; : : : ; N can be written as the block matrix

Rij(�ij) =

2
66666666666666664

1 � � � 0 0 � � � 0 0 � � � 0
...

. . .
...

...
. ..

...
...

. . .
...

0 � � � cos �ij 0 � � � 0 � sin �ij � � � 0
0 � � � 0 1 � � � 0 0 � � � 0
...

. . .
...

...
. ..

...
...

. . .
...

0 � � � 0 0 � � � 1 0 � � � 0
0 � � � sin �ij 0 � � � 0 cos �ij � � � 0
...

. . .
...

...
. ..

...
...

. . .
...

0 � � � 0 0 � � � 0 0 � � � 1

3
77777777777777775

(6)

and thus theN(N � 1)=2 distinctRij(�ij) may be concatenated in some order to produce a
rotation matrix such as

M =
Y
i<j

Rij(�ij)

with N(N � 1)=2 degrees of freedom parametrized byf�ijg. However, since the matrices
Rij do not commute, different orderings give different results and it is difficult to intuitively
understand the global rotation. In fact, as is the case for 3D Euler angles, one may even repeat
some matrices (with distinct parameters) and omit others, and still not miss any degrees of
freedom.

Quotient Space Decomposition. Another useful decomposition relies on the classic
quotient property of the topological spaces of the orthogonal groups (Helgason 1962),

SO(N)=SO(N � 1) = SN�1 ; (7)

whereSK is a K-dimensional topological sphere. In practical terms, this means that the
N(N � 1)=2 parameters ofSO(N), the mathematical group ofN -dimensional orthogonal
rotations, can be viewed as a nested family of points on spheres. The 2D form is the matrix (1)
parameterizing the points on the circleS1; the 3D form reduces to the standard matrix

M3(�; n̂) =

2
4 c+ (n1)

2(1� c) n1n2(1� c)� sn3 n3n1(1� c) + sn2
n1n2(1� c) + sn3 c+ (n2)

2(1� c) n3n2(1� c)� sn1
n1n3(1� c)� sn2 n2n3(1� c) + sn1 c+ (n3)

2(1� c)

3
5 (8)

where the two free parameters ofn̂ � n̂ = (n1)
2 + (n2)

2 + (n3)
2 = 1 describe a point on

the 2-sphere. These two parameters plus a third from theS1 described byc2 + s2 = 1 (i.e.,
c = cos �; s = sin �) yield the required total of three free parameters equivalent to the three
Euler angles. The 4D and higher forms are already too unwieldy to be conveniently written as
single matrices.
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} Interpolating N-Dimensional Orientation Frames }

To define a uniform-angular-velocity interpolation between twoN -dimensional orientation
frames, we might consider independently interpolating each angle in Equation (6), or we might
take the quotient space decomposition given by the hierarchy of points on the spheres(SN�1; : : : ; S2; S1)
and apply a constant angular velocity spherical interpolation to each spherical point in each suc-
cessive dimension using the “Slerp”

n̂12(t) = Slerp(n̂1; n̂2; t) = n̂1
sin((1� t)�)

sin(�)
+ n̂2

sin(t�)

sin(�)

wherecos � = n̂1 � n̂2. (This formula is simply the result of applying a Gram-Schmidt decom-
position while enforcing unit norm in any dimension.)

Either of these often achieves the goal of smooth appearance, but the solutions are neither
unique nor mathematically compelling, since the curve is not guaranteed to be a geodesic in
SO(N).

The specification of geodesic curves inSO(N) is a difficult problem in general (Barr et al.
1992); fortunately, the two most important cases for interactive systems,N = 3 andN = 4,
have elegant solutions using the covering or “Spin” groups. ForSO(3), geodesic interpolations
and suitable corresponding splines are definable using Shoemake’s quaternion splines (Shoe-
make 1985), which can be simply formulated using Slerps onS3 as follows: letn̂ be a unit
3-vector, so that

q0 = cos(�=2); ~q = n̂ sin(�=2)

is automatically a point onS3 due to the constraint(q0)2 + (q1)
2 + (q2)

2 + (q3)
2 = 1. Then

each point onS3 corresponds to anSO(3) rotation matrix

R3 =

2
4 q20 + q21 � q22 � q23 2q1q2 � 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q20 + q22 � q21 � q23 2q2q3 � 2q0q1
2q1q3 � 2q0q2 2q2q3 + 2q0q1 q20 + q23 � q21 � q22

3
5 (9)

which the reader can verify reduces exactly to the nested-sphere form in Equation (8). Note
that the quaternionsq and�q each correspond to the same 3D rotation. Slerpingq generates
sequences of matricesR3(t) that are geodesic interpolations. Arbitrary splines can be defined
using the method of Schlag (Schlag 1991).

Quaternions in Four Dimensions. In four dimensions, the correspondence between the
rotation groupSO(4) and the spin group Spin(4) that is its double covering may be computed
by extending quaternion multiplication to act not just on 3-vectors (“pure” quaternions)v =
(0; ~V), but on full 4-vector quaternionsv� in the following way:

3X
�=0

R�
�v

� = q � v� � p�1 :
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We thus find that the general double-quaternion parameterization for 4D rotation matrices takes
the form

R4 =

2
664

q0p0 + q1p1 + q2p2 + q3p3 q1p0 � q0p1 � q3p2 + q2p3
�q1p0 + q0p1 � q3p2 + q2p3 q0p0 + q1p1 � q2p2 � q3p3
�q2p0 + q0p2 � q1p3 + q3p1 q1p2 + q2p1 + q0p3 + q3p0
�q3p0 + q0p3 � q2p1 + q1p2 q1p3 + q3p1 � q0p2 � q2p0

q2p0 � q0p2 � q1p3 + q3p1 q3p0 � q0p3 � q2p1 + q1p2
q1p2 + p1q2 � p0q3 � q0p3 q1p3 + p1q3 + p0q2 + q0p2
q0p0 + q2p2 � q1p1 � q3p3 q2p3 + q3p2 � q0p1 � q1p0
q2p3 + q3p2 + q1p0 + p0q1 q0p0 + q3p3 � q1p1 � q2p2

3
775 : (10)

One may check that Equation (9) is just the lower right-hand corner of the degeneratep = q
case of Equation (10).

Shoemake-style interpolation between two distinct 4D frames is now achieved by applying
the desired Slerp-based interpolation method independently to a set of quaternion coordinates
q(t) on one three-sphere, and to a separate set of quaternion coordinatesp(t) on another. The
resulting matrixR4(t) gives geodesic interpolations for simple Slerps, and can be used as the
basis for corresponding spline methods (Schlag 1991,Barr et al. 1992). Analogs of theN = 3
andN = 4 approaches for generalN involve computing Spin(N) geodesics and thus are quite
complex.

Controls. As pointed out in (Shoemake 1994), the Arcball controller can be adapted with
complete faithfulness of spirit to the 4D case, since one can picktwo points in a three-sphere
to specify an initial 4D frame, and then picktwo morepoints in the three-sphere to define
the current 4D frame. Equation (10) gives the complete form of the effective 4D rotation.
Alternately, one can replace the 4D rolling ball or Virtual Sphere controls described earlier by
a pair (or more) of 3D controllers (Hanson 1992).
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1. INTRODUCTION

The method of specifying rotations and orientations of coordinate systems via
unit quaternions was formally introduced to the computer graphics commu-
nity by the publication of Shoemake [ 1985]. Quaternions were used in graph-
ics programming informally mostly by geometers because Sir William Rowan
Hamilton’s [Hamilton 1866] beautiful invention is not regularly taught in
college. Quaternions encode rotations by four real numbers (or two complex
numbers), whereas the linear representation of these transformations as
3 X 3 matrices requires nine. Moreover, Hamilton impressed explicit geomet-
rical meaning into every detail of his algebraic system, which guides intuition
and facilitates implementation [Francis and Kauffman 1994].

Interpolating the quaternionic representation of a sequence of rotations is
more natural than doing so for the familiar Euler angles, such as yaw, pitch,
and roll. The quaternions occupy a smooth, seamless, isotropic space which is
a generalization of the surface of a sphere. Thus, there is no need for special
care to avoid singularities, such as gimbal lock, where two rotation axes
collapse into one and thus make the interpolation irreversible.

Bezier curves were used in Shoemake [ 1985] to spline the quaternions
representing rotations, while Barr et al. [1992] used energy-minimizing
curves for demonstrably smoother motions. Quaternions provide an easy
mechanism for specifying an arbitrary rotation about an arbitrary axis. This
has long been exploited in keyboard user interfaces, and most recently for
specifying 3-dimensional rotations with a 2-dimensional mouse [Hanson 1992;
Shoemake 1992].

1.1 Overview

This article builds on previous work in quaternion rotation to derive an
implementation of the quaternion demonstrator. The first half of the article
summarizes various recent works on the quaternions. Section 2 reviews the
quaternion representation of three-dimensional rotation, based on Shoemake
[ 1985] and Francis and Kauffman [ 1994], and describes the quaternion
demonstrator, as devised originally in Kauffman [ 1987; 1991]. Section 3
describes the belt trick, summarizing Kauffman [ 1991] and Francis and
Kauffman [ 1994] and explaining the mathematics behind the animation “Air
on the Dirac Strings” [Sandin et al. 1993].

These sections form the basis for this article’s original contribution, found
in the second half of the article. Beginning with Section 4, techniques from
differential geometry model the quaternion demonstrator, regulating the
twists and motions of the belt. Section 5 describes the resulting implementa-
tion and outlines directions for further research.

1.2 Background

An object P is assumed to be defined with respect to some canonical coordi-
nate frame. The orientation of @ is represented by a rotation that takes the
object from its canonical coordinate frame to its current state.

ACM Transactions on (lraph,cs, Vol. 13, No. 3, (July 1994
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This article relies heavily on the deformation techniques developed in Barr
[1984]. We use globally and locally specified deformations. A globally speci-
fied deformation alters explicitly the positions of points in an object whereas
a locally specified deformation affects the tangent space of an object, and new
positions result only after an integration over the deformed tangent space.

2. THE QUATERNIONS

The four-dimensional space, H, of quaternions is spanned by the real axis,
and three further orthogonal axes, spanned by vectors i, j, k, called the
principal imaginaries, which obey Hamilton’s rules

iz=jz=kz=ijk= –1. (1)

These imaginaries signify the three-dimensional vectors

i = (1,0,0),

j = (0,1,0),

k = (0,0,1).

Multiplication of these imaginaries resembles a cross product

ij=k, jk=i, ki=j,

ji=–k, kj =-i, ik=–j (2)

and is clearly noncommutative. Quaternion multiplication causes rotation:
multiplication on the right by j causes a 90 degree rotation in four-dimen-
sional space, rotating the i axis into the k axis, and rotating the k axis into
the – i axis. Quaternion multiplication differs from the cross product in that
ii=~=kk=–l whereasi Xi=jxj=k Xk=O.

A quaternion q = r + xi + y j + z k consists of a real part r and a pure
part xi + y j + zk [Hamilton 1866]. We will call quaternions with zero real
part (r = O) pure quaternions. Pure quaternions will also be simultaneously
represented as a column vector

()x
v= Y =xi+yj+zk,

z
(3)

Under this notation, the same symbol can simultaneously represent both a
vector and a pure quaternion, depending on its context. For example,

V2 =
—v-v (4)

because the LHS of (4) treats v as a pure quaternion whereas the RHS of (4)
treats v as a vector.

Let q ~ = al + VI and q2 = az + V2 be two quaternions. Their sum is

ql +qz= (al +a2)+(vl +Vz),

and their product is

q1q2 = a1a2 – VI *V2 + alvz + a2v1 + VI X V2.
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The quaternion q = a + v also decomposes into a + b u which resembles a
complex number, where the imaginary u is a unit three-vector

i]

a-/b

U = v/b = ‘i + ‘j + ~k,
Ilvl Ilvll Ilvllz/b

such that Ilull= 1, and x, y, z are the same coordinates used in (3). The pure
unit-magnitude quaternion u resembles ‘~- ‘—--: ----- : C--— ‘~- --—-1 ---
plane in that Uz = – 1.

Let q = a + bu be a quaternion. Its
magnitude is

L1l~lllltl~lllii[y 1 llU1ll L1le Gt)lll JJleX

conjugate is @ = a – bu, and its

Ilqll = qq = @ =

2.1 Quaternion Rotation

Rotations in computer graphics are typically represented by quaternions of
unit magnitude [Shoemake 1985], which we will call unit quaternions. The
unit quaternions {q : Ilqll = 1) form a hypersphere S:) c HI. In particular, for
any unit quaternion q G S“], (5) implies

q
l_–

– q. (6)

In other words, to invert a unit quaternion, we simply negate its pure part.
In Shoemake [ 1985], a rotation of 0 about the axis u was represented as

the unit quaternion

1
q=cos~O+sin~Ou

which matches the complex-like form of a quaternion q = a + bu, where a is
the real component and b the imaginary component along the new imaginary
axis specified by the unit vector (pure quaternion) u. The abbreviation
e ‘(’ = cos O + i sin 0, borrowed from complex analysis, has a long history of
use in the engineering sciences. We can similarly represent the aforemen-
tioned unit quaternion q more concisely using exponential notation as

In the same manner that engineers read the expression e‘”, the reader should
likewise understand the notation e{1‘ 2)(’” not as e to some imaginary power
but simply as the quaternion that represents a rotation of o about the axis u.

Exponential notation was chosen to represent quaternion rotations berein
to promote consistency between the converging fields of computer graphics
and mathematics. Such quaternion exponential notation has a lengthy his-
tory in mathematics (e.g., as the so-called exponential map in different
geometry [Spivak 1965]). However, since quaternion multiplication is non-
commutative, likewise quaternion exponentiation does not in general follow
the rules of real or complex exponentiation (e.g., e{] 2)’””~e’1 “’”u’ +
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e(l\2x@’”’ +““’)). Quaternion exponentiation is formally defined in Francis and
Kauffman [1994], along with a discussion of its properties illustrated by
several examples.

Given a unit quaternion q that represents a rotation, the question remains
of how to apply this rotation to an arbitrary vector (pure quaternion) v = R 3.
From Shoemake [ 1985], we find two results: a function R(q) that returns the
3 x 3 (nonhomogeneous) transformation matrix corresponding to the rotation
represented by q, and a two-to-one correspondence between unit quaternions
S3 and the space of all rotations S0(3) (the group of special-orthogonal 3 x 3
matrices). As a consequence of these two results, we have

R(q)v=qvq-1. (7)

The LHS of(7) treats v as a column vector and yields a new column vector of
the same length by left-multiplying the special-orthogonal matrix returned by
the function R. The RHS of(7) treats v as a pure quaternion and yields a new
pure quaternion of the same magnitude. In fact, both apply the rotation
represented by the unit quaternion q to v. We denote rotations with the
notation on the LHS of(7), but implement rotations more efficiently using the
formula on the RHS of (7). (Since q = S3, q -1 simplifies to @.)

Hence, the otherwise complicated procedure of rotating a vector about an
arbitrary axis simplifies in our notation to

R(e+@u)v

which rotates v ● R!3 about the u G S2 axis by an angle of O [Francis and
Kauffman 1994].

2.2 The Quaternion Demonstrator

The quaternion demonstrator [Kauffman 1987; 1991] is a mechanical unit
quaternion multiplier. It consists primarily of a ribbon, called the belt, with
one end fixed and the other end free. Fastened to the free end of the belt is a
rectangle, called the tag. (An alternative demonstrator was discovered by
Kauffman and E. Oshins [Kauffman 1991] that uses only one human arm.)

The orientations of the tag, along with the twists in the belt, represent the
unit quaternions. The tag is inscribed with labels indicating the quaternion it
currently represents. The top side of the tag is inscribed with a 1 and an
upside-down j. Its bottom side is inscribed with a k and an upside-down i, in
the fashion suggested by Figure 1. (If you wish to follow along using your
right arm, your right hand will be the tag. Your fingerprints are 1; your palm
is j; your fingernails are k; and the back of your hand is i. As a tag, your hand
will represent the quaternion associated with the part of your hand facing up
and toward the same direction you are facing.)

First we orient the quaternion coordinate frame such that the imaginaries
form a right-handed coordinate system where i points right, j up, and k
toward the viewer. The belt of the quaternion demonstrator is embedded in
the i – k plane centered along the k axis with the fixed end at the origin and
the tag at + k. The eyepoint is assumed to be somewhere in the positive j – k
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Fig.  1. The quaternion  demonstrator  in the 1 state  (top and bottom  views).  This figure  uses the
computer  simulation of the quaternion  demonstrator,  which  does not use a tag.  Instead  it
superimposes  the 1, i. j, and k labels directly  onto  the tag end of the  belt.

quadrant.  (In your arm’s  coordinate  system,  the origin  is your right shoulder;
the i axis points  toward  your left shoulder;  the j axis points  up; and the k
axis points  in the direction  you are facing.)

The canonical  state of the demonstrator consists of the untwisted belt in
this configuration.  This  state represents  the value  1, and is shown  in Figure
1. (Extending your arm out in front  of you with your palm up puts your arm
in the 1 state.)

Rotating the tag by 180 degrees  with respect to the i axis puts the tag
underneath  the belt. This state  represents the value  i as can be read on the
tag end of the belt (Figure 2 red). Call this rotation  a “flip.” (Keeping your
arm and wrist straight,  rotate  180 degrees  about your shoulder’s  axis by
dropping your arm to your waist and raise  it back up behind  you such that
your palm is facing down. The back of your hand  is facing up and toward  the
front,  so your arm now represents  the quaternion i.1

Reset  the system  to the canonical state  1. Rotating the tag by 180 degrees
with respect  to the j axis puts the tag to the right of the fixed  end of the belt.
This  state represents  the value  j as can also be read on the tag end of the belt
(Figure 2 green).  Call this rotation  a “spin.” (From the 1 state, rotate  your
arm horizontally until  you touch your chest with your fingertips.
Your palm faces  up and toward the front,  and your arm now represents the
quaternion j.1

Resetting to 1 again  and rotating the tag - 180 degrees  with respect  to the
k axis flips the tag over. This  state  represents  the value  k, as indicated by the
upright k on the tag end of the belt (Figure 2 blue). Call this rotation  a
“turn.” (From the 1 state, turn your wrist about  your arm’s  axis until  your
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Fig. 2. The  quatemion  demonstrator  multiplica-
tion by each of i (red), j (green), and k (blue).

palm is facing down.  Your fingernails face  up and to the front,  and your arm
now represents  the quaternion k.)

The fact that  positive  k is obtained  by a negative  rotation  in the right-
handed  coordinate  system  is an artifact of the belt-centered coordinate sys-
tem. Centering a right-handed coordinate  system on the tag with k extending
along  the belt,  j up, and i to the right yields rotations consistent with the
right-handed coordinate  system.  (For the quaternion demonstrator’s task of
teaching quaternion multiplication the simplicity of the belt-centered coordi-
nate system outweighs the familiarity of the right-handed rotation rules  of
the tag-centered coordinate  system.)

The negative  quaternion imaginaries are likewise  produced  by the opposite
flips,  twists,  and turns, respectively.  Although the labels  on the tag have  no
signs,  we can tell a positive  imaginary from a negative  imaginary by the
direction  of the twists in the belt. (The  quaternion -i is represented from the
1 state  by bending your arm at the elbow  - 180 degrees  about your shoulder’s
axis, with your palm facing down  as if to pat yourself  on the back. The
quaternion -j is represented  by spinning your hand horizontally - 180
degrees  about  the up axis into the position a waiter would use to hold  a tray.
The quaternion -k is physiologically impossible to represent in the arm
coordinate  system.)

In this system, multiplication is represented by the composition of corre-
sponding rotations  of the tag. For example,  to demonstrate ij = k, we find
that a flip followed  by a spin  is equivalent to a turn (after a little  translation
of the tag-moving the tag does not rotate  it and does  not change the state  of
the demonstrator).  A reverse turn (multiplication by - kl returns  the system
to its original  state. (From the 1 state,  flip 180 degrees  around  your shoulder’s
axis by dropping your arm to your waist and raising it up again  behind you
with your palm  facing down  into the i state. Using your shoulder,  spin about  j
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Fig. 3. The belt trick equation:  k’ = ( -k? proven visually  using a quaternion demonstrator.
The ends of the belt remain  parallel through  the transformation. Each step  of the transformation
represents the value - 1.

180 degrees  by swinging your arm out and back to the front  with your palm
down. Your arm is now in front of you,  palm down,  representing k.)

By (11, the - 1 state is achieved  by two flips (i’), two spins  (i” 1, two turns
(k” 1, or a flip-spin-turn  (ijk).  Each of these  operations  returns the tag to its
original  orientation  but puts a 360 degree  twist in the belt. (From  the 1 state,
twist your wrist 360 degrees  about  the arm’s axis until your palm faces up
again (k2). Your fingerprints are facing up and in front,  but with a full  360
degree  twist  in your arm, which  now represents - 1.)

We can also create  - 1 by two reverse  flips  (( -i)” 1 which  also returns  the
tag to its original  orientation  but puts the opposite  ( - 360 degrees)  twist in
the belt  (more on this in the next  section.)

3. THE BELT  TRICK

In the quaternion  demonstrator, - 1 can be represented  as k’ by two turns
which  return  the tag to its original  state  but cause  a 360 degree  twist in the
belt. Two reverse  turns represents - 1 also, as ( - kJ2, but cause  a - 360
degree  twist  in the belt. The quaternion demonstrator has (at least)  two
distinct  representations for - 1.

These two representations are equivalent,  however.  Consider  the demon-
strator in the k2 state,  after  two turns.  Without rotating the tag, move  the
tag in a positive  360 degree  arc around  the fixed  end of the belt. This belt
trick changes  the 360 degree  twist  in the belt  into a -360 degree  twist, and
proves  the Belt  Trick Equation  shown  in Figure  3.

(You can perform  a variation of the belt  trick called  the plate  trick, shown
live in Sandin  et al. 119931,  with your arm by representing j4 = 1. From the 1
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state, multiply by j by touching your chest with your fingertips. Multiply by j
again by moving your hand under your arm and back out, always keeping the
palm up, into the – 1 state. Multiply by j again by swinging your hand into
the –j state, the waiter position, again always keeping your palm up.
Multiply by j one final time back into the 1 state. You have rotated your hand
720 degrees without incurring the associated, and painful, 720 degree twist
in your arm. Section 3.2 explains how this is possible.)

Discussions of the belt trick can be found in Misner et al. [1973], Bolker
[1973], Kauffman [1987], Francis [1987], Kauffman [1991], aqd Francis and
Kauffman [1994]. The rest of this section follows Kauffman [1991] and
Francis and Kauffman [1994], developing a globally specified deformation for
simulating the belt trick topologically, treating the belt more like a rubber
band than a ribbon. Thus we find that the quaternions are neatly represented
by a combination of rotational mechanism and appropriate topology.

3.1 The Belt Trick Deformation

Whereas Figure 3 demonstrates the belt trick using the quaternion demon-
strator, where the belt is fixed at one end and free at the tag, the following
discussion uses an equivalent but alternate construction. This new system
consists of a belt connecting two concentric spheres, and is described quanti-
tatively as follows.

Let

S(r) =rS2 = {X:11X11=r)

specify a sphere of radius r centered at the origin. The hollow ball

M.B = (Js(r),
r = r<)

where O < r. < 1 is the radius of the hollowed-out part, will serve to define
the space in which the belt performs its trick.

The spheres S(l), S(rO ) are called the outer sphere and the inner sphere,
respectively. The outer sphere will represent the fixed end of the belt, and the
inner sphere will represent the tag of the quaternion demonstrator. We can
use intervals to represent a belt connecting the inner sphere to the outer
sphere as

.99= ([-p, p], 0,[0, l])n HEl

where p < r. is half the width of the belt.
The belt-trick can now be illustrated as a global deformation 11~:R’3 ~ R 3

parameterized by time t = [0, 1]. At t = O, B~(&Z’)deforms the belt ~, giving
it a 360 degree twist. Aa t + 1, the belt will continuously deform into a belt
with a – 360 degree twist without rotating the inner or outer spheres—keep-
ing the ends of the belt fixed.
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Fig.  4. Unit  quaternion  paths  corresponding to various  stages  of the belt trick  deformation.  The
sphere  S’ is a slice  of the hypersphere  S”, consisting of unit quaternions whose  j components  is
zero  (similar to the figures  at the end of Barr  et al. [ 19921).

The belt  trick deformation  shears  the belt,  rotating each increasingly larger
spherical  “shell” in WB by angles  of increasingly larger value  about  an axis
that changes over  time. The rotation  angle  function is

1 - Ml
O(x) = 27-7

0
(8)

whereas  the rotation  axis function is

u(t) = e”‘jk = (sinrt,O,cosnt). (9)

The function  R, from (71, specifies  rotation  about  an arbitrary axis, and is
used to define  the belt  trick deformation

B,(x)  = R( e+H(x)u(l))X, (10)

Consider the unit quaternions used for rotations  in the belt  trick deforma-
tion. These  are plotted  in Figure  4. At t = 0, as 11x/J ranges  from p. to 1, the
unit  quaternions form an arc from 1 through  k to - 1. As t: 0 + 1 this arc
rotates  about  S3 from one side to the other.  At t = l/2 this arc extends  from
1 through  i to - 1, and at t = 1 this arc extends  from 1 through -k to - 1.
Since  the arcs all begin  at 1, the orientation  of the inner sphere,  and end at
- 1, the orientation  of the outer  sphere,  the inner and outer spheres  do not
rotate  during the belt trick.
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3.2 The Unfurling Deformation

Composing the belt trick with a twist along the h axis produces a belt trick
that takes the 720 degree twisted belt into an untwisted belt, and is given in
Francis and Kauffman [1994] as

~,, t(x) = R(e;o(x)u(f))l?(e+’z’’k)x

—_ ~(e; Wdu(f)e+s2mk
)x (11)

where s E [ – 1, 1] is used to twist the belt. At s = – 1 and t = O, the
deformation B.,, leaves the belt $5’ unchanged. As s -+ 1 while t = O the
deformation B,, ~ rotates the inner spheres – 720 degrees, which puts a – 720
degree twist in the belt and returns the sphere to its original orientation.
Then, while s = 1 as t + 1, the – 720 degree twist unfurls around the inner
sphere, returning the system to its original state with an untwisted belt. This
process is illustrated by Figure 5. (The Appendix describes the ray-tracing
technique used to render this figure.)

The unit quaternions used for rotations in the unfurling deformation are
plotted in Figure 6. At s = 1, t = O, as 11xIIranges from pO to 1, the unit
quaternions form a circle from 1 through k through – 1 through – k and back
to 1. As t :0 + 1 this circle contracts around S~, always intersecting 1. At
t = 1/2 the circle extends from 1 through i and back to 1, and at t = 1 circle
degenerates to the point 1. Since the circles all begin and end at 1, as with
the belt trick, the inner and outer spheres do not rotate during the unfurling.

4. SIMULATING THE QUATERNION DEMONSTRATOR

The belt trick and unfurling deformations are global deformations. They
maintain the belt’s volume (for the same reason the twist deformation [Barr
1984] preserves volume) but stretch the length of the belt like a rubber band
such that the inner and outer spheres remain centered about the origin. The
belt in the quaternion demonstrator maintains a constant length, but the tag
is free to move about. This suggests that a local deformation should be used
to simulate the belt in the quaternion demonstrator. Furthermore, this local
deformation should minimize the twisting of the belt.

First, the orientation of the tag is represented by a quaternion q. Then a
geodesic (a great arc on S3 ) of unit quaternions interpolates the orientations
along the belt from the orientation of the fixed end of the belt, 1, to the
orientation of the tag, q. Finally, changes to this geodesic resulting from
rotations of the tag must be carefully monitored to prevent drastic changes in
the shape of the belt.

4.1 Simulating the Tag

In the physical quaternion demonstrator, the tag is a small rectangle at-
tached to the free end of the belt. In the simulation, we consider the tag to be
the edge of the free end of the belt.

Let VF represent the orientation of the edge of the belt’s fixed end as a
vector from one corner to the other. Let VT denote the orientation of the tag,
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Fig. 5. The unfurling,  using a global defor-
mation  to show  how to remove a 720 degree
twist from  a ribbon without  moving  either
end.

Fig. 6. Unit  quaternion  paths corresponding  to various stages of the unfurling  deformation

as the vector  connecting the corresponding corners at the edge of the belt’s
free end. Let q E S” be a unit  quaternion denoting the state of the quater-
nion demonstrator.  Then the orientation  of the tag with respect  to the
orientation  of the fixed end of the belt  is given  by

V - R(q)vf..T-

Multiplication  of q by an imaginary rotates  the tag 180 degrees  discretely.
In the simulation,  these  rotations  are performed  incrementally and appear
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Fig. 7. The belt as the union of rotated line 
segments (left). The orientation of v,, the 
fixed edge of the belt, corresponds to one 
whereas the orientation of vT, the tag edge of 
the belt, corresponds to q. The geodesic on 
!S3 (right) connects 1 to q, and specifies the 
orientations of the segments interpolating v, 
to VT. 

continuous. With the physical quaternion demonstrator, multiplication by i is 
performed by flipping the tag. In the simulation, multiplication by i is 
accomplished by pressing and holding the “i” key and watching the tag slowly 
flip. 

Let q0 be a unit quaternion denoting the current orientation of the tag. 
Then incremental multiplication of the tag is simulated by 

q1 = qoecu, (12) 

where unit quaternion q1 specifies the new tag orientation; u is one of i, j, or 
k, and E is a small rotation angle. In our implementation, setting E = 0.02 
radians resulted in a pleasing ribbon animation speed. 

4.2 Simulating the Belt 

In Section 3, the belt was sheared by a family of rotating concentric spheres. 
Here, the belt is best represented by a family of rotating line segments. As 
before, let v, represent the vector at the edge of the fixed end of the belt, and 
let vr represent the vector at the tag. 

The orientation of the fixed end of the belt v, corresponds to the unit 
quaternion 1 whereas the orientation of the tag end of the belt vr corre- 
sponds to q. Let I c S3 be the geodesic connecting 1 to q. Then the belt 
consists of the union of line segments whose orientations interpolate the 
orientation of v, into the orientation of vr, specifically the orientations 
represented by points along the geodesic I, as shown in Figure 7. 

We describe the local deformation of the belt by applying the rotations 
represented by the quaternions along the geodesic I to the tangent space of 
the belt. The deformed belt is then constructed as an initial-value problem by 
integrating the belt over these deformed tangent vectors. 

First, decompose q into exponential form as 

q=r+v, 

0 = 2cos-l r, 
V V 

u=J(vI1= Sin*8 

q = eieu, 
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Fig. 8, The Frenet frame along the spine of the belt,

x(s) t(s)
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v1

I
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always returns values in the range ( – n, n]. This form reveals
q represents. The geodesic r extending from 1 to q on S3 is

where cos -1
the rotation
parameterized by the function Y(s) G r for s G [0, l]-as

y(s) = e+sou. (13)

The unit quaternion function y(s) specifies the orientations the belt twists
through on its path from its fixed end to the tag. (Quaternion exponentiation
maps the line segment in R 3 connecting the origin to (1/2)0 u to the geodesic
in S3 connecting 1 to q.)

Let XO = O be the position, and to = k, b. = i, and nO = j be the Frenet
frame (tangent t, binormal b, and normal n) of the center of the fixed end of
the belt, as in Figure 8.

The local description of points along the spine of the belt is given by the
Frenet frame

t(s) = R(y(s))to,

b(s) = R(y(s))bo,

n(s) = R(y(s))no.

Integrating the tangent t(s) produces points along the spine of the belt

x(s) =X. + J‘t(dck. ( 14)
o

The belt is formed as a ruled surface consisting of line segments connecting
the vertices

x(s) ~ pb(s),

where, as before, p is one-half the width of the belt. The twisting of the belt
visualizes the interpolation of orientations of a line segment from its fixed
end to the tag end.

Since the Frenet frame is just rotated by these functions, the length of the
belt remains unchanged under the deformation. (By the way, if the locally
specified deformation were not simply a rotation, then the normal vector
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transformation rule [Barr 1984] would apply. In such a case, the transformed
binormal would be found via the inverse transpose of the Jacobian matrix of
R( ), and the normal would be constructed from the cross product of the
tangent vector with the binormal vector.)

4.3 Limiting Belt Velocity

The orientation interpolation geodesic on S3 is an arc extending from 1 (the
north pole) to q. As q passes by – 1 (the south pole) the geodesic generated
by (13) will move from one side of S3 to the other (since the range of cos -1 is
(–m, n]).

This movement keeps the belt from accumulating unnecessary twists. Since
the geodesic connecting 1 to q is the shortest path on S3, belt tricks occur
naturally as the tag is rotated to avoid twists of greater than 2 T in the belt.
This movement has one disadvantage in that certain small movements of q
near the south pole cause the geodesic to swing around quickly to the other
side of S3 resulting in a belt trick that is too fast for the user to follow. In
fact, if the tag rotates directly through – 1, the geodesic snaps from one side
of S3 to the other, causing an instantaneous belt trick (an instant reverse of
the twist in the belt).

For example, turning the tag about the k axis from the initial 1 state
produces eventually a 2 n twist in the ribbon about the k axis. Turning the
tag slightly causes an instantaneous belt trick, snapping the belt from a 2 m
twist to a – 2 IT twist. Although both configurations are nearly equivalent,
representing nearby quaternion values, their appearance to the user is quite
different.

There are two remedies for handling instantaneous belt tricks. The first
remedy senses when the tag orientation path crosses – 1, or nearly misses it.
When it does, this remedy assumes control of the demonstrator from the user
and performs an explicit animated belt trick to remove the excess twist in the
belt.

The second remedy capitalizes on numerical error to perform belt tricks
automatically, as necessary. As (12) rotates the tag incrementally, small
numerical errors will accumulate in the quaternion representation of the
tag’s orientation. In other words, turning the tag about the k axis will
introduce slight rotations about the i and j axes as well. By the time the tag’s
turning has twisted the belt by 2 n and more, these perturbations will cause
the tag’s orientation quaternion q to miss the south pole. The resulting
geodesics will quickly swing across S3 producing a belt trick, although
possibly at a very fast rate.

We chose to implement the second remedy in the simulation of the quater-
nion demonstrator for its elegance and because it never assumes control of
the demonstrator away from the user. This elegance may give the impression
that the second remeby avoids belt tricks, which are an essential point of the
quaternion demonstrator. To the contrary, belt tricks resulting from near
misses of the south pole are indiscernible from the belt trick required to
simulate the belt continuously through a direct hit. The dependence of this
remedy on numerical noise affects its robustness in that a direct hit on the
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south pole would lock up the quaternion demonstrator simulation. Such a
direct hit is highly unlikely and has never occured in our experience. The only
remaining task is to regulate the rate at which the quaternion demonstrator
performs automatic belt tricks.

The speed of the automatic belt trick is regulated by controlling the speed
at which the geodesic ~ flips around Ss, which, in turn, is controlled from the
rate of rotation of the tag by regulating the ● in (12). The rest of this section
is devoted to deriving the amount of regulation of ~ necessary to control the
speed of the automatic belt tricks when they occur.

Following Misner et al. [ 1973], we can describe a unit quaternion r + xi +
yj + ,zk in spherical coordinates with three angles a, @, and 0 as

x = sin u sin ~COs$,

y = sinasin~sin~,

z = sinocos~,
r = coscY.

The inverse is computed as

a=cos-lr,

+.cosd -
sin a ‘

“z

f)=cos-l
sin a sin 0

Y
= sin 1

sin a sin 0 ‘

Also from Misner et al. [ 1973], the differential of geodesic length is given by

dsz =dcr2 + sin2(a)(d@2 + sin2(@)d02). (15)

Geodesics extending from the north pole to q have fixed d, (-), and an a
that ranges from O at the north pole to a positive value at q.

Specify the original tag orientation qO in polar form as ( aO, 00, flo) and
likewise with the new tag orientation q ~. The geodesic r. connecting 1 to qO
is of the polar form ([0, aO], #0, 190),and the new geodesic rl is ([0, all, 41, O1).
We are only concerned with geodesics that extend from the north pole to near
the south pole, at least where a., a, > IT/2. We also assume, without loss of
generality, that @o < dl and 00< 6’].

Let corresponding points on r. and rl be points of equal a. By observation,
the maximum distance between corresponding points on rO and rl occurs at
the equator, where a = 1/2. Let the distance geodesic r~ denote the geodesic
between corresponding equatorial points of r., I’l. By regulating the length of
r~, we regulate the rate of the belt trick.

Let lid = #Jl – 40 and A(I = @l – O.. From (15) we can approximate the
length of rd with

s’ = A@2 + sin2(@O)A02 (16)

since the change in a on r~ is zero and sin2 ( 7r/2) = 1
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Let s~,X be the maximum allowed length of rd—the maximum rate of
change between rO and rl. If the length of r~ exceeds the maximum allowed
length s~.X then we must reduce the increment of q. Let

A = sma./s (17)

be the amount rd needs to be scaled back to meet the maximum allowed
length. Then

s&X = A’s’

= A2(A~2 + sin2(@O)A62),

= (A A@)2 + sin2(@O)(AAO)2.

Changing the polar values # and 9 of qO by no more than AA@ and AA8
prevents the geodesic from rotating too fast around S3—prevents the belt
from moving too quickly. Hence, the incremental rotation

q~ = qoe*’”, ( 18)

where A is given in (17) as the quotient of the parameter s~aX and the
“distance” between successive geodesics s, produces a new tag orientation
sufllciently close to the original to limit belt movement properly when neces-
sary. In practice, setting s~,X = 0.1 disciplines the belt into reasonable
behavior.

5. CONCLUSION

Using the methods of Section 4, we have constructed a simulated quaternion
demonstrator, as described in Section 5.1. The simulated quaternion demon-
strator not only demonstrates unit quaternion multiplication, like its physical
counterpart, but also illustrates the quaternion interpolation of orientation
from one end of the belt to the other. The initial success of this prototype has
inspired several ideas for further research in this direction, which are de-
scribed in Section 5.2.

5.1 Results

Our implementation of the quaternion demonstrator, titled “quatdemo,” was
developed on an SGI Indigo Elan, and can be obtained via anonymous ftp to
the Imaging Research Laboratory at irl.eecs.wsu.edu from the directory
/pub/IRL/quatdemo.

It consists of the coordinate axis and a belt. The imaginaries are labeled at
the tag end of the belt, in their corresponding orientations. Pressing and
holding the “i,””’ “j, or “k key rotates the tag end of the belt, causing minimal
twists in the belt. The current unit quaternion value is represented visually
by the configuration of the demonstrator and is verified by a formatted text
version of the current unit quaternion value.

Our implementation simulates the spine of the belt discretely with 256
samples, using the Euler method to approximate the integral (14). Euler
integration is highly susceptible to accumulated error, but errors in the
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position of the tag end of the quaternion demonstrator are of little conse-
quence. The only state where the position of the tag is noticeable is – 1,
where the tag end of the belt should be coincident with the fixed end of the
belt. We are again fortunate in that the numerical noise accumulated in the
incremental rotations of the tag, statistically, prevents this state from being
represented exactly.

Figure 2 displays the various states of the quaternion demonstrator simu-
lated by the methods discussed in Section 4. As expected, belt tricks occur
automatically when necessary to remove excess twists in the belt; the belt
never contains more than a full 360 degree twist in any direction. Figure 3
displays an automatically occurring belt trick, which results at the midway
point when holding the “k key down.

After an automatic belt trick, enough error accumulates to cause the spine
of the belt to return to a position slightly offset from its original state. In our
implementation, pressing the space bar resets the quaternion demonstrator
to the 1 state.

5.2 Further Research

The concept of illustrating the track of a rotation through the use of attached
belts to objects is basic to the quaternion demonstrator. In this article we
have considered the resulting symmetries of a rectangle in three-dimensional
space. The same results apply to the symmetry of any object in three-
space R ‘).

Formally, Let @ c R’:i be a subset of R’:] containing the origin. Let S0(3)
denote the set of rotations about the origin of R ‘3. Let Symm( F ) denote the
subgroup of 50(3) consisting in those rotations g = S0(3) for which g(~) = ~
setwise, Now the three-sphere Ss of unit quaternions covers the S0(3) doubly
via the map

77: S:)+ s0(3) :V+l?(q)v=qvq ‘, (19)

where v is a pure quaternion—hence v is a vector in R:). This is an abstract
description of our representation of rotations by quaternions.

Now, the set of unit quaternions, n 1(Symm( @ )), covering the symmetry
group of the object, is a subgroup of S?, called the binary group of Symm( F).
If the object F“ is the rectangular tag Y, this group is the eight-element
quaternion group,

(20)

This is the abstract description of what the quaternionic demonstrator has
demonstrated.

An extension of the demonstrator (by attaching a belt to another object, P)
can ill ustrate the binary group for the symmetries of any object. These
groups, in the case of regular solids such as the tetrahedron, octahedron, or
icosahedron, are of great interest both practically and mathematically. This
extension of our demonstrator is one of the immediate prospects for further
research.
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It is also possible to extend our methods to study the structure of rotations
of four-space and to the study and illustration of properties of octonians
[Cayley 1897], which are an eight-dimensional generalization of the quater-
nions.

APPENDIX

RENDERING

The most straightforward method for rendering a deformed object is to
polygonize its surface, apply the deformation to the polygon vertices, then
render the resulting polygons. Special-purpose hardware can render polygo-
nal objects in real time, permitting interactive modeling. For example, the
local deformation of the belt used in the quaternion demonstrator was
rendered in this fashion. Polygonization can be problematic when investigat-
ing deformations in that the result of deforming vertices produces a polygon
that may be a poor fit when compared to the deformation of the entire
polygon, requiring some form of detection and dynamic subdivision.

Alternatively, we can render the deformed object directly as an implicit
surface, preserving, at least to pixel precision, the detail of the deformed
geometry. Let ~(x) be a function implicitly defining the set A c R3 such that

f(x) <o-x Ez4, (21)

f(x)= O=x GdA, (22)

f(X)> O= XGlR3\A, (23)

and let D: R 3 + R 3 denote the deformation function. Then the deformed set
D(A) is implicitly defined by the function ~ o D l(x).

With few exceptions, ray tracing is the means for direct visualization of
implicit surfaces. Some recent ray intersection methods require the Lipschitz
constant of the function [Kalra and Barr 1989; Hart 1993]. The Lipschitz
constant of a function f A + B from metric space (A, dA ) to metric space
(B, d~ ) is the smallest positive value A such that

dB(f(x), f(y)) < AdA(x, y) (24)

for all x, y = A. The Lipschitz constant bounds the amount a transformation
can expand an object. If f R’ + R, then the Lipschitz constant of f indicates
the steepest slope in the graph of f. One can use the Lipschitz-based
ray-tracing method to investigate the “unfurling,” the global deformation
described in Section 3.2.

By observation, the largest dilation caused by B,,,, occurs when s = 1,
t = O. This deformation winds the segment [r, l]i twice around the origin.
Reducing to R’2, the parametric equation of this curve takes the x axis from
[r, 1] into the twice-winding curve as

f,(x) =X COS26NX), (25)

(Y(x) =xsin20(x) (26)
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with derivatives

f~(x) ==cos2#(x) - 20’(x) sin2@(x), (27)

f{,(x) =sin20(x) +20’(x) cos26(x). (28)

21r
o’(x)” –—

1 – r,,
(29)

Where (29) corresponds to (8). The arc length of this double twist is found
using

167T2
=1+ (31)

(1 – ro)2°

Since dsz reaches its maximum (over the proper domain) when x = 1, we
have the Lipschitz constant

(32)

The deformation B] ~,dilates more than any other B,,,, for all s E [ – 1, 1]
and t e [0, 1]. Equation (32) is an upper bound of the Lipschitz constant for
B.,,, and under a similar argument, for the belt trick deformation B,. Hence,
(32) is a suitable (though not necessarily optimal for all parameters s and t )
Lipschitz bound for ray-tracing the results of the belt trick and unfurling
deformations.

This Lipschitz constant was used to render the unfurling demonstration in
Sandin et al. [ 1993], excerpted in Figure 5.
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Constrained Optimal Framings of Curves and Surfaces using Quaternion
Gauss Maps
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Figure 1: The (3,5) torus knot, a complex periodic 3D curve. (a) The line drawing is nearly useless as a 3D representation. (b) A
tubing based on parallel transporting an initial reference frame produces an informative visualization, but is not periodic. (c) The
arrow in this closeup exposes the subtle but crucial non-periodic mismatch between the starting and ending parallel-transport
frames; this would invalidate any attempt totexture the tube. The methods of this paper provide robust parameterization-
invariant principles for resolving such problems.

Abstract

We propose a general paradigm for computing optimal coordinate
frame fields that may be exploited to visualize curves and surfaces.
Parallel-transport framings, which work well for open curves, gen-
erally fail to have desirable properties for cyclic curves and for
surfaces. We suggest that minimal quaternion measure provides
an appropriate heuristic generalization of parallel transport. Our
approach differs from minimal-tangential-acceleration approaches
due to the addition of “sliding ring” constraints that fix one frame
axis, but allow an axial rotational freedom whose value is varied
in the optimization process. Our fundamental tool is the quater-
nion Gauss map, a generalization to quaternion space of the tan-
gent map for curves and of the Gauss map for surfaces. The quater-
nion Gauss map takes 3D coordinate frame fields for curves and
surfaces into corresponding curves and surfaces constrained to the
space of possible orientations in quaternion space. Standard opti-
mization tools provide application-specific means of choosing op-
timal, e.g., length- or area-minimizing, quaternion frame fields in
this constrained space.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques. I.3.8 [Computer Graphics]: Applications.

Keywords: Quaternions; Frames; Tubing; Curves; Surfaces
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1 Introduction

We propose a general framework for selecting optimal systems
of coordinate frames that can be applied to visualizing geometric
structures such as curves and surfaces in three-dimensional space.
The methods contain “minimal-turning” parallel-transport framings
of curves as a special case, are independent of parameterization, and
extend naturally to situations where parallel transport is not appli-
cable.

Motivation. Many visualization problems require techniques for
effectively displaying the properties of curves and surfaces. The
problem of finding appropriate representations can be quite chal-
lenging. Representations of space curves based on single lines are
often inadequate for graphics purposes; significantly better images
result from choosing a “tubing” to display the curve as a graphics
object with spatial extent. Vanishing curvature invalidates meth-
ods such as the Frenet frame, and alternative approaches to tubing
involve heuristics unrelated to parameterization-invariant optimiza-
tion measures in order to achieve such properties as periodicity.
Similar problems occur in the construction of suitable visualiza-
tions of complex surfaces and oriented particle systems on surfaces,
since the intrinsic orientation properties may be poorly exposed by
the original representation. If a surface patch is represented by a
rectangular but nonorthogonal mesh, for example, there is no obvi-
ous way to choose among alternative local orthonormal frame as-
signments; if the surface has regions of vanishing curvature, meth-
ods based on directions of principal curvatures break down as well.
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Figure 2: (a) A smooth 3D surface patch having a non-orthogonal parameterization, along with its geometrically-fixed normals at the four
corners. No unique orthonormal frame is derivable from the parameterization. If we imitate parallel transport for curves to evolve the initial
frame at the top corner to choose the frame at the bottom corner, we find that paths (b) and (c) result in incompatible final frames at the bottom
corner. This paper addresses the problem of systematically choosing a compatible set of surface frames in situations like this.

While we emphasize curves and surfaces in this paper to provide
intuitive examples, there are several parallel problem domains that
can be addressed with identical techniques. Among these are extru-
sion methods and generalized cones in geometric modeling, the im-
position of constraints on a camera-frame axis in key-frame anima-
tion, and the selection of a 2D array of camera-frame axis choices
as a condition on a constrained-navigation environment (see, e.g.,
Hanson and Wernert [13]).

Figure 1 summarizes the basic class of problems involving
curves that will concern us here. The line drawing (a) of a (3,5)
torus knot provides no useful information about the 3D structure.
Improving the visualization by creating a tubing involves a subtle
dilemma that we attempt to expose in the rest of the figure. We can-
not use a periodic Frenet frame as a basis for this tubing because in-
flection points or near-inflection points occur for many nice-looking
torus knot parameterizations, and in such cases the Frenet frame is
undefined or twists wildly. The parallel-transport tubing shown in
(b) is well-behaved but not periodic; by looking carefully at the
magnified portion next to the arrow in Figure 1(c), one can see a
gross mismatch in the tessellation due to the nonperiodicity. While
it would be possible in many applications to ignore this mismatch,
it has been the subject of a wide variety of previous papers (see,
e.g., [16, 24, 5]), and must obviously be repaired for many other
applications such as those requiring textured periodic tubes.

Figure 2 illustrates a corresponding problem for surface patches.
While the normals to the four corners of the patch are always well-
defined (a), one finds two different frames for the bottom corner
depending upon whether one parallel transports the initial frame
around the left-hand path (b) or the right-hand path (c). There is
no immediately obvious right way to choose a family of frames
covering this surface patch.

Our goal is to propose a systematic family of optimization meth-
ods for resolving problems such as these.

Methodology. We focus on unit quaternion representations of
coordinate frames because of the well-known natural structure of
unit quaternions as points on the three-sphere S3, which admits a
natural distance measure for defining optimization problems, and
supports in addition a variety of regular frame-interpolation meth-
ods (see, e.g., [25, 23, 19, 15]). We do not address the related
question of optimal freely moving frames treated by the minimal-
tangential-acceleration methods (see, e.g., [2, 22, 8]); we are in-
stead concerned with closely-spaced points on curves and surfaces

where one direction of the frame is already fixed, and the chosen
functional minimization in quaternion space must obey the addi-
tional constraint imposed by the fixed family of directions. Addi-
tional references of interest, especially regarding the treatment of
surfaces, include [14, 20]. Figure 3 provides a visualization of the
difference between the general interpolation problem and our con-
strained problem: a typical spline minimizes the bending energy
specified by the chosen anchor points; requiring intermediate points
to slide on constrained paths during the minimization modifies the
problem. In particular, 3D spline curves need not intersect any of
the constraint paths. In addition, we note that we typically have al-
ready sampled our curves and surfaces as finely as we need, so that
piecewise linear splines are generally sufficient for the applications
we discuss.

Our solution to the problem is to transform the intrinsic geo-
metric quantities such as the tangent field of a curve and the normal
field of a surface to quaternion space and to construct the quaternion
manifold corresponding to the one remaining degree of rotational
freedom in the choice of coordinate frame at each point. Paths in
this space of possible framescorrespond to specific choices of the
quaternion Gauss map, a subspace of the space of possible quater-
nion frames of the object to be visualized. Mathematically speak-
ing, the space of possible frames is the circularHopf fiber lying
above the point in S2 corresponding to each specific curve tangent
or surface normal (see, e.g., [26, 3]).

Parallel Transport and Minimal Measure. Constraining
each quaternion point (a frame) to its own circular quaternion
path (the axial degree of rotational freedom), we then minimize
the quaternion length of the frame assignment for curves and the
quaternion area of the frame assignment for surfaces to achieve an
optimal frame choice; this choice reduces to the parallel-transport
frame for simple cases. Our justification for choosing minimal
quaternion length for curves is that there is a unique rotation in
the plane of two neighboring tangents that takes each tangent di-
rection to its next neighbor along a curve: this is the geodesic arc
connecting the two frames in quaternion space, and is therefore the
minimum distance between the quaternion points representing the
two frames. The choice of minimal area for surface frames is more
heuristic, basically a plausibility argument that the generalization
of minimal length is minimal area; no doubt this could be made
more rigorous.

By imposing other criteria such as endpoint derivative values and
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Figure 3: (a) The camera frame interpolation problem is analogous to the problem of finding a minimal-bending spline curve through a series
of fixed key points. (b) The optimal curve frame assignment problem is analogous to fixing the end points of a curve segment and choosing
in additiona family of lines along which the intermediate points are constrained to slide during the optimization process; in 3D, the spline
path need not pass through the constraint lines. (c) In this paper, our sample points are generally close enough together that we apply the
constraints to piecewise linear splines analogous to those shown here.

minimal bending energy (see Barr et al. [2, 22]), the short straight
line segments and polygons that result from the simplest mini-
mization could be smoothed to become generalized splines passing
through the required constraint rings; since, in practice, our curve
and surface samplings are arbitrarily dense, this was not pursued in
the current investigation.

For space curves, specifying a frame assignment as a quaternion
path leads at once to tubular surfaces that provide a “thickened” rep-
resentation of the curve that interacts well with texturing, lighting,
and rendering models. For surface patches, the approach results in
a structure equivalent to that of an anisotropic oriented particle sys-
tem (also a species of texture) whose pairs of tangent vector fields
in the surface produce natural flow fields that characterize the local
surface properties and are easy to display.

Background. General questions involving the specification of
curve framings have been investigated in many contexts; for a rep-
resentative selection of approaches, see, e.g., [16, 24, 5]. The
quaternion Gauss map is a logical extension of the quaternion frame
approach to visualizing space curves introduced by Hanson and Ma
[11, 12]. For basic information on orientation spaces and their rela-
tionship to quaternions, see, e.g., [1, 21, 19].

Background on the differential geometry of curves and surfaces
may be found in sources such as the classical treatise of Eisenhart
[7] and in Gray’s MATHEMATICA -based text [9], which inspired a
number of the illustrations in this paper. The classical Frenet frame
is defined and studied in these texts. The frame we refer to as the
parallel-transport frame was first described carefully by Bishop [4],
and has been commonly used in graphics (see, e.g., [5, 24, 17]). A
significant difference between these two methods is that the Frenet
frame is locally defined but possibly discontinuous, whereas the
parallel-transport frame is continuous but non-local, corresponding
to the solution of a differential equation.

2 The Space of Frames

We begin by introducing the key concept of thespace of possible
frames.

Suppose at each sample pointx(t) of a curve, we are given a
unit tangent vector,̂T(t), computed by whatever method one likes
(two-point sampling, five-point sampling, analytic, etc.). Then one
can immediately write down a one-parameter family describing all

possible choices of the normal plane orientation: it is just the set of
rotation matricesR(�; T̂(t)) (or quaternionsq(�; T̂(t))) that leave
T̂(t) fixed.

For surfaces, the analogous construction follows from determin-
ing the unit normalN̂(u; v) at each pointx(u; v) on the surface
patch. The needed family of rotationsR(�; N̂(u; v)) (or quater-
nionsq(�; N̂(u; v))) now leavesN̂(u; v) fixed and parameterizes
the space of possibletangentdirections completing a frame defini-
tion at each pointx(u; v).

We now definef(�; v̂) = (f0; f1; f2; f3) to be a quaternion de-
scribing the family of frames for which the direction̂v is a preferred
fixed axis of the frame, such as the tangent or normal vectors. The
orthonormal triad of 3-vectors describing the desired frame is

F (�; v̂) ="
f20 +f21�f22�f23 2f1f2 � 2f0f3 2f1f3 + 2f0f2
2f1f2 + 2f0f3 f20�f21 +f22�f23 2f2f3 � 2f0f1
2f1f3 � 2f0f2 2f2f3 + 2f0f1 f20�f21�f22 +f23

#
;(1)

where one column, typically the 3rd column, must bev̂.
The standard rotation matrixR(�; v̂) leaveŝv fixed but does not

havev̂ as one column of the3� 3 rotation matrix, and so we have
more work to do. To computef(�; v̂), we need the following:

� A base reference frameb(v̂) that is guaranteed to have, say,
the 3rd column exactly aligned with a chosen vectorv̂, which
is either the tangent to a curve or the normal to a surface.

� A one-parameter family of rotations that leaves a fixed direc-
tion v̂ invariant.

The latter family of rotations is given simply by the standard
quaternion

q(�; v̂) = (cos
�

2
; v̂ sin

�

2
) ; (2)

for 0 � � < 4�, while the base frame can be chosen as

b(v̂) = q(arccos(ẑ � v̂); (ẑ� v̂)=kẑ� v̂k) : (3)

We refer hereafter to the frameb(v̂) as theGeodesic Reference
Framebecause it tilts the reference vectorẑ along a geodesic arc
until it is aligned withv̂; see Figure 4. If̂v = ẑ, there is no prob-
lem, since we just takeb(v̂) to be the quaternion(1; 0); if v̂ = �ẑ,



Figure 4: Example of the Geodesic Reference Frame: on the
northern hemisphere of a 2-sphere, the Geodesic Reference
Frame tilts thêz axis of the north pole’s identity frame along
the shortest arc to align with a specified reference direction.

we may choose any compatible quaternion such as(0; 1; 0; 0). We
escape the classic difficulty of being unable to assign a global frame
to all of S2 because we need a parameterization ofall possible
frames, not any one particular global frame. If one wants to use
a reference frame that is not the identity frame, one must premulti-
ply b(v̂) on the right by a quaternion rotating from the identity into
that reference frame; this is important when constructing a nonstan-
dard Geodesic Reference Frame such as that required to smoothly
describe a neighborhood of the southern hemisphere of S2.

We can thus write the full family of possible quaternion frames
keepingv̂ as a fixed element of the frame triad to be the quaternion
product

f(�; v̂) = q(�; v̂) � b(v̂) ; (4)

where� denotes quaternion multiplication and all possible frames
are described twice since0 � � < 4�. To summarize, if we specify
a frame axiŝv to be fixed, then the variable� in f(�; v̂) serves to
parameterize aring in quaternion space, each point of which corre-
sponds to a particular 3D frame, and each frame has a diametrically
opposite twin.

Surface Patch Example. Figure 5 shows how the frame
choice problem of Figure 2 can be visualized in the quaternion
space of frames. We choose a quaternion projection that shows
only the 3-vector part of the quaternion, droppingq0. A frame
choice is achieved by moving a point around thesliding ring con-
straint defined by Eq. (4) to the desired position. The constraint
rings in Figure 5 are the generalizations to quaternion space of the
constraint lines symbolized in Figure 3(b). The vertexA admits
a family of framesf(�; ẑ) that is a circle in quaternion space, but
projects “edge-on” to a vertical bar in our default projection. The
spaces of frames at the other vertices project as ellipses. The outer
ring in Figure 5(b) is touched by two paths, corresponding to the
clockwise and counterclockwise parallel transport routes in Figure
5(a); the gap between the intercepts in the outer ring corresponds to
the inequivalence of the two frames at the bottom vertex of Figure
5(a).

Closed Curve Example. In Figure 6, we show a simple closed
curve, the trefoil knot, the quaternion plot of its periodic Frenet
frame, and, just to show we can do it, the entire constraint surface
in which the Frenet frame and all other possible quaternion fram-
ings of the trefoil must lie. In the next section, we show the results
of optimizing a continuous family of frames lying within this re-
markable surface.

3 Minimal Frames

We have computed a wide selection of examples using the Evolver
of K. Brakke [6] as our optimization tool. The Evolver is a
public-domain, extensively documented system with a huge range
of constraint-solving capabilities, widely used in mathematics and
certain engineering problems. It has a very simple interface for han-
dling parametric constraints like our sliding ring constraints, and
can also handle a wide variety of energy functionals and boundary
specifications. Most of the examples shown here take only a few
seconds to stabilize in the Evolver; more complex geometries will
of course take longer.

Two enhancements to the Evolver handle the specific is-
sues related to quaternion optimization; the symmetry specifi-
cation symmetry_group "central_symmetry" identifies
the quaternionq with �q if desired during the variation to prevent
reflected double traversals from varying independently, and the sys-
tem is able to use the pullback metric on the sphere

ds2 =
X
i;j

dxi dxj r
�4 (r2 �i;j � xi xj)

to compute distances directly on the quaternion three-sphere. Com-
putation using this metric, however, is very slow, and so in practice
we have used the Euclidean R4 chord approximation, which works
quite well for closely spaced samples and is much faster. (There are
other choices of three-sphere parameterizations and quaternion dis-
tance measures that we have not yet attempted that could be more
efficient still.) The energy functional that we chose to specify for
the Evolver (or that would be implemented in a dedicated system) is
thus simply the sum of the Euclidean lengths of each line segment
in R4:

d =
X
i;j

jxi � xj j

wherejqj = p
q � q =

p
q0q0 + q1q1 + q2q2 + q3q3. For surface

areas, the Evolver breaks polygons into triangles, computes their
areas, and minimizes the total sum as the vertex positions vary.

Our own use of the Evolver required only changing the pa-
rameter “#define BDRYMAX 20 ” in skeleton.h to the
desired (large) value corresponding to the number of desired
sliding rings and recompiling. Then, remembering to set
“space_dimension 4 ” when working in R4, one needs in ad-
dition a piece of code similar to the following MATHEMATICA frag-
ment to translate Eq. (4) into the boundary constraints for each fixed
vector (tangent or normal) and the chosen initial quaternion refer-
ence frame:

Do[ring = Qprod[makeQfromVec[vlist[[i]],P1],
qreflist[[i]]]//Chop;

Write[file," boundary ",i," parame-
ters 1"];

Write[file, "x1: ", CForm[ ring[[2]]]];
Write[file, "x2: ", CForm[ ring[[3]]]];
Write[file, "x3: ", CForm[ ring[[4]]]];
Write[file, "x4: ", CForm[ ring[[1]]]],
{i,1,Length[vlist]}]
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Figure 5: A different viewpoint of the mismatch problem of Figure 2. (a) Choosing different routes to determine the frame at the bottom
point results in the incompatible frames shown here in 3D space. (b) The same information is presented here in the quaternion space-of-
frames picture. We use throughout a quaternion projection that shows only the 3-vector part of the quaternion, droppingq0; this is much like
projecting awayz in a polar projection of the 2-sphere. Each heavy black curve is a ring of possible frame choices that keep fixed the normals
in (a); the labels mark the point in quaternion space corresponding to the frames at the corners in (a), so the gap between the labelsC andC ’
represents the frame mismatch in quaternion space on the same constraint ring. (The apparent vertical line is the result of drawing a squashed
circle of frames at vertexA in this projection.) (c) The method proposed in this paper to resolve this conflict is to fix one point, sayA, divide
the polygonABCB0 into triangles, and slideB, C, andB0 along the constraint rings until the total triangle areas are minimized, and some
compromise withC = C0 is reached.
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Figure 6: (a) A trefoil torus knot. (b) Its quaternion Frenet frame projected to 3D. For this trefoil knot, the frame does not close on itself in
quaternion space unless the curve is traversed twice, corresponding to the double-valued “mirror” image of the rotation space that can occur
in the quaternion representation. The longer segments in (b) correspond to the three high-torsion segments observable in (a). (c) The full
constraint space for the trefoil knot is a very complex surface swept out by the constraint rings. All quaternions are projected to 3D using
only the vector part.



Here Qprod and makeQfromVec perform the quaternion
product and create the quaternion corresponding to Eq. (4) withP1
replacing�. Note that, since the Evolver displays only the first three
coordinates, we have moved the scalar quaternion to the end; then
the Evolver will display our preferred projection automatically.

With these preliminaries, the Evolver can easily be used to min-
imize the length of the total piecewise linear path among sliding
ring constraints for selected curves, and the total area spanned by
analogous sliding rings for surfaces. We made no attempt to go be-
yond piecewise linear curves. One interesting result is that there
appear to be families of topologically distinct minima: depending
on the conditions imposed, one may find either two disjoint curves
(surfaces), one theq ! (�q) image of the other, or a single quater-
nion curve (surface) that contains its own reflection, such as that in
Figure 6(b). The families of frame manifolds containing their own
reflected images have minima distinct from the disjoint families.

We now present some simple examples to give a feeling for the
process.

Minimal Quaternion Frames for Space Curves. The helix
provides a good initial example of the procedure we have formu-
lated. We know that we can always find an initial framing of a
curve based on the Geodesic Reference algorithm; however, sup-
pose we wish to impose minimal length in quaternion space on the
framing we select, and we do not know whether this frame is op-
timal with respect to that measure. Then, as illustrated in Figure
7, we can compute the ring constraints on the possible quaternion
frames at each sample point and let the Evolver automatically find
the optimal framing. The results for several stages of this evolution
are shown in the Figure; the final configuration is indistinguishable
from the parallel-transport frame, confirming experimentally our
theoretical expectation that parallel transport produces the minimal
possible twisting.

In Figure 1, we introduced the question of finding an opti-
mal framing of a particular (3,5) torus knot whose almost-optimal
parallel-transport framing was not periodic. In Figure 8, we show
the solution to this problem achieved by clamping the initial and fi-
nal quaternion frames to coincide, then letting the Evolver pick the
shortest quaternion path for all the other frames.

The types of solutions we find are essentially the same for all
reparameterizations of the curve; regardless of the spacing of the
sampling, the continuous surface of possible frames is geometri-
cally the same in quaternion space, so paths that are minimal for
one sampling should be approximately identical to paths for any
reasonable sampling. On the other hand, if wewant special con-
ditions for certain parameter values, it is easy to fix any number of
particular orientations at other points on the curve, just as we fixed
the starting points above; derivative values and smoothness con-
straints leading to generalized splines could be similarly specified
(see, e.g., Barr et al. [2, 22]).

Surface Patch Framings. A classic simple example of a sur-
face patch framing problem was presented in the discussion of Fig-
ures 2 and 5. This problem can also be handled naturally by the
Evolver: we choose an initial quaternion frame for the mesh and
minimize the area in quaternion space subject to the constraints that
the normals remain unchanged. That is, the frame choices may only
slide around constraint rings such as those depicted in Figure 5(b)
for the frames at the corners. The results are shown in Figures 10
and 9. As a test, we started one case in a random initial state with
a range of2� in the starting values. All converged to the same op-
timal final framing. While more complex examples could be given,
all the essential features of the method short of dealing rigorously
with non-trivial topological manifolds are illustrated by this surface
patch example.

Figure 7: Helix (left) and its evolving quaternion frames (right).
Starting from the Geodesic Reference quaternion frame for a sin-
gle turn of the helix, the very dark gray circle, the Evolver pro-
duces these intermediate steps while minimizing the total quater-
nion curve length subject to the constraints in the space of frames.
The final result is the white curve, which is identical to several deci-
mal points with the parallel transport quaternion frame for the same
helix; note that thequaternion lengthof the white curve is the short-
est, even though in this projection that is not obvious. The numeri-
cal energies of the four curves, from dark to light in color, are 3.03,
2.91, 2.82, and 2.66 for the Parallel Transport frame. The individ-
ual tubings used to display these curves are in fact created using the
parallel transport frame for each individual curve.

Manifolds. For general manifolds, one must treat patches one
at a time in any event, since global frames may not exist at all.
Although the locally optimal patches cannot be globally joined to
one another, we conjecture that some applications might benefit
from the next best thing: matching boundary frames of neighbor-
ing patches using transitional rotations (see, e.g., [18, 10]). We
have carried this out explicitly for simple cases, but omit it here for
brevity.

Extensions to Other Domains. We have focussed for expos-
itory purposes in this paper on frames with intrinsic natural con-
straints imposed by the tangents to curves and normals to surfaces.
However, the method extends almost trivially to applications in-
volving externally specified constraints on frames. Geometric con-
struction algorithms based on extrusions reduce to the tubing prob-
lem. For ordinary camera control interpolation, one could constrain
any direction of the camera frame to be fixed by calculating its ap-
propriate constraint ring in the quaternion Gauss map, and then ex-
tend a method like that of Barr et al. [2, 22]) to smoothly compute
intermediate frames subject to the constraints. For more general
constrained navigation methods like those described by Hanson and
Wernert [13]), the camera vertical direction could be fixed at chosen
points over the entire constraint manifold, and the remaining frame
parameters determined by optimization within the manifold of ring
constraints, possibly subject to fixing entire key-frames at selected
locations or boundaries.

4 Conclusion

We have introduced a general framework derived from the quater-
nion Gauss map for studying and selecting appropriate families of
coordinate frames for curves and surface patches in 3D space. Min-
imizing length for quaternion curve maps and area for surfaces is
proposed as the appropriate generalization of parallel transport for
the selection of optimal frame fields. These smooth frames can
be used to generate tubular surfaces based on the space curves,
thus allowing their effective display on polygon-based graphics en-



gines with texturing. The analogous results for surface patches al-
low the selection of optimal local coordinate systems that may be
adapted for display purposes and related applications such as tex-
turing based on oriented particle systems. Our principal new tool
is the space of all possible frames, a manifold of constraints im-
mersed in the space of quaternion frames. By defining energies
and boundary conditions in this space one can produce a rich va-
riety of application-adapted criteria for specifying optimal families
of frames. Work remaining to be done in the future includes apply-
ing the method to other domains such as geometric modeling and
viewpoint interpolation, studying more carefully the topologically
distinct minimal quaternion area solutions found for certain surface
framings, and studying more challenging problems in the surface
domain, e.g., topological tori with various numerical bumps and
deformations are known to admit global frames, but little is known
about how to compute good ones, and this method is a logical can-
didate.
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Figure 8: Optimization of the non-periodic parallel transport frame of the (3,5) torus knot introduced in Figure 1 to produce a nearby periodic
framing. (a) The original quaternion parallel transport frame used to produce the tubing in Figure 1(b,c). (b) The frame mismatch, repeated
for completeness. (c) The result of fixing the final frame to coincide with the initial frame, leaving the other frames free to move on the
constraint rings, and minimizing the resulting total length in quaternion space. The length of the original curve was 13.777 and that of the
final was 13.700, not a large difference, but noticeable enough in the tube and the quaternion space plot. (d) Closeup of the corresponding
framing of the knot in ordinary 3D space, showing that the mismatch problem has been successfully resolved. This tube cannowbe textured,
since the frames match exactly.

(a) (b) (c) (d)

Figure 9: Study ofpossibleandoptimal reference frames on a surface patch; the corresponding quaternion fields are given in Figure 10. (a)
The Geodesic Reference frames for the small patch of Figure 2. (b) Two-step parallel transport frames. (c) Random frames. (d) The unique
frame configuration resulting from minimizing area in quaternion space with the upper corner fixed.
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Figure 10: Quaternion areas corresponding to the frame assignments in Figure 9. (a) The initial Geodesic Reference quaternions for the small
patch shown in Figure 2. (b) Initial quaternions from parallel transporting the vertex frame down one edge, and then across line by line. (c)
A random starting configuration with the single same fixed corner point as (a) and (b) and a range of�� to +� relative to the Geodesic
Reference frame. (d) The result of minimization of the quaternion area is the same for all starting points. The relative areas are: 0.147, 0.154,
0.296, and 0.141, respectively. Thus the Geodesic Reference is very close to optimal, but is distinct.
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Abstract

We propose a general paradigm for generating optimal coordinate frame fields that may be ex-
ploited to annotate and display curves and surfaces. Parallel-transport framings, which work well
for open curves, generally fail to have desirable properties for cyclic curves and for surfaces. We
suggest that minimal quaternion measure provides an appropriate generalization of parallel trans-
port. Our fundamental tool is the “quaternion Gauss map,” a generalization to quaternion space
of the tangent map for curves and of the Gauss map for surfaces. The quaternion Gauss map
takes 3D coordinate frame fields for curves and surfaces into corresponding curves and surfaces
constrained to the space of possible orientations in quaternion space. Standard optimization tools
provide application-specific means of choosing optimal, e.g., length- or area-minimizing, quater-
nion frame fields in this constrained space. We observe that some structures may have distinct
classes of minimal quaternion framings, e.g, one disconnected from its quaternion reflection, and
another that continuously includes its own quaternion reflection. We suggest an effective method
for visualizing the geometry of quaternion maps that is used throughout. Quaternion derivations
of the general moving-frame equations for both curves and surfaces are given; these equations are
the quaternion analogs of the Frenet and Weingarten equations, respectively. We present examples
of results of the suggested optimization procedures and the corresponding tubings of space curves
and sets of frames for surfaces and surface patches.

1 Introduction

We propose a general framework for selecting optimal systems of coordinate frames that can be
applied to the study of geometric structures such as curves and surfaces in three-dimensional space.
The methods contain “minimal-turning” parallel-transport framings of curves as a special case,
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Figure 1: The (3,5) torus knot, a complex periodic 3D curve. (a) The line drawing is nearly
useless as a 3D representation. (b) A tubing based on parallel transporting an initial reference
frame produces an informative visualization, but is not periodic. (c) The arrow in this closeup
exposes the subtle but crucial non-periodic mismatch between the starting and ending parallel-
transport frames; this would invalidate any attempt totexturethe tube. The methods of this
paper provide robust parameterization-invariant principles for resolving such problems.

and extend naturally to situations where parallel-transport is not applicable. This article presents
additional details of the IEEE Visualization ’98 paper by the author [16].

Motivation. Many graphics problems require techniques for effectively displaying the properties
of curves and surfaces. The problem of finding appropriate representations can be quite challeng-
ing. Representations of space curves based on single lines are often inadequate for graphics pur-
poses; significantly better images result from choosing a “tubing” to display the curve as a graph-
ics object with spatial extent. Vanishing curvature invalidates methods such as the Frenet frame,
and alternative approaches such as those based on parallel transport involve arbitrary heuristics
to achieve such properties as periodicity. Similar problems occur in the construction of suitable
visualizations of complex surfaces and oriented particle systems on surfaces. If a surface patch
is represented by a rectangular but nonorthogonal mesh, for example, there is no obvious local
orthonormal frame assignment; if the surface has regions of vanishing curvature, methods based
on directions of principal curvatures break down as well.

While we emphasize curves and surfaces in this paper to provide intuitive examples, there are
several parallel problem domains that can be addressed with identical techniques. Among these are
extrusion methods and generalized cones in geometric modeling, the imposition of constraints on
a camera-frame axis in key-frame animation, and the selection of a 2D array of camera-frame axis
choices as a condition on a constrained-navigation environment (see, e.g., Hanson and Wernert
[20]).

Figure 1 summarizes the basic class of problems involving curves that will concern us here.
The line drawing (a) of a (3,5) torus knot provides no useful information about the 3D structure.

2



(a) (b) (c)

Figure 2: (a) A smooth 3D surface patch having a non-orthogonal parameterization, along with
its geometrically-fixed normals at the four corners. No unique orthonormal frame is derivable
from the parameterization. If we imitate parallel transport for curves to evolve the initial frame
at the top corner to choose the frame at the bottom corner, we find that paths (b) and (c) re-
sult in incompatible final frames at the bottom corner. This paper addresses the problem of
systematically choosing a compatible set of surface frames in situations like this.

Improving the visualization by creating a tubing involves a subtle dilemma that we attempt to ex-
pose in the rest of the figure. We cannot use a periodic Frenet frame as a basis for this tubing
because inflection points or near-inflection points occur for many nice-looking torus knot parame-
terizations, and in such cases the Frenet frame is undefined or twists wildly. The parallel-transport
tubing shown in (b) is well-behaved but not periodic; by looking carefully at the magnified portion
next to the arrow in Figure 1(c), one can see a gross mismatch in the tessellation due to the non-
periodicity which would, for example, preclude the assignment of a consistent texture. While it
would be possible in many applications to ignore this mismatch, it has been the subject of a wide
variety of previous papers (see, e.g., [24, 36, 5]), and must obviously be repaired for many other
applications such as those requiring textured periodic tubes.

Figure 2 illustrates a corresponding problem for surface patches. While the normals to the four
corners of the patch are always well-defined (a), one finds two different frames for the bottom
corner depending upon whether one parallel transports the initial frame around the left-hand path
(b) or the right-hand path (c). There is no immediately obvious right way to choose a family of
frames covering this surface patch.

Our goal is to propose a systematic family of optimization methods for resolving problems
such as these.

Methodology. We focus on unit quaternion representations of coordinate frames because of the
well-known natural structure of unit quaternions as points on the three-sphere S3, which admits
a natural distance measure for defining optimization problems, and supports in addition a variety
of regular frame-interpolation methods (see, e.g., [37, 35, 31, 23]). We do not address the related
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(a) (b) (c)

Figure 3: (a) The camera frame interpolation problem is analogous to the problem of finding a
minimal-bending spline curve through a series of fixed key points. (b) The optimal curve frame
assignment problem is analogous to fixing the end points of a curve segment and choosingin
additiona family of lines along which the intermediate points are constrained to slide during the
optimization process; in 3D, the spline path need not pass through the constraint lines. (c) In
this paper, our sample points are generally close enough together that we apply the constraints to
piecewise linear splines analogous to those shown here.

question of optimal freely moving frames treated by the minimal-tangential-acceleration methods
(see, e.g., [2, 34, 11]); we are instead concerned with closely-spaced points on curves and sur-
faces where one direction of the frame is already fixed, and the chosen functional minimization
in quaternion space must obey the additional constraint imposed by the fixed family of directions.
Additional references of interest, especially regarding the treatment of surfaces, include [22, 32].
Figure 3 provides a visualization of the difference between the general interpolation problem and
our constrained problem: a typical spline minimizes the bending energy specified by the chosen
anchor points; requiring intermediate points to slide on constrained paths during the minimization
modifies the problem. In particular, 3D spline curves need not intersect any of the constraint paths.
In addition, we note that we typically have already sampled our curves and surfaces as finely as we
need, so that piecewise linear splines are generally sufficient for the applications we discuss.

Our solution to the problem is to transform the intrinsic geometric quantities such as the tangent
field of a curve and the normal field of a surface to quaternion space and to construct the quater-
nion manifold corresponding to the one remaining degree of rotational freedom in the choice of
coordinate frame at each point. Curves and surfaces in thesespaces of possible framescorrespond
to specific choices of thequaternion Gauss map, a subspace of the space of possible quaternion
frames of the object to be visualized. Mathematically speaking, the space of possible frames is
the circularHopf fiberlying above the point in S2 corresponding to each specific curve tangent or
surface normal (see, e.g., [39, 3]).

For space curves, specifying a frame assignment as a quaternion path leads at once to tubular
surfaces that provide a “thickened” representation of the curve that interacts well with lighting and
rendering models. For surface patches, the approach results in a structure equivalent to that of
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an anisotropic oriented particle system whose pairs of tangent vector fields in the surface produce
natural flow fields that characterize the local surface properties and are easy to display. We will
see that certain complex features of surfaces that are well-known in manifold theory arise naturally
and can be clearly visualized using the quaternion Gauss map.

In the course of the discussion, we introduce a useful method of visualizing the geometry of
the space of quaternions in which quaternion Gauss maps and the spaces of possible quaternion
frames are represented. We show how to compute the required subspaces of frames in practice,
and how to express this information in a form that can be used to optimize an energy measure,
thereby leading to optimal frame choices. We also outline in the appendix a treatment of the
curve and surface frame differential equations expressed directly in quaternion coordinates using
the quaternion Lie algebra; these methods expose essential fundamental features of the quaternion
frame methodology that are analogous to the Frenet and Weingarten equations.

Parallel Transport and Minimal Measure. Constraining each quaternion point (a frame) to its
own circular quaternion path (the axial degree of rotational freedom), we then minimize the quater-
nion length of the frame assignment for curves and the quaternion area of the frame assignment
for surfaces to achieve an optimal frame choice; this choice reduces to the parallel-transport frame
for simple cases. Our justification for choosing minimal quaternion length for curves is that there
is a unique rotation in the plane of two neighboring tangents that takes each tangent direction to
its next neighbor along a curve: this is the geodesic arc connecting the two frames in quaternion
space, and is therefore the minimum distance between the quaternion points representing the two
frames. The choice of minimal area for surface frames is more heuristic, basically a plausibility
argument that the generalization of minimal length is minimal area; no doubt this could be made
more rigorous.

By imposing other criteria such as endpoint derivative values and minimal bending energy (see
Barr et al. [2, 34]), the short straight line segments and polygons that result from the simplest
minimization could be smoothed to become generalized splines passing through the required con-
straint rings; since, in practice, our curve and surface samplings are arbitrarily dense, this was not
pursued in the current investigation.

For space curves, specifying a frame assignment as a quaternion path leads at once to tubular
surfaces that provide a “thickened” representation of the curve that interacts well with texturing,
lighting, and rendering models. For surface patches, the approach results in a structure equivalent
to that of an anisotropic oriented particle system (also a species of texture) whose pairs of tangent
vector fields in the surface produce natural flow fields that characterize the local surface properties
and are easy to display.

Background. General questions involving the specification of curve framings have been inves-
tigated in many contexts; for a representative selection of approaches, see, e.g., [24, 36, 5, 28].
The quaternion Gauss map is a logical extension of the quaternion frame approach to visualizing
space curves introduced by Hanson and Ma [19, 18]. The formulation of the quaternion form of
the differential equations for frame evolution was introduced as early as the 1890’s by Tait [41].
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Figure 4: A smooth 2D curve with its normal and tangent frame fields. The segmentsd and
f are intended to be straight.

For basic information on orientation spaces and their relationship to quaternions, see, e.g., [1,
33, 25]. Our own conventions are summarized in the appendix. The task of visualizing quaternions
is also important, and we will describe our own approach below; for an interesting alternative, see
Hart, Francis, and Kauffman [21]. Additional background on the differential geometry of curves
and surfaces may be found in sources such as the classical treatise of Eisenhart [8] and in Gray’s
MATHEMATICA -based text [12], which inspired a number of the illustrations in this paper.

2 The Differential Geometry of Coordinate Frames

Our first goal is to define moving coordinate frames that are attached to curves and surfaces in
3D space. We will assume that our curves and surfaces are defined in practice by a discrete set of
sample points connected by straight line segments, so that numerical derivatives can be defined at
each point if analytic derivatives are not available. We begin with a pedagogical presentation of
the properties of 2D curves, and then extend the surprisingly rich concepts that arise to 3D curves
and surfaces.

2.1 Orientation Maps of 2D Curves

Suppose we have a smooth, arbitrarily differentiable 2D curvex(t) = x(t)x̂ + y(t)ŷ. The curve
itself generates a continuous set of changing tangents and normals of the form

T(t) = dx(t)=dt = x0x̂+ y0ŷ (1)

N(t) = y0x̂� x0ŷ : (2)

We choose this relative orientation convention so that in any dimension the tangent vector is ex-
pressible as the positive-signed cross-product of the normal(s); see [15] for further details. Unit
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Figure 5: 2D Gauss map sketches of (a) the normal directions and (b) the tangent directions
corresponding to the U-shaped curve in Figure 4. All these vectors lie on the unit circle in 2D.
The straight line segments alongd andf in Figure 4 correspond to single points in both maps.

length vectors will hereafter be distinguished with the conventional notationv̂ = v=kvk, so the
normalized tangent and normal directions are denoted byT̂ andN̂.

In Figure 4, we show an example of a 2D curve with its tangent and normal fields. Thenor-
malizedtangent and normal fields have only one degree of freedom, which we denote by the angle
�(t); the column vectorŝN andT̂ then represent a moving orthonormal coordinate frame that may
be expressed in the form

h
N̂ T̂

i
=

"
cos � � sin �
sin � cos �

#
: (3)

We may derive a 2D version of the frame equations by differentiating the frame to get

N̂0(t) = +v�T̂ (4)

T̂0(t) = �v�N̂ ; (5)

where�(t) is the curvature andv(t) is the “velocity” relative to the infinitesimal measure of curve
lengthds2 = dx(t) � dx(t), that is,d�(t)=dt = (ds=dt)(d�(s)=ds) = v(t)�(t).

Note: we will find sign choices to be a subtle exercise throughout this paper. In Figure 4, the
fact that the normal̂N is chosen to point to theoutsideof a curve encircling an enclosed area in
the right-hand sense makes the system inequivalent to the Frenet frame of the corresponding 3D
curve, which would havêN pointinginwardseverywhere except around the pointe, and would be
undefined along the straight segmentsd andf .
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2D Tangent Map and Gauss Map. A 2D version of the Gauss map [8, 12] used in the classical
differential geometry of surfaces follows when we discard the original curve in Figure 4 and restrict
our view to showonly the path of the normalized normals, as in Figure 5(a), or the normalized
tangents, as in Figure 5(b); both vector fields take values only in the unit circle. We note that any
sufficiently small open neighborhood of the curve has unique tangent and normal directions, up
to the possibility of a shared limit point for straight segments such asd andf in Figure 4; over
the whole curve, however, particular neighborhoods of directions may be repeated many times,
resulting in an overlapping, non-unique 2D map, as indicated schematically in Figure 5. We will
accept this as a feature, not necessarily a deficiency, of the construction.

2D “Quaternions.” In the appendix, we present the details of a derivation of a quaternion-like
approach to the representation of 2D frames that may be informative to some readers. A brief
summary begins by noting that the normal and tangent vectors can be parameterized by a quadratic
form in the two variablesa andb as

h
N̂ T̂

i
=

"
cos � � sin �
sin � cos �

#
=

"
a2 � b2 �2ab
2ab a2 � b2

#
; (6)

where imposing the constrainta2 + b2 = 1 guarantees orthonormality of the frame.
By taking derivatives and extracting common factors, we find that the single matrix equation

"
a0

b0

#
=

1

2
v(t)

"
0 ��
+� 0

#
�

"
a
b

#
(7)

in the two variables with one constraint containsboththe frame equationŝT0 = �v�N̂ andN̂0 =
+v�T̂. The N̂0 andT̂0 equations are superficially a more complex set of two vector equations
in four variables with three constraints. Equation (7) is effectively thesquare rootof the frame
equations. Rotations may be realized as complex multiplication in(a + ib), and the pair(a; b) =
(cos(�=2); sin(�=2)) parameterizes any rotation. Since(a; b) � (�a;�b), the variables give a
double covering of the space of rotations if we take the angular range from0! 4� instead of2�.
These are precisely the properties we expect of quaternion representations of rotations.

2.2 3D Space Curves

We now move on to three-dimensional space curves. The fundamental difference in 3D is that,
while the tangent direction is still determinable directly from the space curve, there is an additional
degree of rotational freedom in the normal plane, the portion of the frame perpendicular to the
tangent vector. This is indicated schematically in Figure 6.

Tangent Map. The tangent direction of a 3D curve at each point is given simply by taking the
algebraic or numerical derivative of the curve at each sample point and normalizing the result. Each
tangent direction thus has two degrees of freedom and lies on the surface of the two-sphere S2. The
curve resulting from joining the ends of neighboring tangents is thetangent mapof the curve. As

8



x(t)
N

1
^
N

^

^
T

2

Figure 6: General form of a moving frame for a 3D curvex(t), with the tangent direction̂T
determined directly from the curve derivative, and the exact orientation of the basis(N̂1; N̂2) for
the normal plane determined only up to an axial rotation aboutT̂.

in the 2D case treated above, the tangent map of a 3D curve is not necessarily single-valued except
in local neighborhoods, and may have limit points (e.g., if there are straight segments). In Figure
7(a,b), we show examples of two classic 3D curves, one a closed knot, the (2,3) trefoil knot lying
on the surface of a torus, and the other the open helix:

xtorus(p; q)(a; b; c)(t) = (a+ b cos(qt)) cos(pt) x̂+ (a+ b cos(qt)) sin(pt) ŷ + c sin(qt) ẑ

xhelix(a; b; c)(t) = a cos(t) x̂+ b sin(t) ŷ + ct ẑ :

Differentiating these curves yields the tangent maps in Figure 7(c).

General Form of Curve Framings in 3D. The evolution properties of all possible frames for
a 3D curvex(t) can be written in a unified framework. The basic idea is to consider an arbitrary
frame to be represented in the form of columns of a3� 3 orthonormal rotation matrix,

Curve Frame=
h
N̂1 N̂2 T̂

i
: (8)

Here T̂(t) = x0(t)=kx0(t)k is the normalized tangent vector determined directly by the curve
geometry, and which is thus unalterable;(N̂1(t); N̂2(t)) is a pair of orthonormal vectors spanning
the plane perpendicular to the tangent vector at each point of the curve. SincekT̂k2 = kN̂1k

2 =
kN̂2k

2 = 1 and all other inner products vanish by definition, any change in a basis vector must be
orthogonal to itself and thereby expressible in terms of the other two basis vectors. Thus the most
general possible form for the frame evolution equations is

2
664
N̂0

1(t)

N̂0

2(t)

T̂0(t)

3
775=v(t)

2
64

0 +kz(t) �ky(t)
�kz(t) 0 +kx(t)
+ky(t) �kx(t) 0

3
75
2
664
N̂1(t)

N̂2(t)

T̂(t)

3
775 ; (9)

wherev(t) = kx0(t)k is the velocity of the curve if we are not using a unit speed parameterization.
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(a) (b) (c)

Figure 7: Tangent maps. (a) The (2,3) torus knot and the helix as 3D line drawings. (b) Illus-
trating an application of tubing to make the 3D curves more interpretable. (c) The corresponding
normalized tangent maps determined directly from the curve geometry. These are curves on the
two-sphere, and have also been tubed to improve visibility.
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The particular choice of notation and signs for the curvaturesk in Eq. (9) is compellingly
motivated by the quaternion Lie algebra treatment in the appendix, and its natural properties are
also exposed using the Darboux form of the equations,

N̂0

1 = v(t)F� N̂1

N̂0

2 = v(t)F� N̂2 (10)

T̂0 = v(t)F� T̂ ;

whereF generalizes the Darboux vector field (see, e.g., Gray [12], p. 205):

F = kxN̂1 + kyN̂2 + kzT̂ : (11)

The square magnitude of the total “force” acting on the frame iskFk2 = k2x+k2y +k2z , and we will
see below that this is a minimum for the parallel-transport frame.

The arbitrariness of the basis(N̂1(t); N̂2(t)) for the plane perpendicular tôT(t) can be ex-
ploited as desired to eliminate any one of the(kx; ky; kz) (see, e.g., [4]). For example, if

M̂1 = N̂1 cos � � N̂2 sin �

M̂2 = N̂1 sin � + N̂2 cos � ; (12)

differentiating and substituting Eq. (9) yields

M̂0

1 = M̂2(kz � �0)� T̂(kx sin � + ky cos �) (13)

M̂0

2 = �M̂1(kz � �0) + T̂(kx cos � � ky sin �) : (14)

Thus the angle�(t) may be chosen to cancel the angular velocitykz in the(N̂1(t); N̂2(t)) plane.
The same argument holds for any other pair. Attempting to eliminate additional components pro-
duces new mixing, leaving at least two independent components in the evolution matrix.

Tubing. For completeness, we note that to generate a ribbon or tube such as those used to display
curves throughout this paper, one simply sweeps the chosen set of frames through each curve point
p(t) to produce a connected tube,

x(t; �) = p(t) + cos � N̂1(t) + sin � N̂2(t) :

The resulting structure is sampled int and over one full2� period in� to produce a tessellated tube.
Arbitrary functions of(t; �) can be introduced instead of the cosine and sine to produce ribbons
and general linear structures.

Classical Frames. We now note a variety of approaches to assigning frames to an entire 3D
space curve, each with its own peculiar advantages. Figure 8 compares the tubings of the (2,3)
trefoil knot and the helix for each of the three frames described below.
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(a) (b) (c)

Figure 8: Curve framings for the (2,3) torus knot and the helix based on (a) Frenet frame, (b)
Geodesic Reference frame (minimal tilt from North pole), and (c) Parallel Transport frame, which
is not periodic like the other frames.
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� Frenet-Serret Frame.This classical frame is determined by local conditions at each point of
the curve, but is undefined whenever the curvature vanishes (e.g., when the curve straightens
out or has an inflection point). For the Frenet frame,kx = 0, ky is the inverse radius of
curvature, i.e., the curvature�(t), andkz(t) is the torsion�(t), which mixes the two normal
vectors in their local plane. This choice produces the usual equations

2
664
T̂0(t)

N̂0(t)

B̂0(t)

3
775=v(t)

2
64 0 �(t) 0
��(t) 0 �(t)

0 ��(t) 0

3
75
2
664
T̂(t)

N̂(t)

B̂(t)

3
775 : (15)

Note that the squared Darboux vector is thuskFk2 = �2 + � 2 � �2.

If x(t) is any thrice-differentiable space curve, we can identify the triad of normalized Frenet
frame vectors directly with the local derivatives of the curve,

T̂(t) =
x0(t)

kx0(t)k

N̂1 = N̂(t) = B̂(t)� T̂(t) (16)

N̂2 = B̂(t) =
x0(t)� x00(t)

kx0(t)� x00(t)k
;

with � = kx0(t)� x00(t)k=kx0(t)k3, � = x0(t)� x00(t) � x000(t)=kx0(t)� x00(t)k2. For further
details, see [8, 12].

� Parallel-Transport Frame. This frame is equivalent to a heuristic approach that has been
frequently used in graphics applications (see, e.g., [24, 36, 5, 28]). A careful mathemati-
cal treatment by Bishop [4] presents its differential properties in a form that can be easily
compared with the standard features of the Frenet frame. The parallel transport frame is
distinguished by the fact that it uses the smallest possible rotation at each curve sample to
align the current tangent vector with the next tangent vector. The current orientation of
the plane normal to the tangent vector depends on the history of the curve, starting with
an arbitrary initial frame, and so one is essentially integrating a differential equation for
the frame change around the curve. The frame depends on the initial conditions, and can-
not be determined locally on the curve like the Frenet frame. The algorithm with the best
limiting properties [27] for computing this frame involves determining the normal direction
N̂ = Ti � Ti+1=kTi � Ti+1k to the plane of two successive tangents to the curve, finding
the angle� = arccos(T̂i � T̂i+1), and rotating the current frame to the next frame using the
3� 3 matrixR(�; N̂) or its corresponding quaternion (see appendix)

q(�; N̂) = q(arccos(T̂i � T̂i+1);Ti �Ti+1=kTi �Ti+1k) : (17)

If the successive tangents are collinear, one leaves the frame unchanged; if the tangents are
anti-collinear, a result can be returned, but it is not uniquely determined.
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To identify the parallel transport frame with Eq. (9), we setky ) k1,�kx ) k2, andkz = 0
to avoid unnecessary mixing between the normal components (effectively the definition of
parallel transport); this choice produces Bishop’s frame equations,

2
664
N̂0

1(t)

N̂0

2(t)

T̂0(t)

3
775=v(t)

2
64

0 0 �k1(t)
0 0 �k2(t)

k1(t) k2(t) 0

3
75
2
664
N̂1(t)

N̂2(t)

T̂(t)

3
775 : (18)

SincekT̂0k2 = (k1)
2 + (k2)

2 is an invariant independent of the choice of the normal frame,
Bishop identifies the curvature, orientation, and angular velocity

�(t) =
�
(k1)

2 + (k2)
2
�1=2

�(t) = arctan

 
k2
k1

!

!(t) =
d�(t)

dt
:

k1 andk2 thus correspond to a Cartesian coordinate system for the “curvature polar coordi-
nates”(�; �) with � = �0+

R
!(t) dt; !(t) is effectively the classical torsion�(t) appearing in

the Frenet equations. Note that the squared Darboux vectorkFk2 = kT̂0k2 = k21 + k22 = �2

is now a frame invariant. It is missing the torsion component present for the Frenet frame,
and thus assumes its minimal value.

� Geodesic Reference Frame.In this paper, we will often need a frame that is guaranteed to
have a particular axis in one direction, but we will not care about the remaining axes because
they will be considered as a space of possibilities. A convenient frame with these properties
can always be constructed starting from the assumption that there exists a canonical reference
frame in which, say, thêz axis corresponds to the preferred direction. Thus ifv̂ is the
desired direction of the new axis, we can simply tilt the reference axisẑ into v̂ along a
minimal, geodesic curve using an ordinary rotationR(�; n̂) or its corresponding quaternion
(see appendix):

q(�; n̂) = q(arccos(ẑ � v̂); ẑ� v̂=kẑ� v̂k) : (19)

Clearly any reference frame, including frames related to the viewing parameters of a moving
observer, could be used instead ofẑ. This frame has the drawback that it is ambiguous
whenever̂v = �ẑ; sequences of frames passing through this point will not necessarily be
smoothly varying since only a single instance of a one-parameter family of frames can be
returned automatically by a context-free algorithm. Luckily, this is of no consequence for our
application. As we will discuss later in the quaternion framework, this property is directly
related to the absence of a global vector field on the two-sphere.

� General Frames. We will henceforth work with the general framework for coordinate
frames of arbitrary generality, rather than choosing conventional frames or hybrids of the
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frames described so far (see, e.g., Klock [24]). While the classical frames have many funda-
mentally appealing mathematical properties, we are not in fact restricted to use any one of
them. Keeping the tangent vector field intact, we may modify the angle of rotation about the
tangent vector at will to produce an application-dependent frame assignment. An example
of such an application is a closed curve with inflection points: the Frenet frame is periodic
but not globally defined, the parallel transport frame will not be periodic in general, and
the Geodesic Reference frame will be periodic but may have discontinuities for antipodal
orientations. Thus, to get a satisfactory smooth global frame, we need something close to
a parallel transport frame but with a periodic boundary condition; an example of an ad hoc
solution is to take the Parallel Transport frame and impose periodicity by adding to each ver-
tex’s axial rotation a fraction of the angular deficit of the parallel transport frame after one
circuit. But this is highly heuristic and depends strongly on the chosen parameterization. In
the following sections, we introduce a more comprehensive approach.

2.3 3D Surfaces

If we are given a surface patchx(u; v) with some set of non-degenerate coordinates(u; v), we may
determine the normals at each point by computing

N(u; v) = xu � xv ; (20)

wherexu = @x=@u andxv = @x=@v. For surfaces defined numerically in terms of vertices
and triangles, we would choose a standard procedure such as averaging the normals of the faces
surrounding each vertex to determine the vertex normal. Alternatively, if we have an implicit
surface described by the level-set functionf(x) = 0, the normals may be computed directly from
the gradient at any pointx satisfying the level set equation:

N(x) = rf(x) :

The normalized normal is defined as usual byN̂ = N=kNk.
For 3D curves, the geometry of the curve determined the tangent vectorT̂ and left a pair of

normal vectors(N̂1; N̂2) with one extra degree of freedom to be determined in the total frame
[N̂1 N̂2 T̂]. The analogous observation for surfaces is that the geometry fixes thenormalat each
surface point, leaving a pair oftangentvectors(T̂1; T̂2) with one extra degree of freedom to be
determined in the total surface frame,

Surface Frame=
h
T̂1 T̂2 N̂

i
: (21)

When a(u; v) surface parameterization is available, the surface partial derivativesxu andxv

can in principle be used to assign a frame
h
T̂1 T̂2 N̂

i
(using Gram-Schmidt ifxu � xv 6= 0), but

there is no reason to believe that this frame has any special properties in general. In practice, it is
extremely convenient to define a rectangular mesh on the surface patch, and a grid parameterized
by (u; v) typically serves this purpose.
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(c) (d)

(a) (b)

Figure 9: Classical Gauss maps of surfaces. (a) An ellipsoid and (b) a portion of a torus. (c,d)
The corresponding standard Gauss maps of the normal vectors onto the sphere. Patches with
coincident normals (e.g., for the full torus) would overlap in this representation.
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Classical Gauss Map. The surface analog of the tangent map of a curve is the Gauss map,
which takes a selection of points on the surface, typically connected by a mesh of some sort, and
associates to each point its normalized surface normal. The Gauss map is then the plot of each of
these normals in the coordinate system of a unit sphere S2 in R3. The Gauss map is guaranteed
to be unique in some sufficiently small open set of each point of a regular surface, but may be
arbitrarily multiple valued for the entire surface; note also that many nearby surface points can be
mapped to a single point in the Gauss map, e.g., for certain types of planar curves in the surface or
a planar area patch.

In Figure 9, we show a coordinate mesh on an elliptical surface and its single-valued Gauss
map, as well as a quarter of a torus and its Gauss map; the Gauss map of the entire torus would
cover the sphere twice, and there are two entire circles on the torus that correspond to single points,
the North and South poles, in the Gauss map.

Surface Frame Evolution. The equations for the evolution of a surface frame follow the same
basic structure as those of a space curve, except the derivatives are now directional, with two lin-
early independent degrees of freedom corresponding to the tangent basis(T̂1; T̂2) in the surface.
Typically (see [8, 12]), one assumes a not-necessarily-orthogonal parameterization(u; v) that per-
mits one to express the tangent space in terms of the partial derivatives(xu; xv), giving the normals
N̂(u; v) of Eq. (20). Then one can express the local curvatures in terms of any linearly independent
pair of vector fields(U; V) as

DUN̂�DVN̂ = K (U�V) (22)

DUN̂�V +U�DVN̂ = 2H (U�V) : (23)

With U = xu � r andV = xv � r, we get the classical expressions. As Gray succinctly notes,
since all the derivatives of̂N are perpendicular tôN, the whole apparatus amounts to constructing
the tangent map of the Gauss map.

If we try to build the geometry of surfaces from a parametric representation, then each direc-
tional derivative has a a vector equation of the form of Eq. (9). Thus we may write equations of
the general form

@

@u

2
664
T̂1(u; v)

T̂2(u; v)

N̂(u; v)

3
775=

2
64

0 +az(u; v) �ay(u; v)
�az(u; v) 0 +ax(u; v)
+ay(u; v) �ax(u; v) 0

3
75
2
664
T̂1(u; v)

T̂2(u; v)

N̂(u; v)

3
775 (24)

and

@

@v

2
664
T̂1(u; v)

T̂2(u; v)

N̂(u; v)

3
775=

2
64

0 +bz(u; v) �by(u; v)
�bz(u; v) 0 +bx(u; v)
+by(u; v) �bx(u; v) 0

3
75
2
664
T̂1(u; v)

T̂2(u; v)

N̂(u; v)

3
775 : (25)

The last lines of each of Eqs. (24) and (25) are typically combined in textbook treatments to
give 2

4 @N̂(u;v)
@u

@N̂(u;v)
@v

3
5 = [K]

"
T̂1(u; v)

T̂2(u; v)

#
: (26)
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(a) (b) (c)

Figure 10: Examples of frame choices for the upper portion of an ordinary sphere. (a) Frames
derived from standard polar coordinates on sphere. (b) Geodesic Reference frame for the sphere;
each frame is as close as possible to the canonical coordinate axes at the North pole. (c) Frames
derived from projective coordinates on the sphere, which turn out to be the same frame field as
the Geodesic Reference frame.

where the matrix[K] has eigenvalues that are the principal curvaturesk1 andk2, and thus

K = det [K] = k1k2 (27)

is the Gaussian curvature and

H =
1

2
tr [K] =

1

2
(k1 + k2) (28)

is the mean curvature.

Examples of Surface Framings. If we are given a description of a surface, we can compute
normals and choices of the corresponding frames by various means. In Figure 10, we illustrate
three of these for the sphere. The first is derived from the standard orthonormal polar coordinate
system, and the second is the extension to surfaces of the Geodesic Reference frame, which assigns
the frame closest to a standard reference axis at the North Pole. The third is a frame based on polar
projective coordinates for the sphere,

x(u; v) =
2u

1 + u2 + v2

y(u; v) =
2v

1 + u2 + v2
(29)

z(u; v) =
1� u2 � v2

1 + u2 + v2
;

which map the real plane into the unit sphere withx2 + y2 + z2 = 1 except for the point at
infinity corresponding to the South pole. In fact, the polar projective coordinates generate the
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same assignments as the Geodesic Reference frame does, so, except for the difference in locations
of the grid sampling, these are the same framings.

Note: Do not be confused by alternatesamplingsof the sameframings; if a parameterization
x(u; v) gives a frame withT1 = @x(u; v)=@u andT2 = @x(u; v)=@v, we can change to a polar
sampledmesh, (r = (u2 + v2)1=2; � = arctan(v; u)), yet still retain the same frames at the same
pointsx(r; �) = x(u = r cos �; v = r sin �).

3 Quaternion Frames

In Section 2.1, we discussed the nature of 2D frames and noted a means of re-expressing the four
equations with three constraints of the conventional frame system more efficiently; we showed a
transformation into an equivalent set of two equations involving a single pair of variables obeying
a unit length constraint and whose rotation transformation properties were realized by complex
multiplication. Quaternions accomplish exactly this same transformation for 3D rotations: they
permit the nine coupled frame equations with six orthonormality constraints in 3D to be succinctly
summarized in terms of four quaternion equations with the single constraint of unit length. De-
tailed derivations along with other basic properties of quaternions are provided for reference in the
appendix. A brief summary is given below.

Quaternion Frame Equations. Our task is now to rephrase the general properties of curve and
surface frames in quaternion language so that, for example, we have a sensible space in which to
consider optimizing frame assignments.

We begin with the standard definition for the correspondence between3� 3 matricesRi
j and

quaternionsq:
Rq(V)i =

X
j

Ri
jV

j = q � (0; V i) � q�1 : (30)

Henceforth, we will use the notation “�” to distinguish quaternion multiplication, and will use “�”
when necessary to denote ordinary Euclidean inner products. Next, we express each orthonormal
frame component as a column ofRi

j by using an arbitrary quaternion to rotate each of the three
Cartesian reference axes to a new, arbitrary, orientation:

N̂1 orT̂1 = q � (0; x̂) � q�1

N̂2 orT̂2 = q � (0; ŷ) � q�1 (31)

T̂ orN̂ = q � (0; ẑ) � q�1 :

(Technically speaking, in the above equationT̂ really means the quaternion(0; T̂) with only a
vector part, etc.) All this can be transformed into the following explicit representation of the frame
vectors as columns of a matrix of quaternion quadratic forms:

h
[N̂1] [N̂2] [T̂]

i
=h

[T̂1] [T̂2] [N̂]
i
=
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2
64
q20 + q21 � q22 � q23 2q1q2 � 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 q20 � q21 + q22 � q23 2q2q3 � 2q0q1
2q1q3 � 2q0q2 2q2q3 + 2q0q1 q20 � q21 � q22 + q23

3
75 : (32)

Note: MATHEMATICA users should remind themselves that matrices are stored as lists of rows in
MATHEMATICA , so one musttransposea standard matrix to easily retrieve column vectors from
Eq. (32) and avoid mysterious sign errors.

Taking differentials of Eq. (31), we generate expressions of the form

dq = q � (q�1 � dq) = q �
1

2
(0;k) (33)

dq�1 = (dq�1 � q) � q�1

= �(q�1 � dq) � q�1

= �
1

2
(0;k) � q�1 (34)

where
k = 2(q0 dq� q dq0 � q� dq) :

Substituting these expressions into the the calculation for the first column, we immediately find the
expected commutators of quaternion multiplication:

dN̂1 = dq � (0; x̂) � q�1 + q � (0; x̂) � dq�1

=
1

2
q � ((0;k) � (0; x̂)� (0; x̂) � (0;k)) � q�1

= q � (0;k� x̂) � q�1 :

The rest of the columns are computed similarly, and a straightforward expansion of the components
of the cross products proves the correspondence between Eq. (33) and Eq. (9).

To relate the derivative to a specific curve coordinate system, for example, we would introduce
the curve velocity normalizationv(t) = kx0(t)k and write

q0 = v(t)
1

2
q � (0;k) : (35)

One of our favorite ways of rewriting this equation follows directly from the full form for the
quaternion multiplication rule given in the appendix; since this multiplication can be written as an
orthogonal matrix multiplication on the 4D quaternion space, we could equally well write

2
6664
q00
q01
q02
q03

3
7775 = v(t)

1

2

2
6664

0 �kx �ky �kz
+kx 0 +kz �ky
+ky �kz 0 +kx
+kz +ky �kx 0

3
7775 �
2
6664
q0
q1
q2
q3

3
7775 : (36)

This is the 3D analog of Eq. (7).
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At this point, there are many other directions we could carry this basic structure, but we will
not pursue the general theory of quaternion differential geometry further here. We will conclude
with a short summary of the quaternion treatment of the classical surface equations. Starting from
Eq. (33), we are led immediately to the quaternion analogs of Eqs. (24) and (25):

qu � @q=@u =
1

2
q � (0; a) (37)

qv � @q=@v =
1

2
q � (0;b) : (38)

But how shall we express the curvatures in a way similar to the classical formula in Eq. (26)?
An elegant form follows by pursuing the quaternion analog of the vector field equations given in
Eqs. (22,23). We write

qu � q
�1
v = �

1

4
q � (0; a) � (0;b) � q�1

= �
1

4
q � (�a � b; a� b) � q�1

= �
1

4

h
�a � b Î+ (a� b)x T̂1 + (a� b)y T̂2 + (a� b)z N̂

i
; (39)

where we use the quaternion forms in Eq. (31) with the addition of the quaternion identity element
Î = (1; 0) = q�(1; 0)�q�1 for the frame vectors. We see that the projection to the normal direction
gives precisely the determinant(a � b)z = K identified in Eq. (26) as the scalar curvature. The
mean curvature follows from an expression similar to Eq. (23),

q � (0; x̂) � q�1
u + q � (0; ŷ) � q�1

v = �
1

2
q � (�x̂ � a� ŷ � b; x̂� a+ ŷ � b) � q�1

= �
1

2

h
�(ax + by)Î+ bzT̂1 � azT̂2 + (ay � bx)N̂

i
;(40)

where again the coefficient of the normal,(ay�bx) = tr [K] = 2H, is the desired expression. Sim-
ilar equations can be phrased directly in the 4D quaternion manifold using the forms of Eq. (36).

3.1 Visualizing Quaternion Frames

Seeing the parameters of a single quaternion. Any (unit) quaternion is a point on S3 and there-
fore is described by three parameters incorporated in the standard parameterization

q(�; n̂) = (cos
�

2
; n̂ sin

�

2
) ; (41)

where0 � � < 4�, and the eigenvector of the rotation matrix (unchanged by the rotation), is a
point on the two-sphere S2 representable aŝn = (cos� cos �; sin� cos �; sin�) with 0 � � < 2�
and��=2 � � � �=2.
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Figure 11: Illustration of how theq0 part of a quaternion is “known” if we have a 3D image of the
vector partq = n̂ sin �

2
of the quaternion. (b) Schematic representation of the concentric-sphere

uniform distance scales needed to form a mental model of the metric distances in quaternion
space between two points in the parallel 3D projection. Distances are roughly Euclidean near
the origin (q � 0 in (a)) and equal-length lines appear increasingly compressed as the radius
approaches unity.

An informative visualization of quaternions can be constructed by examining their properties
carefully. If we simply make a 3D display of the vector part of the quaternion,n̂ sin �

2
, we see that

the scalar element of the quaternion is redundant, since, for each�,

q0 = cos
�

2
= �

0
@1�

�����n̂ sin
�

2

�����
2
1
A

1=2

: (42)

That is,q0 is just the implicitly known height of the 4D unit vector in the unseen projection di-
rection, as illustrated in Figure 11(a). In Figure 11(b), we schematize the mental model of metric
distance required to complete the interpretation of the visualization. If we imagine dividing the
arc of the semi-circle in Figure 11(a) into equal angular segments, the arc lengths are all the same
distance apart in spherical coordinates. Projected onto theq plane, however, the projected spacing
is non-uniformly scaled by a a factor ofsin �. Thus to keep our vision of distance consistent, we
imagine the space to be like 3D graph paper with concentric spheres drawn at equal distances in the
special scale space; such 3D graph paper would look like Figure 11(b). Distances are essentially
Euclidean near the 3D origin, for small 3D radii, and are magnified as the radius approaches unity
to make the marked spheres equidistant in conceptual space.

If we assume the positive root is always taken forq0, then we effectively restrict ourselves to
a single hemisphere of S3 and eliminate the two-fold redundancy in the correspondence between
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Figure 12: (a) This image represents the 3D vector part of the quaternionq = (cos �
2
; t̂ sin �

2
)

representing a single instance of the one-parameter family of possible rotations leaving in-
variant the tangent vector̂t at one point of a space curve. (b) A representation of the entire
one-parameter space of possible frames having the same tangent vectort̂. The vector part of
the quaternion must lie on the diameter of the two-sphere in 3D depicted here. We depict the
diameter as a very skinny ellipse, because it is in fact a degenerate projection of a circle in 4D,
which could be exposed as shown by making a small 4D rotation before projecting to 3D. (c)
A polar projection of the same object removes the doubling by projecting the circle to a line
through infinity inR3.

quaternions and the rotation group. Alternatively, despite the fact that quaternions with both signs
of q0 map to the same point in this projection, we can indicate the simultaneous presence of both
hemispheres using graphical cues; one possible method is to use saturated colors in the “front”
hemisphere, and faded colors (suggesting distance) for objects in the “back” hemisphere.

Hemispheres inS3. To clarify the terminology, we note that a projected hemisphere for S2 is a
filled disk (a “two-ball”) in the plane, and the full surface of the sphere consists of two such disks
joined at the outer circular boundary curve; for S3, we use the word hemisphere to indicate a filled
solid two-sphere (technically a “three-ball”), and imagine the full volume of the three-sphere to
consist oftwosuch spherical solids joined on the skin (a two-sphere) of the surface enclosing both.

The family of possible values of Eq. (41) projects to a double-valued line (actually an “edge-
on” projection of a circle) which is a directed diameter of the unit two-sphere, in the direction ofn̂;
in a polar projection, this circle becomes a line to infinity through the origin. These representations
of a unit quaternion as a vector from the origin to a point inside the solid two-sphere (the three-ball)
are illustrated schematically in Figure 12.

Any particular 3D rotation is represented twice, since the quaternion circle is parameterized by
0 � � < 4�. A simple parallel projection thus produces two solid balls on top of each other in the
3D projection, one the analog of the “North pole disk” of a two-sphere parallel projected from 3D
to a screen, the other the analog of the “South pole disk” of a two-sphere. The analog of a polar
projection, which for a two-sphere sends the North pole to infinity of R2, flattens the three-sphere
out to fill R3, as shown in Figure 12(c), and eliminates the double-valued properties of the parallel
projection.
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CURVE LENGTHS (2,3) Torus Knot Helix

Frenet Frame 14.3168 6.18501
Geodesic Reference Frame 14.6468 7.82897
Parallel Transport Frame 10.1865 6.06301

Table 1: Relative lengths (in radians) of the quaternion frame maps for various frame choices
describing the (2,3) torus knot and the helix. The Parallel Transport frame is the shortest possible
frame map.

3.2 Quaternion Frames for Curves

We now can produce quaternion frames for space curves directly by several techniques.

Quaternions from Local 3D Frames. In the case of the Frenet frame, we have no choice but to
consider each frame as totally independent of the others. Each is locally computable, and there is
in principle no relation between them, since the curvature could vanish at any point. In this case,
we compute the frames directly from Eq. (16), thus deriving a3 � 3 orthogonal matrixR(t) at
each point of the curve. We then apply standard inversion algorithms [37, 35, 31] to obtain the
corresponding quaternion up to a sign. Finally, we apply a simple operator that checks the local
continuity of the corresponding frames. If two quaternion vectors representing neighboring frames
have a dot product near negative one, we change the sign of one to keep it near its neighbors. If
two neighbors are excessively far apart in terms of the 4D angle between them, and are not simply
near-negatives of one another, then the Frenet frame probably is poorly defined and should be
tagged as such until continuity resumes. Figure 13 shows the Frenet frame tubing of a torus knot
and the corresponding trajectory of these frames in the vector subspace of quaternion space.

Note: Forcing close quaternion Frenet frames on closed curves such as torus knots results in
a very interesting phenomenon. Depending on the parameters of the curve, the path in quaternion
space may close after a single traversal of the curve, or it may require two or more traversals, as
in the case shown in Figure 13. We have checked this feature on a wide range of torus knots,
and found that there are generally “jumps” between needing different numbers of circuits at those
parameter values that imply inflection points (zero curvature) in the curve.

Direct Quaternion Frames. The Geodesic Reference frame and the Parallel Transport frame, in
contrast to the Frenet frame, can be defined directly in terms of quaternions if desired, as indicated
in Section 2.2; all that is needed is an initial quaternion reference frame, and then the geometry of
the curve specifies enough at each point to express the needed rotation in quaternion form.

Comparison of Tubings and Quaternion Frames. Previously, in Figure 8, we compared the
tubings for the (2,3) torus knot and for the helix based on the Frenet, Geodesic Reference, and
Parallel Transport frames. The corresponding quaternion paths are illustrated together in Figure
14. The Parallel Transport frame shown uses the initial Frenet frame as a starting point; we could
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Figure 13: (a) A trefoil torus knot. (b) Its quaternion Frenet frame projected to 3D. For this
trefoil knot, the frame does not close on itself in quaternion space unless the curve is traversed
twice, corresponding to the double-valued “mirror” image of the rotation space that can occur in
the quaternion representation. Observe the longer segments in (b): these correspond to the three
high-torsion segments observable in (a).
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(a) (b)

Figure 14: (a) Quaternion frames in “standard” 3D vector visualization projection for the (2,3)
torus knot: Red—Geodesic Reference: this is planar by construction, since all 3D points must
lie in the plane perpendicular to the reference axis; the 3D origin is at the centroid of the red
curve. Green—Frenet: the Frenet frame is actually cyclic, but to see this easily for this 2,3
torus knot, the mirror image of the current frame must be added, giving effectively a double
traversal of the curve as shown in Figure 13. Cyan—Parallel Transport: the PT frame must
be given a starting value, which here is seen at the top center of the image to coincide with
the (green) Frenet frame. The PT frame is not cyclic, but is the shortest path, with three very
noticeable tight loops. (b) The same selection of quaternion frames for the helix. Again, the red
Geodesic Reference curve is planar (and cycles back on itself twice for this helix); the green
Frenet frame takes a longer path that will return to its original orientation, and the cyan Parallel
Transport frame, seen starting at the same orientation as the Frenet, will not ordinarily return
to the same orientation, but will have the shortest 4D path length. (The hidden double circuit
of the Geodesic Reference frame for this helix in fact makes it longer.)
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use any starting quaternion with the correct tangent vector. The relative path lengths of the curves
in Figure 14 are summarized in Table 1.

We note the following properties:

� Frenet. Periodic for periodic non-singular curves, has a tendency to twist a bit too much
(where the torsion is high), leaving long jumps between neighboring samples in quaternion
space; undefined at inflection points and zero curvature segments.

� Geodesic Reference.Also guaranteed to be periodic for periodic curves, but has the odd
property that it always lies in a plane perpendicular to the reference axis in our preferred 3D
quaternion projection. Ambiguous and therefore potentially not smooth for frames opposing
the reference frame direction.

� Parallel Transport. This is the quaternion frame with minimal 4D length, though it may
be difficult to see this feature immediately in our standard projection. It is not in general a
periodic path. Different choices of starting frame produce curves of identical length differing
by rigid (possibly reflecting) 4D motions (see Eq. (56)).

3.3 Quaternion Gauss Map for Surfaces

The quaternion Gauss map extends the Gauss map to include a representation of the entire co-
ordinate frame at each surface point, introducing a number of new issues. In particular there is
a useful, but mathematically suspect, approach that we might call an “engineering” approach to
the quaternion Gauss map that lets us quickly get informative visualizations for those special cases
where we are given a locally orthogonal parameterization of the surface except perhaps for isolated
singularities of the coordinate system.

For these cases, we may construct the precise quaternion analog of the Gauss map by lifting
the surface’s coordinate mesh into the space of quaternions at each value of the orthonormal co-
ordinatization(u; v) of the surface or surface patch. The correspondence of this map to the Gauss
map isnot directly visible, since (see Eq. (32)) the normal directions of the Gauss map are non-
trivial quadratic forms constructed from all the quaternion components; however, a projection to a
subspace of the quaternion space based on the bilinear action of quaternions on pure vectors may
be constructed by imitating the projection of the Hopf fibration of S3 (see, e.g., Shoemake [39, 3]).
In Figure 15, we show two such cases, an ellipsoid with orthonormal polar coordinates singular
at the poles and a torus with global, nonsingular, coordinates, using our now-standard projections
of the quaternion Gauss map to 3D. In each of these cases, a single circuit of the surface gener-
ates only one-half of the quaternion surface shown; the symmetric quaternion figure results from
traversing the surface twice to adjoin the reflected image of the single-circuit quaternion surface.
That is, each point on the 3D surfaces appears twice, once atq, and once at�q, in these periodic
quaternion Gauss maps.

We see that the singular coordinate system typically used for the ellipsoid is topologically a
cylinder; the circles corresponding to the singularities of the coordinate system (circles of normal
directions) at the North and South poles correspond toboundariesof the quaternion Gauss map.
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(c) (d)

(a) (b)

Figure 15: Examples of quaternion Gauss maps for surfaces. (a) The ellipsoid and (b) the torus.
(c,d) The corresponding Quaternion Gauss maps, projected from the three-sphere in 4D. The
equatorial direction has been traversed twice in order to get a closed path in the map; the singular
poles in the ellipsoid coordinate system correspond to the edges or boundaries of the quaternion-
space ribbon.
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(a) (b) (c)

Figure 16: Examples of quaternion Gauss maps for the frame choices for the upper portion of an
ordinary sphere given originally in Figure 10. (a) Frames derived from standard polar coordinates
on sphere. (b) Geodesic reference frame for the sphere; each frame is as close as possible to the
canonical coordinate axes at the North pole. (c) Frames derived from projective coordinates on
the sphere.

PATCH AREAS Hemispherical patch

Polar Coordinates 2.1546
Geodesic Reference Frame 1.9548

Table 2: Areas (in steradians) of the quaternion frame maps for the polar coordinate and Geodesic
Reference frame choices on the hemispherical patches of Figure 16.

The torus, which has the extremely unusual feature that it possesses a global regular coordinate
system, has a (reflection doubled) quaternion Gauss map which is another, four-dimensional, torus
embedded in the quaternion S3 space.

Quaternion Maps of Alternative Sphere Frames. In Figure 10, we showed three alternate sets
of frames for the upper half of an ordinary sphere. The assigned coordinate systems may be
converted directly into quaternion frames and coerced into consistency in the usual manner. In
Figure 16, we show the results. The Geodesic Reference frames and the projective coordinates are
in fact the same space of frames computed in different ways: both are planes perpendicular to the
ẑ axis. The coordinate systems used to compute the quaternion Gauss maps in parts (a) and (b)
of the figure are commensurate, so we may compare the areas, computed using solid angle on the
three-sphere in units of steradians; the results are shown in Table 2.

Covering the Sphere and the Geodesic Reference Frame South Pole Singularity.The Geodesic
Reference frame for a surface patch has the peculiarity that it has an ambiguity whenever the vector
to be assigned is exactly opposite the reference frame. As we show in Figure 17, the tilting from the
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Figure 17: The Geodesic reference frame tilts to an ambiguous result as the tilt angle approaches
�, the inverted direction of the chosen reference frame. We see two different 3D projections
of the quaternion surface, (a) giving the vector coordinates(q1; q2; q3), and (b) the coordinates
(q0; q1; q2). The center is the North pole, the middle ring is the equator, and outer circle is in
fact the space of possible frames at the South pole of the sphere: there is no unique way to tilt
the North pole to the orientation of the South pole, as there is a full circle of arbitrariness in the
choice.
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reference frame in quaternion space (easily seen in ordinary 3D space as well) eventually reaches
a quaternion circle representing the ambiguous orientation of the frame with reference direction
along the�ẑ axis. This phenomenon is a practical consequence of the fact that the two-sphere
does not admit a global vector field: according to classical manifold theory (see, e.g., Milnor or
Grimm and Hughes [29, 13]), one needs at least two separate patches, one for the North pole and
one for the South pole, to place a complete set of coordinates (or equivalently, for our problem, a
set of frames) on a sphere.

The more mathematical approach requires that interesting surfaces be defined as a collection of
patches [13, 7], and the spaces of frames for each patch must be matched up and sewn together by
assigning a transition function along the boundaries. There are a variety of ways one can approach
the problem of taking a manifold and associating fiber bundles with it; the most relevant fiber
bundle for the context of the current problem is thespace of moving framesof the space R3 in
which the surface is embedded [7, 40]. We in fact move as usual from the space of frames to
the space of associated quaternions. Then at each pointx of a patch we have frames that are
matrix-valued functions from the patch into the group SU(2) of quaternion frames (which we treat
as the topological space S3). We can express the relationship between the framesq and q0 of
two neighboring patchesU andU 0, represented as quaternions, via quaternion multiplication by a
transition functiont:

q0 = t � q :

We may in fact explicitly construct the transition functions between the two patches as quater-
nion maps, giving a quaternion version of one of the classical procedures of manifold theory. In
Figure 18(a), we show the the projective coordinates on the sphere that produced the set of co-
ordinate frames in Figure 10(c), which are essentially equivalent to those in (b) sampled at polar
coordinate values. Using the polar coordinate sampling, so that we can easily identify the equa-
tor, we show in Figure 18(b) the quaternion maps corresponding to the coordinate frames derived
from this orthonormal coordinate system covering the North pole (disk in center) and the South
pole (smashed side view of a hemisphere in the 3D projection with itsq ! (�q) partner). These
coordinate systems agree at exactlyonepoint on the equator, which is (almost) evident from the
figure; note that we have chosen to display the coordinate systems only up to the equator, unlike
the patches of Figure 17, which cover the entire sphere except for one pole.

In order to establish a mapping covering the complete sphere, we must write down an explicit
correspondence between the quaternion frames for each patch at each shared point on the equator.
In Figure 19(a), we show the geodesic arcs on S3 symbolizing the transition rotation

t(�) = qsouth(�) � q
�1
north(�)

at each point on the equatorial circle parameterized by�. Note carefully the order of quaternion
multiplication; with our conventions a different order will not work. The arcs themselves are
actually segments of the space of possible frames, since the simplest rotation between two frames
with the same normal (at the same point on the equator) is a geodesic rotation about that normal.
Figure 19(b) and (c) shows the transition functionsq(�) sampled at regular intervals in� and
referred to the origin(1; 0; 0; 0) in quaternion space. Each quaternion point at the end of an arc
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Figure 18: (a) The North pole projective coordinatization of the sphere; (b) a similar regular patch
for the South pole. Because of the “no-hair” theorem, no single regular patch can cover the entire
sphere. (c) The quaternion mappings of the systems of frames given by the North and South pole
coordinate patches, sampled in polar coordinates. Theq ! (�q) reflected images are included,
though the North pole’s images both have the same projection and are thus indistinguishable here.
The maps in (c) extend only to the equator, unlike the patches given in Figure 17.

represents a rotation to be applied to a point on the North pole patch equator to obtain the coordinate
frame at the corresponding point on the South pole patch equator. One point is in fact the identity,
and there is some degeneracy due to reflection symmetry across the equator.
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(a) (b) (c)

Figure 19: (a) The transition functions from the North pole frame to the South pole frame as arcs
in the three-sphere. These arcs are pieces of the space of possible frames with a given normal
on the equatorial point. (b) A representation of the transition functions as arcs from the origin in
rotation space (the pole(1; 0; 0; 0) in quaternion space) common to all the arcs here. The ends of
the arcs thus represent the actual rotation needed to match the coordinate systems at each point
on the equator. (c) A different projection from 4D to 3D, showing more details of the structure
of the transition function arcs, which have a two-fold degeneracy in the standard projection (b).
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4 The Space of Frames

We at last ready to introduce the key concept of thespace of possible frames.
Suppose at each sample pointx(t) of a curve, we are given a unit tangent vector,T̂(t), com-

puted by whatever method one likes (two-point sampling, five-point sampling, analytic, etc.). Then
one can immediately write down a one-parameter family describing all possible choices of the nor-
mal plane orientation: it is just the set of rotation matricesR(�; T̂(t)) (or quaternionsq(�; T̂(t)))
that leaveT̂(t) fixed.

For surfaces, the analogous construction follows from determining the unit normalN̂(u; v) at
each pointx(u; v) on the surface patch. The needed family of rotationsR(�; N̂(u; v)) (or quater-
nions q(�; N̂(u; v))) now leavesN̂(u; v) fixed and parameterizes the space of possibletangent
directions completing a frame definition at each pointx(u; v).

However, there is one slight complication: the family of framesR(�; v̂) leavingv̂ fixed does
not havêv as one column of the3�3 rotation matrix, and so does not actually describe the desired
family of frames. Therefore we proceed as follows:

We definef(�; v̂) = (f0; f1; f2; f3) to be a quaternion describing the family of frames for
which the direction̂v is a preferred fixed axis of the frame, such as the tangent or normal vectors.
The orthonormal triad of 3-vectors describing the desired frame is

F (�; v̂) =2
64
f 2
0 +f 2

1�f
2
2�f

2
3 2f1f2 � 2f0f3 2f1f3 + 2f0f2

2f1f2 + 2f0f3 f 2
0�f

2
1 +f 2

2�f
2
3 2f2f3 � 2f0f1

2f1f3 � 2f0f2 2f2f3 + 2f0f1 f 2
0�f

2
1�f

2
2 +f 2

3

3
75; (43)

where one column, typically the 3rd column, must bev̂.
The standard rotation matrixR(�; v̂) leavesv̂ fixed but does not havêv as one column of the

3�3 rotation matrix, and so we have more work to do. To computef(�; v̂), we need the following:

� A base reference frameb(v̂) that is guaranteed to have, say, the 3rd column exactly aligned
with a chosen vector̂v, which is either the tangent to a curve or the normal to a surface.

� A one-parameter family of rotations that leaves a fixed directionv̂ invariant.

The latter family of rotations is given simply by the standard quaternion

q(�; v̂) = (cos
�

2
; v̂ sin

�

2
) ; (44)

for 0 � � < 4�, while the base frame can be chosen as

b(v̂) = q(arccos(ẑ � v̂); (ẑ� v̂)=kẑ� v̂k) : (45)

We refer hereafter to the frameb(v̂) as theGeodesic Reference Framebecause it tilts the reference
vector ẑ along a geodesic arc until it is aligned witĥv; see Figure 20. If̂v = ẑ, there is no
problem, since we just takeb(v̂) to be the quaternion(1; 0); if v̂ = �ẑ, we may choose any
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Figure 20: Example of the Geodesic Reference Frame: on the northern hemisphere of a 2-sphere,
the Geodesic Reference Frame tilts theẑ axis of the north pole’s identity frame along the shortest
arc to align with a specified reference direction.

compatible quaternion such as(0; 1; 0; 0). We escape the classic difficulty of being unable to
assign a global frame to all of S2 because we need a parameterization ofall possibleframes, not
any one particular global frame. If one wants to use a reference frame that is not the identity frame,
one must premultiplyb(v̂) on the right by a quaternion rotating from the identity into that reference
frame; this is important when constructing a nonstandard Geodesic Reference Frame such as that
required to smoothly describe a neighborhood of the southern hemisphere of S2.

We can thus write the full family of possible quaternion frames keepingv̂ as a fixed element
of the frame triad to be the quaternion product

f(�; v̂) = q(�; v̂) � b(v̂) ; (46)

where� denotes quaternion multiplication and all possible frames are described twice since0 �
� < 4�. To summarize, if we specify a frame axisv̂ to be fixed, then the variable� in f(�; v̂)
serves to parameterize aring in quaternion space, each point of which corresponds to a particular
3D frame, and each frame has a diametrically opposite twin.

We argue that, since optimization will typically be done in the full quaternion space, the fact
that two opposite-sign quaternions map to the same physical three-space rotation is not a detriment;
in fact, it potentially permits an additional stability in the variational process since rotations by+�
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and�� are not close to each other in quaternion space as they are in ordinary rotation matrices. In
principle, any quaternion Gauss map can be replaced by its exact negative, and the variational pro-
cess could converge from an ambiguous starting point to either one; the frames would be the same.
In our standard projection, the two reflection-equivalent maps are inversions of one another about
the 3D origin; their unseen oppositeq0 values can of course cause an additional large separation of
the maps in 4D space.

4.1 Full Space of Curve Frames

We can now construct the space of frames step by step using the method above. In Figure 21, we
illustrate various views of the construction of the space of frames for the trefoil knot, beginning
with a few tangent vectors and the quaternion basis frames corresponding to quaternions that tilt
the reference axis into this tangent direction. The circular curve of quaternions representing the
space of normal frames is drawn for each tangent; each basis frame touches this curve once. Then
the family of these circular curves sweeps out a cylindrical two-manifold, the full space of invariant
frames for a 3D curve.

This space has several nontrivial properties. One is that, given one circular ring of frames,
a neighboring ring that is a parallel-transported version of the first ring is a so-called “Clifford
parallel” of the first ring: the distance from any point on one ring to the nearest point on the second
ring is the same. This is nontrivial to visualize and is a feature of the 4D space we are working
in. Another property is that the intervals between rings in the quaternion space directly indicate
the curvature. This comes about because the magnitude ofT̂0 is related to the parallel transport
transition between any two sample points, given by Eq. (17); since the parallel transport frames
are legal frames, and since the starting frame is arbitrary, each full ring is a parallel transport of
its predecessor, with the angular distance of the transition rotation providing a measure of the
curvature relative to the sampling interval.

4.2 Full Space of Surface Maps

The full space of frames for a surface patch is even more complex to visualize, since it is a “hyper-
cylindrical” 3-manifold, formed by the direct product of patches of surface area with the rings of
possible frames through each surface point.

As a very simple case of a surface, consider the patch introduced at the beginning of the paper
in Figure 2(a). The coordinate system used does not provide a unique tangent frame, and so one
cannot immediately determine a logical frame choice.

In Figure 22, we show spaces of possible frames for the four corners as four rings of quaternion
values compatible with the normals at the patch corners. Parallel transporting the initial frame
along the two different routes in Figure 2(b,c) produces incompatible frames at the final corner; we
represent this situation in Figure 22 by drawing the routes in quaternion space between the initial
frame (the degenerate circle appearing as a central vertical line) and the final frame; the mismatch
between the two final frames is illustrated by the fact that the two paths meet at different points on
the final ring specifying the frame freedom for the bottom corner’s frame.
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Figure 21: (a) The first several pieces of the construction of the invariant quaternion space for the
frames of the trefoil knot. The red fan of vectors shows the first several elements of the tangent
map, represented as vectors from the origin to the surface of the two-sphere and connected by a line.
Each green vector points from the origin to the Geodesic Reference element of the quaternion space
q(arccos(t̂ � ẑ); t̂� ẑ=kt̂� ẑk) guaranteed to produce a frame with the tangentt̂. The black curves are
the first several elements of the one-parameter space of quaternions representingall possiblequaternion
frames with the tangent̂t. (b) This piece of the space of possible frames represented as a continuous
surface, where a circle on the surface corresponds to the space of frames for one point on the curve. (c)
The rest of the full constraint space for the trefoil knot. All quaternions are projected to 3D using only
the vector part.
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Figure 22: A different viewpoint of the mismatch problem of Figure 2. (a) Choosing different
routes to determine the frame at the bottom point results in the incompatible frames shown here in
3D space. (b) The same information is presented here in the quaternion space-of-frames picture.
We use throughout a quaternion projection that shows only the 3-vector part of the quaternion,
droppingq0; this is much like projecting awayz in a polar projection of the 2-sphere. Each heavy
black curve is a ring of possible frame choices that keep fixed the normals in (a); the labels mark
the point in quaternion space corresponding to the frames at the corners in (a), so the gap between
the labelsC andC ’ represents the frame mismatch in quaternion space on the same constraint
ring. (The apparent vertical line is the result of drawing a squashed circle of frames at vertexA in
this projection.) (c) The method proposed in this paper to resolve this conflict is to fix one point,
sayA, divide the polygonABCB0 into triangles, and slideB, C, andB0 along the constraint
rings until the total triangle areas are minimized, and some compromise withC = C 0 is reached.
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Figure 23: (a) A more complete picture of the space of frames for this surface patch; the surface
shown is a sparse quaternion frame choice for the surface, and we show a subset of the rings of
constraints. Each ring passes through one quaternion point on the frame map, the point specifying
the current frame choice. Variations must keep each vertex on its ring. (b) An equivalent set of
frames is formed by applying a rotation to the entire set of frames. All points follow their own ring
of constraints to keep the same normal, These pictures represent thethree-manifoldin quaternion
space swept out by the possible variations.
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Sliding and Overall Rotational Freedom. In Figure 23(a), We go one step further, and first
show how the quaternion Gauss map of an entire patch is situated relative to the ring space; keeping
one corner fixed and sliding the rest of the frames around the circular rings takes us to distinct
families of frames, which obviously have different areas in the quaternion space. Finally, in Figure
23(b), we keep the fundamental space of frames the same, but exercise the freedom to choose
the single parameter describing the basis for the overall orientation; rotating the basis sweeps out
both the three-manifold describing the space of frames for this patch, and the family of equivalent
frames differing by an insignificant orientation change in the basis vector.

In order to resolve the frame choice ambiguity, one needs a systematic approach; we propose
in the next section to accomplish this by optimizing appropriate quantities, e.g., by minimizing the
area of the quaternion Gauss map in quaternion space.

We remark that the general features of the surface curvature can in principle be noted from the
space of possible frames in a similar manner to that for curves. The family of curves through any
point spanning the surfaces tangent space at that point possesses a family of rings parallel to the
space of frames at the point, allowing estimates of the rates of change in different directions; the
principal curvatures then correspond to the maxima and minima.

5 Choosing Paths in Quaternion Space

We have now seen that the space of possible frames at any point of a curve or surface thus takes the
form of a great circle on the unit three-sphere representing the unit quaternions in 4D Euclidean
space. While diametrically opposite points on this circle represent the same frame in 3D space,
the two-fold redundancy can actually be an advantage, since it helps avoid certain types of wrap-
around problems encountered when trying to find paths in the space. Our task then is to select a
set of values of the parameter on each of these great circles.

The advantage of looking at this entire problem in the space of quaternions is that one can
clearly compare the intrinsic properties of the various choices by examining such properties as
length and smoothness in the three-sphere. We note the following issues:

� Frame-frame distance.Suppose we are given two neighboring tangents,t̂1 andt̂2, and two
corresponding candidate frame choices parameterized by�1 and�2. What is the “distance”
in frame space between these? The simplest way to see how we should define the distance is
by observing that, by Euler’s fundamental theorem, there is a single rotation matrixR(�; n̂)
That takes one frame to the other; ifR1(�1; t̂1) andR2(�2; t̂2) are the two frames, then one
can writeR = (R2 � (R1)

�1) and solve for� andn̂. Clearly the value of� gives a sensible
measure of the closeness of the two frames.

� Quaternion distance. We remark that essentially the same procedure is required to obtain
the parameters ofR directly or to find the value of the equivalent quaternion. If we work in
quaternion space, we computeq1(�1; t̂1) andq2(�2; t̂2), and then find rather more straightfor-
wardly an equivalent result by noting that the zeroth component ofq = q2�(q1)

�1 is identical
to the rotation-invariant scalar product of the two quaternions,q1 � q2, and thus provides the
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needed angle at once:
� = 2 arccos(q1 � q2) :

� Approximation by Euclidean distance.One can in principle compute quaternions in polar
coordinates and use the induced metric on the sphere to compute precise arc-length dis-
tance integrals. However, one generally can expect to be dealing with fine tessellations of
smoothly varying geometric objects; in this case, it may be sufficient for numerical purposes
to estimate frame-to-frame distances using the Euclidean distance inR4, since the chord of
an arc approximates the arc length well for small angles.

Optimal Path Choice Strategies. Why would one want to choose one particular set of values of
the frame parameters over another? The most obvious is to keep a tubing from making wild twists
such as those that occur for the Frenet frame of a curve with inflection points. In general, one can
imagine wanting to minimize the total twisting, the aggregate angular acceleration, etc., subject to
a variety of boundary conditions. A bewildering variety of energy functions to minimize can be
found in the literature (see, e.g., [6]). We summarize a selection of such criteria for choosing a
space of frames below, with the caveat that one certainly may think of others!

� Minimal Length and Area. The most obvious criterion is to minimize the total turning an-
gle experienced by the curve frames. Fixing the frames at the ends of a curve may be required
by periodicity or external conditions, so one good solution would be one that minimizes the
sum total of the turning angles needed to get from the starting to the ending frame. The
length to minimize is just the sum of the angles rotated between successive frame choices, as
noted above, either exact or approximate. Similar arguments apply to the area of a surface’s
quaternion Gauss map.

� Parallel Transport along Geodesics.Given a particular initial frame, and no further bound-
ary constraints, one may also choose the frame that uses the minimumlocal distance to get
between each neighboring frame. Since the parallel transport algorithm corresponding to the
Bishop frame uses precisely the smallest possible rotation to get from one frame to the next,
this gives the minimal free path that could be computed frame-by-frame. On a surface, the
resulting paths are essentially geodesics, but, as noted in Figure 2, there is no obvious analog
of a global parallel transport approach to surface framing.

� Minimal Acceleration. Barr, Currin, Gabriel, and Hughes [2] proposed a direct general-
ization of the “no-acceleration” criterion of cubic Euclidean splines for quaternion curves
constrained to the three-sphere; the basic concept was to globally minimize the squared tan-
gential acceleration experienced by a curve of unit quaternions. Though the main application
of that paper was animation, the principles are entirely valid for numerically computing op-
timal frames for curves and surfaces in our context.

� Keyframe splines and constraints.If for some reason one must pass through or near certain
specified frames with possible derivative constraints, then a direct spline construction in the
quaternion space may actually be preferred; see, e.g., [37, 35, 31, 39, 23]. Most splines can

41



be viewed in some sense as solving an optimization problem with various constraints and
conditions, and so the keyframe problem essentially reverts again to an optimization.

General Remarks. For both curves and surfaces, there is a single degree of freedom in the
frame choice at each point where we have sampled the tangent or normal direction, respectively.
This degree of freedom corresponds to a relatively common “sliding ring” constraint that occurs
frequently in minimization problems. General packages for solving constraints are mentioned in
Barr, et al. [2], who chose MINOS [30]. For our own experiments, we have chosen Brakke’s
Surface Evolver package [6], which has a very simple interface for handling parametric constraints
as “boundary” conditions, and can be used for a wide variety of general optimization problems.
Two enhancements to the Evolver have recently been added to handle the specific issues related to
quaternion optimization; a new symmetry “symmetry_group "central_symmetry" ”
identifies the quaternionq with�q if desired during the variation to prevent reflected double traver-
sals like that in Figure 13 from varying independently, and the system is now able to use the pull-
back metric on the sphere

ds2 =
X
i;j

dxi dxj r
�4 (r2 �i;j � xi xj)

to compute distances directly on the three-sphere. Computation using the metric, however, is very
slow, and so in practice we have used the Euclidean R4 chord approximation, which works quite
well for closely spaced samples and is much faster. Yet another alternative proposed by Brakke
(private communication) is to use periodic coordinates on S3 of the form

(x1 = sin r cos s; x2 = sin r sin s; x3 = cos r cos t; x4 = cos r sin t) ;

and to vary directly on an R3 space with(x = r; y = s; z = t) and the metric2
64

1 0 0
0 sin2 x 0
0 0 cos2 x

3
75 :

Our own use of the Evolver required only changing the parameter “#define BDRYMAX 20 ”
in skeleton.h to the desired (large) value and recompiling. Then, remembering to set
“space_dimension 4 ” when working in R4, one needs in addition a piece of code similar
to the following MATHEMATICA fragment to define the boundary constraints for each fixed vector
(tangent or normal) and the chosen initial quaternion frame:

Do[ringeqn = Qprod[makeQfromVec[veclist[[i]],P1],
q0list[[i]]]//Chop;

Write[file, " boundary ",i," parameters 1"];
Write[file, "x1: ", CForm[ ringeqn[[2]]]];
Write[file, "x2: ", CForm[ ringeqn[[3]]]];
Write[file, "x3: ", CForm[ ringeqn[[4]]]];
Write[file, "x4: ", CForm[ ringeqn[[1]]]],
{i,1,Length[veclist]}]
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Note that, since Evolver displays only the first three coordinates, we have moved the scalar quater-
nion to the end; then the Evolver will display our preferred projection automatically.

General Remarks on Optimization in Quaternion Space. Numerical optimization remains a
bit of an art, requiring patience and resourcefulness on the part of the investigator. We found,
for example, that curve optimization was relatively more stable than surface optimization because
single curve outliers add huge amounts to the length, whereas single surface points stuck in a
far away crevice may contribute only a tiny amount to the area of a large surface. Although
the Evolver in principle handles spherical distances, we used the default 4D Euclidean distance
measure as an approximation; this generally corresponded well to explicit area calculations using
solid angle performed on the same data sets. However, we did find that extremely random initial
conditions (unrealistic for most applications), could produce isolated points stuck in local minima
diametrically across quaternion space, atq ! �q, from where they should be. This type of
problem can be largely avoided simply by running a consistency preprocessor to force nearby
neighbors to be on the same side of the three-sphere. Another useful technique is to organize the
data into hierarchies and optimize from the coarse scale down to the fine scale. In other cases when
things seem unreasonably stuck, a manual “simulated annealing” procedure like that afforded by
the Evolver’sjiggle option often helps.

6 Examples

We now present some examples of frame choices computed using the Evolver to minimize the
length of the total path among sliding ring constraints for selected curves, and the total area spanned
by analogous sliding rings for surfaces. One interesting result is that there appear to be families of
distinct minima: if the initial data for a periodic surface, for example, are set up to return directly
to the same point in quaternion space after one period, one has two disjoint surfaces, one the
q ! (�q) image of the other; if the data do not naturally repeat after one cycle, they must after
two, since there are only two quaternion values that map to the same frame. The family of frame
surfaces containing their own reflected images have a minimum distinct from the disjoint family.

Minimal Quaternion Frames for Space Curves. The helix provides a good initial example of
the procedure we have formulated. We know that we can always find an initial framing of a curve
based on the Geodesic Reference algorithm; however, suppose we wish to impose minimal length
in quaternion space on the framing we select, and we do not know whether this frame is optimal
with respect to that measure. Then, as illustrated in Figure 24, we can send the ring constraints on
the possible quaternion frames at each sample point to the Surface Evolver and let it automatically
find the optimal framing. The results and energies for several stages of this evolution are shown in
the figure; the final configuration is indistinguishable from the Parallel Transport frame, confirming
experimentally our theoretical expectation that parallel transport produces the minimal possible
twisting.
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Figure 24: Starting from the Geodesic Reference quaternion frame for a single turn of the helix,
the very dark gray circle, the Evolver produces these intermediate steps while minimizing the
total quaternion curve length subject to the constraints in the space of frames. The final result is
the white curve, which is identical to several decimal points with the Parallel Transport quaternion
frame for the same helix. The numerical energies of the curves, from dark to light in color, are
3.03, 2.91, 2.82, and 2.66 for the Parallel Transport frame. The individual tubings used to display
these curves are in fact created using the Parallel Transport frame for each individual curve.

In Figure 1, we introduced the question of finding an optimal framing of a particular (3,5)
torus knot whose almost-optimal Parallel Transport framing was not periodic. In Figure 25, we
show the solution to this problem achieved by clamping the initial and final quaternion frames
to coincide, then letting the Evolver pick the shortest quaternion path for all the other frames.
It would be possible, as in the case of the (2,3) torus knot framing shown in Figure 13, to have
different conditions produce a framing solution containing its own reflected image rather than
having a distinct reflected image as is the case for Figure 25.

The types of solutions we find are remarkable in that they should be essentially the same for
all reparameterizations of the curve; regardless of the spacing of the sampling, the continuous
surface of possible frames is geometrically the same in quaternion space, so paths that are minimal
for one sampling should be approximately identical to paths for any reasonable sampling. On
the other hand, if wewant special conditions for certain parameter values, it is easy to fix any
number of particular orientations at other points on the curve, just as we fixed the starting points
above; derivative values and smoothness constraints leading to generalized splines can be similarly
specified (see [2]).

Surface Patch Framings. A classic simple example of a surface patch framing problem was
presented in the discussion of Figures 2 and 22. This problem can also be handled by the Evolver:
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Figure 25: Optimization of the non-periodic parallel transport frame of the (3,5) torus knot in-
troduced in Figure 1 to produce a nearby periodic framing. (a) The original quaternion parallel
transport frame used to produce the tubing in Figure 1(b,c). (b) The frame mismatch, repeated for
completeness. (c) The result of fixing the final frame to coincide with the initial frame, leaving
the other frames free to move on the constraint rings, and minimizing the resulting total length in
quaternion space. The length of the original curve was 13.777 and that of the final was 13.700, not
a large difference, but noticeable enough in the tube and the quaternion space plot. (d) Closeup of
the corresponding framing of the knot in ordinary 3D space, showing that the mismatch problem
has been successfully resolved. This tube cannowbe textured, since the frames match exactly.
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we choose an initial quaternion frame for the mesh corresponding to one of the arbitrary choices
noted, and minimize the area in quaternion space subject to the constraints that the normals remain
unchanged, and hence the frame choices may only slide around the rings depicted in Figure 22(b).
The results are shown in Figures 26, and 27. As a test, we started one case with a random initial
state with a range of2� in the starting values. All converged to the same optimal final framing.
A basic observation is that while none of the standard guesses appeared optimal, the Geodesic
Reference frame is very close to optimal for patches that do not bend too much.

Minimal Surfaces. Minimal surfaces possess many special properties following from the fact
that the mean curvature is everywhere the vanishing sum of two canceling local principal curvatures
[12]. We present a family of classic examples here that is remarkable for the fact that the usual
framings are already very close or exactly optimal; thus we do not have much work to do except to
admire the results, though there may be some interesting theorems implicit that would be beyond
the scope of this paper to pursue.

In Figure 28(a,b,c), we present the following classical minimal surfaces:

xcatenoid(u; v) = cos u cosh v x̂ + sinu cosh v ŷ + v ẑ (47)

xhelicoid(u; v) = v cos u x̂+ v sinu ŷ + u ẑ (48)

xenneper(u; v) = (u� u3=3 + uv2) x̂+ (v � v3=3 + vu2) ŷ + (u2 � v2) ẑ (49)

The quaternion Gauss map choices determined by these parameterizations and by the Geodesic
Reference algorithm are shown in Figure 29. The coordinate-based catenoid map and helicoid
map are4� double coverings, while Enneper’s surface curiously has a coordinate system map that
is exactly identical to the Geodesic Reference framing. For the periodic framings of the catenoid
and helicoid, we find the noteworthy result that the Geodesic Reference frame, which has a disjoint
quaternion reflected image, is a minimum under variations of the surface that is distinct from the
quaternion frames derived from the coordinate systems which arealsominima, but contain their
own q ! (�q) reflected images. The Enneper surface quaternion frames, which are the same,
appear to move very slightly around the borders under minimization, but it is not clear to what
extent this is significant as opposed to a numerical border effect in the variation. The resulting
3D frame triads are shown in Figure 30 for comparison. A theoretical analysis of the general
properties of quaternion Gauss maps for minimal surfaces is beyond the scope of this paper, but
experimentally we see that there could be very interesting general properties.

Manifolds. For general manifolds, one must treat patches one at a time in any event, since global
frames may not exist at all. Although the locally optimal patches cannot be globally joined to one
another, we conjecture that some applications might benefit from the next best thing: matching
boundary frames of neighboring patches using transitional rotations (see, e.g., [29, 13]). We have
carried this out explicitly for simple cases, but omit it here for brevity.

Extensions to Other Domains. We have focussed for expository purposes in this paper on
frames with intrinsic natural constraints imposed by the tangents to curves and normals to sur-
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Figure 26: (a) The initial Geodesic Reference quaternions for the small patch shown in Figure
2. (b) Initial quaternions from parallel transporting the vertex frame down one edge, and then
across line by line. (c) A random starting configuration with the single same fixed corner point
as (a) and (b) and a range of�� to +� relative to the Geodesic Reference frame. (d) The result
of minimization of the quaternion area is the same for all starting points. The relative areas
are: 0.147, 0.154, 0.296, and 0.141, respectively. Thus the Geodesic Reference is very close to
optimal.

47
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(c) (d)

Figure 27: The 3D frame configurations corresponding to the quaternion fields in Figure 26. (a)
The Geodesic Reference frame. (b) Two-step parallel transport frame. (c) Random frames. (d)
The frame configuration resulting from minimizing area in quaternion space.
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faces. However, the method extends almost trivially to applications involving externally specified
constraints on frames. Geometric construction algorithms based on extrusions reduce to the tubing
problem. For ordinary camera control interpolation, one could constrain any direction of the cam-
era frame to be fixed by calculating its appropriate constraint ring in the quaternion Gauss map,
and then extend a method like that of Barr et al. [2, 34]) to smoothly compute intermediate frames
subject to the constraints. For more general constrained navigation methods like those described
by Hanson and Wernert [20]), the camera vertical direction could be fixed at chosen points over the
entire constraint manifold, and the remaining frame parameters determined by optimization within
the manifold of ring constraints, possibly subject to fixing entire key-frames at selected locations
or boundaries.

7 Conclusion and Future Directions

We have introduced a general framework derived from the quaternion Gauss map for studying and
selecting appropriate families of coordinate frames for curves and surface patches in 3D space.
Minimizing length for quaternion curve maps and area for surfaces is proposed as the appropriate
generalization of parallel transport for the selection of optimal frame fields. These smooth frames
can be used to generate tubular surfaces based on the space curves, thus allowing their effective
display on polygon-based graphics engines. The analogous results for surface patches allow the
selection of optimal local coordinate systems that may be adapted for display purposes and related
applications such as oriented particle systems. Our principal new tool is the space of all possible
frames, a manifold of constraints immersed in the space of quaternion frames. By defining energies
and boundary conditions in this space one can produce a rich variety of application-adapted criteria
for specifying optimal families of frames.

Topics for future investigation include the treatment of manifolds in higher dimensional spaces,
improved interfaces for visualizing the quaternion optimization process and its results, and further
analysis of the pure mathematics implied by the general framework.N -dimensional generaliza-
tions of the Frenet frame equations have been studied in the literature (see, e.g., Forsyth [10]),
but the analogs of quaternions in higher dimensions are much more complex and involve Clif-
ford algebras and the corresponding Spin groups (see, e.g., Lawson and Michelson [26]). Special
simplifications do occur for the 4D case, however, allowing a treatment in terms of pairs of unit
quaternions (see, e.g., [15]); this case must in fact be investigated to produce a more rigorous
formulation of the 4D surface tubings proposed in [17]. Among other applications that may be ap-
proached by the quaternion formulation of coordinate frames we note the description of anisotropic
surfaces (see, e.g., Kajiya [22]), the quaternion generalization of bump-mapping, and the dynamics
of anisotropic particle systems. Another possible application could be the determination of optimal
configurations for long-chain molecules and similar 1D and 2D structures. There are thus ample
challenges for future work.
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(a) (b) (c)

Figure 28: (a) The catenoid, a classic minimal surface in 3D space with a natural orthonormal
parameterization. (b) The helicoid. (c) Enneper’s surface.
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Figure 29: The Geodesic Reference quaternion frames of (a) the catenoid, (b) the helicoid, and (c)
Enneper’s surface. (d, e, f) The corresponding quaternion Gauss maps determined directly from
the parameterization. Both the catenoid and the helicoid fail to be cyclic in quaternion space
without a 4� turn around the repeating direction, so these are doubled maps. The Enneper’s
surface framing turns out to be identical to its Geodesic Reference frame.
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(d) (e) (f)

(a) (b) (c)

Figure 30: The 3D Geodesic Reference frames displayed directly on the surfaces of (a) the
catenoid, (b) the helicoid, and (c) Enneper’s surface. (d,e,f) The 3D frames computed directly
from the standard parameterizations; since Enneper’s surface is the same, we show in (f) a differ-
ent viewpoint of the same frames.
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Appendix: Quaternion Frames

2D “Quaternion” Frames

We provide below an exercise that may give some insight into the quaternion world. We show that
we may express the 2D frame equations in terms of a new set of variables exactly analogous to
quaternions in 3D. We begin by guessing a double-valued quadratic form for the frame:

h
N̂ T̂

i
=

"
cos � � sin �
sin � cos �

#
=

"
a2 � b2 �2ab
2ab a2 � b2

#
: (50)

We can easily verify that ifa2 + b2 = 1, this is an orthonormal parameterization of the frame, and
that� is related to(a; b) by the half-angle formulas:

a = cos(�=2); b = sin(�=2) :

If desired, the redundant parameter can be eliminated locally by using projective coordinates such
asc = b=a = tan(�=2) to get the form (compare Eq. (30))

h
N̂ T̂

i
=

1

1 + c2

"
1� c2 �2c
2c 1� c2

#
: (51)

If we now defineW1 =

"
a �b
b a

#
andW2 =

"
�b �a
a �b

#
, then we may write

2W1 �

"
a0

b0

#
= N̂0; 2W2 �

"
a0

b0

#
= T̂0

and we may also express the right-hand side of the 2D frame equations as

W1 �

"
0 ��
+� 0

#
�

"
a
b

#
= +v�T̂ :

The analogous expression forW2 yieldsT̂0 = �v�N̂. Matching terms and multiplying byW T
i =

W�1
i , we find that the equation"

a0

b0

#
=

1

2
v

"
0 ��
+� 0

#
�

"
a
b

#
(52)

containsboththe frame equationŝT0 = ��N̂ andN̂0 = +�T̂, but now in 2D “quaternion” space!
If we take the angular range from0 ! 4� instead of2�, we have a2 : 1 quadratic mapping from
(a; b) to (N̂; T̂) because(a; b) � (�a;�b) in Eq. (50).

Equation (52) is thesquare rootof the frame equations (note the factor of(1=2)). The curvature
matrix is basicallyg�1 dg, an element of the Lie algebra for the 2D rotation “spin group,” and takes
the explicit form, "

a b
�b a

# "
a0 �b0

b0 a0

#
=

"
aa0 + bb0 �ab0 + ba0

ab0 � ba0 aa0 + bb0

#
:
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Hereaa0 + bb0 = 0 due to the constrainta2 + b2 = 1, and

ab0 � ba0 = cos
�

2

"
�0

2
cos

�

2

#
� sin

�

2

"
�
�0

2
sin

�

2

#

=
�0

2
;

giving the identificationv� = �0 when we pull out the factor of1=2 as in Eq. (52). The actual group
properties in(a; b) space follow from the multiplication rule (easily deduced from the formulas for
the trigonometric functions of sums of angles)

(a; b) � (~a; ~b) = (a~a� b~b; a~b + b~a) ;

which is in turn isomorphic to complex multiplication with(a; b) = a + ib. This is no surprise,
since SO(2) and its double covering spin group are subgroups of the corresponding 3D rotation
groups, and complex numbers are a subset of the quaternions.

3D Quaternion Frames

We next outline the basic features of quaternion frames; see, e.g., [1] for a nice textbook treatment
of quaternions and their properties.

A quaternion frame is a four-vectorq = (q0; q1; q2; q3) = (q0; ~q) with the following features:

� Unit Norm. If we define the inner product of two quaternions as

q � p = q0p0 + q1p1 + q2p2 + q3p3 ; (53)

then the components of a quaternion frame obey the constraint

q � q = (q0)
2 + (q1)

2 + (q2)
2 + (q3)

2 = 1 ; (54)

and therefore lie on S3, the three-sphere embedded in four-dimensional Euclidean space R4.

� Multiplication rule. The quaternion product of two quaternionsp andq is defined to give a
positive cross-product in the vector part, and may be written as

p � q = (p0q0 � p � q; p0q+ q0p + p� q) ;

or more explicitly in component form as

p � q =

2
6664
[p � q]0
[p � q]1
[p � q]2
[p � q]3

3
7775 =

2
6664
p0q0 � p1q1 � p2q2 � p3q3
p1q0 + p0q1 + p2q3 � p3q2
p2q0 + p0q2 + p3q1 � p1q3
p3q0 + p0q3 + p1q2 � p2q1

3
7775 : (55)

This rule is isomorphic to left multiplication in the group SU(2), the double covering of the
ordinary 3D rotation group SO(3). What is more useful for our purposes is the fact that it
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is also isomorphic to multiplication by a member of the group of (possibly sign-reversing)
orthogonal transformations in R4:

p � q = [P ] q =

2
6664
p0 �p1 �p2 �p3
p1 p0 �p3 p2
p2 p3 p0 �p1
p3 �p2 p1 p0

3
7775
2
6664
q0
q1
q2
q3

3
7775 ; (56)

where[P ] is an orthogonal matrix,[P ]t�[P ] = I4; since[P ] has only 3 free parameters, it does
not itself include all 4D rotations. However, we may recover the remaining 3 parameters by
considering transformation by right multiplication to be an independent operation, resulting
in a similar matrix but with the signs in the lower right-hand off-diagonal3 � 3 section
reversed. (This corresponds to the well-known decomposition of the 4D rotation group into
two 3D rotations; see, e.g., [14].)

If two quaternionsa andb are transformed by multiplying them by the same quaternionp,
their inner producta � b transforms as

(p � a) � (p � b) = (a � b)(p � p) (57)

and so is invariant ifp is a unit quaternion frame representing a rotation. This also follows
trivially from the fact that[P ] is orthogonal.

Theinverseof a unit quaternion satisfiesq�q�1 = (1; 0) and is easily shown to take the form
q�1 = (q0; �q). The relative quaternion rotationt transforming between two quaternions
may be represented using the product

t = p � q�1 = (p0q0 + p � q; q0p� p0q� p� q) :

This has the convenient property that the zeroth component is the invariant 4D inner product
p � q = cos(�=2), where� is the angle of the rotation in 3D space needed to rotate along
a geodesic from the frame denoted byq to that given byp. In fact, the 4D inner product
reduces to

p � q�1 + q � p�1 = (2q � p; 0) ;

while the 3D dot product and cross product arise from the symmetric and antisymmetric
sums of quaternions containing only a 3-vector part:

p � q � (0; p) � (0; q) = (�p � q; p� q)

p � q + q � p = �2p � q

p � q� q � p = 2p� q

� Mapping to 3D rotations. Every possible 3D rotationR (a 3 � 3 orthogonal matrix)
can be constructed from either of two related quaternions,q = (q0; q1; q2; q3) or �q =
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(�q0;�q1;�q2;�q3), using the quadratic relationshipRq(V) = q � (0;V) � q�1, written
explicitly as

R =

2
64 q20 + q21 � q22 � q23 2q1q2 � 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q20 � q21 + q22 � q23 2q2q3 � 2q0q1
2q1q3 � 2q0q2 2q2q3 + 2q0q1 q20 � q21 � q22 + q23

3
75 : (58)

The signs here result from choosing the left multiplication conventionRpRq(V) = Rpq(V) =
(p � q) � (0;V) � (p � q)�1. Algorithms for the inverse mapping fromR to q require careful
singularity checking, and are detailed, e.g., in [31, 38].

The analog for Eq. (58) of the projective coordinates for 2D rotations noted in Eq. (51) is
obtained by converting to the projective variablec = q=q0 = tan(�=2) n̂ and factoring out

(q0)
2 =

(q0)
2

(q0)2 + q � q
=

1

1 + q � q=(q0)2
=

1

1 + kck2
:

We then find

R =
1

1 + kck2

2
64

1 + c21 � c22 � c23 2c1c2 � 2c3 2c1c3 + 2c2
2c1c2 + 2c3 1� c21 + c22 � c23 2c2c3 � 2c1
2c1c3 � 2c2 2c2c3 + 2c1 1� c21 � c22 + c23

3
75 : (59)

� Rotation Correspondence. When we substituteq(�; n̂) = (cos �
2
; n̂ sin �

2
) into Eq. (58),

wheren̂ � n̂ = 1 is a unit three-vector lying on the two-sphere S2, R(�; n̂) becomes the
standard matrix for a rotation by� in the plane perpendicular tôn. The quadratic form
ensures that the two distinct unit quaternionsq and�q in S3 correspond to thesameSO(3)
rotation. For reference, the explicit form ofR(�; n̂) is [9]

R(�; n̂) =

2
64 c+ (n1)

2(1� c) n1n2(1� c)� sn3 n3n1(1� c) + sn2
n1n2(1� c) + sn3 c+ (n2)

2(1� c) n3n2(1� c)� sn1
n1n3(1� c)� sn2 n2n3(1� c) + sn1 c + (n3)

2(1� c)

3
75 ; (60)

wherec = cos �, s = sin �, and n̂ � n̂ = 1. For example, choosing the quaternionq =
(cos �

2
; 0; 0; sin �

2
) yields the rotation matrix

R =

2
64 cos � � sin � 0

sin � cos � 0
0 0 1

3
75 ;

producing a right-handed rotation of the basis vectorsx̂ = (1; 0; 0) andŷ = (0; 1; 0) around
the ẑ axis.

� Quaternion Frame Evolution. All 3D coordinate frames can be expressed in the form of
quaternions using Eq. (58). If we assume the columns of Eq. (58) are the vectors(N̂1; N̂2; T̂),
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respectively, one can explicitly express each vector in terms of the following matrices

[W1] =

2
64

q0 q1 �q2 �q3
q3 q2 q1 q0
�q2 q3 �q0 q1

3
75 (61)

[W2] =

2
64
�q3 q2 q1 �q0
q0 �q1 q2 �q3
q1 q0 q3 q2

3
75 (62)

[W3] =

2
64 q2 q3 q0 q1
�q1 �q0 q3 q2
q0 �q1 �q2 q3

3
75 ; (63)

with the result that̂N1 = [W1] � [q], N̂2 = [W2] � [q], andT̂ = [W3] � [q], where[q] is the
column vector with components(q0; q1; q2; q3). Differentiating each of these expressions and
substituting Eq. (9), one finds that factors of the matrices[Wi] can be pulled out and a single
universal equation linear in the quaternions remains:

2
6664
q00
q01
q02
q03

3
7775 =

v

2

2
6664

0 �kx �ky �kz
+kx 0 �kz +ky
+ky +kz 0 �kx
+kz �ky +kx 0

3
7775 �
2
6664
q0
q1
q2
q3

3
7775 : (64)

The first occurrence of this equation that we are aware of is in the works of Tait [41]. Here
v(t) = kx0(t)k is the scalar magnitude of the curve derivative if a unit-speed parameter-
ization is not being used for the curve. One may consider Eq. (64) to be in some sense
the square rootof the 3D frame equations. Alternatively, we can deduce directly from
Rq(V) = q � (0;V) � q�1, dq = q � (q�1 � dq), and(q�1 � dq) = �(dq�1 � q), that the
3D vector equations are equivalent to the quaternion form

q0 =
1

2
v q � (0; kx; ky; kz) =

1

2
v q � (0; k) (65)

(q�1)0 = �
1

2
v (0; k) � q�1 ; (66)

wherek = 2(q0 dq� q dq0 � q� dq), or, explicitly,

k0 = 2(dqxqx + dqyqy + dqzqz + dq0q0) = 0

kx = 2(q0dqx � qxdq0 � qydqz + qzdqy)

ky = 2(q0dqy � qydq0 � qzdqx + qxdqz)

kz = 2(q0dqz � qzdq0 � qxdqy + qydqx) :

Herek0 = 0 is the diagonal value in Eq. (64).

The quaternion approach to the frame equations exemplified by Eq. (64) (or Eq. (65)) has
the following key properties:
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– q(t) � q0(t) = 0 by construction. Thus all unit quaternions remain unit quaternions as
they evolve by this equation.

– The number of equations has been reduced from nine coupled equations with six or-
thonormality constraints to four coupled equations incorporating a single constraint
that keeps the solution vector confined to the three-sphere.

� Quaternion Surface Evolution. The same set of equations can be considered to work on
curves that are paths in a surface, thus permitting a quaternion equivalent to the Weingarten
equations for the classical differential geometry of surfaces as well. Explicit forms permit-
ting the recovery of the classical equations follow from re-expressing Eqs. (22) and (23) in
quaternion form. The curvature equation is essentially the cross-product of two derivatives
of the form of Eqs. (65,66), and thus obtainable by a quaternion multiplication:

qu � q
�1
v = �

1

4
q � (0; a) � (0;b) � q�1

= �
1

4
q � (�a � b; a� b) � q�1

= �
1

4

h
�a � b Î+ (a� b)x T̂1 + (a� b)y T̂2 + (a� b)z N̂

i
: (67)

Here Eq. (31) defines the quaternion frame vectors,N̂ � (0; N̂) = q � (0; ẑ) � q�1, etc., and
we have introduced the identity elementÎ = (1; 0) = q � (1; 0) � q�1 as a fourth quaternion
basis vector. The mean curvature equation has only one derivative and a free vector field; an
expression producing the right combination of terms is

T̂1 � q � q
�1
u + T̂2 � q � q

�1
v = �

1

2
q � (�x̂ � a� ŷ � b; x̂� a+ ŷ � b) � q�1

= �
1

2

h
�(ax + by)Î+ bzT̂1 � azT̂2 + (ay � bx)N̂

i
:(68)

Projecting out thêN component of these equations recovers the scalar and mean curvatures:

K = det

"
+ay(u; v) �ax(u; v)
+by(u; v) �bx(u; v)

#
= axby � aybx

H =
1

2
tr

"
+ay(u; v) �ax(u; v)
+by(u; v) �bx(u; v)

#
=

1

2
(ay � bx) :
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Meshview: Visualizing the Fourth Dimension

Andrew J. Hanson Konstantine I. Ishkov� Jeff H. May
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Figure 1: Meshview’s interface window with a four-torus drawn
using edges, vertices, and negative screen door transparency.

Figure 2: Meshview’s key-frame animation interface controlling a set
of animated polygons; the texture coordinates are also key-framed.

Abstract

Meshviewis an interactive visualization system for viewing points,
curves, and two-dimensional manifolds embedded in 3D or 4D,
with the emphasis on handling 4D objects. All rigid motions in
3D and 4D can be performed under mouse (or 3D mouse) control,
while key-frame animations support motions and deformations of
such objects. Meshview is written in C, OpenGL, and X/Motif with
the objective of being as compact, portable, and device-independent
as possible within the given framework. The system has been used
successfully to do research on a variety of problems such as 4D
viewing interfaces, mathematical visualization of classical higher
dimensional geometry, Riemann surfaces, functions of two com-
plex variables, and 4D quaternion representations of 3D coordinate
frames.

Keywords: four dimensions; curve and surface visualization

1 Introduction

Meshviewis an interactive 4D viewing system that fluidly dis-
plays points, curves, and two-dimensional manifolds embedded in
3D or 4D, as well as key-frame animations representing motions
and deformations of such objects. It is written in C, OpenGL,
and X/Motif with the objective of being as compact, portable, and

�Current address: Lucent Technologies, Holmdel, NJ
yCurrent address: Intel Corporation, Santa Clara, CA

device-independent as possible within the given framework. It has
been successfully compiled under Linux 2.2.2, SGI IRIX 5.2 to
IRIX 6.5, and SUN SOLARIS 2.6. Meshview should in principle
be portable to any workstation that supports OpenGL and X/Motif
or appropriate simulators such as Mesa and LessTif.

Our basic motivations for developing yet another 4D viewer in-
stead of using an existing system such as, e.g., Geomview [17],
were twofold: (1) the available user interfaces, particularly for free-
form rotational exploration, were poorly suited to both our perfor-
mance needs and our preferences for interfaces that allow heads-up,
context-free manipulation. We in fact conceived and implemented
a particularly interesting context-free interface, the “rolling ball”
in 4D (described below) that permits complete exploration of the
6 degree-of-freedom orientation space in 4D with only 3 controller
parameters. (2) Our need for robust high-performance custom in-
terfaces for perceptual psychology measurements and research into
objects like quaternions and knotted spheres in 4D.

The basic design features of Meshview have evolved over a pe-
riod of several years, beginning with the first release of version 1.0
in July of 1994, and continuing with a number of refinements, in-
cluding screen-door transparency, animation, and texture, that were
added during 1998–1999 to version 1.2. In the next sections, we
outline the design philosophy and features of Meshview, point out
its particular strong points, discuss the mathematical underpinnings
of its unique interface features, and present a selection of appli-
cations, focusing in particular on the suitability of Meshview for
building intuitions in classical mathematics and for the quaternion
methods used routinely in computer graphics.



2 Design Features of Meshview

The adjectives giving the overall goals of the design include:

� Fast and general. Use display lists in OpenGL. Enhance
the Geomview/OOGL MESH and OFF file formats. Support
color per object or color per vertex.

� Small. Keep as simple and independent as possible.

� Portable. Restrict to C, OpenGL, and X/Motif.

� Freely distributable. Non-proprietary.

� Support document generation. A straightforward image file
generator is provided, and the state of any screen is easily
saveable as a “setting” file for later restoration or refinement
of a view.

The principal features of the design are:

� Flexible file format. Reads extensions of the Ge-
omview/OOGL MESH, OFF and LIST file formats, plus its
own enhancements FRAMES, DOT, and LINE.

� Interactive examination support. Rotates/translates/scales
objects in 3D and 4D interactively under mouse control using
the 3D and 4D rolling ball models for rotations.

� Momentum. The momentum option is available on all mo-
tions.

� Drawing options. Optionally draws faces, edges, vertices,
normals, palette, unit sphere, the lighting vector, and a refer-
ence set of 4D axes.

� Pseudocolor palettes.A wide range of color palette options
for 4D depth color coding a provided based on the NCSA
palette library.

� Geometry locator panel. An interactive parametric space
“picker” (or point locator) is supplied for any MESH file or
list of MESH files. Any individual mesh in a set can be se-
lected in turn.

� Quaternion rotation panel. Quaternion multiplication is iso-
morphic to multiplying a unit vector in the three-sphereS3 by
an orthogonal4 � 4 matrix that can be derived directly from
rotations acting on the 3D coordinate frame. This panel vi-
sualizes the change in orientation of the 3D frame, the unit
quaternion to which it corresponds, and the action of the cor-
responding quaternion multiplication on the 4D object in the
main window (which is not simply related to a 3D rotation).

� Preservation of state.System state is saved for later recov-
ery, including current 3D and 4D viewing matrices, the cam-
era setting, background color, light direction, and rendered
ppm image of the current scene. This is useful for recon-
structing the state of an illustration for a publication.

� Restoration. Loads palettes and saved system states.

� Face shading options. Surface facets can be flat shaded,
smoothly interpolated, depicted with one color on both sides,
depicted with two different colors for front and back surfaces,
or textured. In addition, any arbitrary palette can be used to
color code the 4D depth of each point in the current 3D pro-
jection: this is useful when rotating objects in 4D.

� Projection options. Both 3D and 4D permit perspective (po-
lar projection) and orthogonal projection.

� 3D context can be disentangled. Meshview supports a
choice between applying the 4D rolling ball to the current
screen coordinates of the object’s 3D projection (“context-
free,” the default), or applying to the object’s local 3D coor-
dinate system context (using the “axes” display to help show
the context). The latter is useful for looking at different sides
of the object’s 3D projection while performing a 4D rotation.
This is especially useful for the 2D mouse interface.

� Sample data.The release includes a selection of example ge-
ometry files, including the 4D flat torus, Steiner surface (RP2
embedded in 4D), 4D Fermat surfaces and much more. (See
the README file in the data directory for details, and see the
color page of this article for examples.) A selection of short
programs for generating such files is also available.

� Help. A simple online help file to remind the user of keyboard
shortcuts and interface options is provided.

3 Fundamental Methods.

3D/4D Rolling Ball. The 4D rolling ball formula was derived in
[4], and this is the method implemented in Meshview for both for
the 2D mouse and the 3D mouse on the desktop. The remarkable
property of this algorithm is that 4D orientation control requires
exactly three control parameters, thus making it usable for a stan-
dard mouse with two buttons switching from(x; y)-plane control
to (x; z)-plane control, and making it ideally suited to the “flying
mouse” or CAVE “wand” 3-degree-of-freedom user interface de-
vices. Let ~X = (X;Y; Z) be a displacement obtained from the
3-degree-of-freedom input device, and definer2 = X2+Y 2+Z2.
Take a constantR with units 10 or 20 times larger than the average
value ofr, computeD2 = R2 + r2, compute the fundamental ro-
tation coefficientsc = cos � = R=D, s = sin � = r=D, and then
takex = X=r; y = Y=r; z = Z=r, sox2 + y2 + z2 = 1. Finally,
rotate each 4-vector by the following matrix before reprojecting to
the 3D volume image:
2
64

1� x2(1� c) �(1� c)xy �(1� c)xz sx
�(1� c)xy 1� y2(1� c) �(1� c)yz sy
�(1� c)xz �(1� c)yz 1� z2(1� c) sz

�sx �sy �sz c

3
75

The 3D rolling ball method is correspondingly used for 3D orien-
tation control; it is basically the same formula except simplified by
settingz = 0 and reducing the matrix to3� 3.

4 Geometry

Meshview data formats are strongly influenced by the OOGL (Ob-
ject Oriented Graphics Language) file format used by Geomview
[17], but circumstances and practical experience with complex ge-
ometries led us to deviate from strict adherence to the OOGL for-
mat.

Meshview 1.2 now supports MESH, OFF, LIST, FRAMES,
DOT, and LINE formats. MESH, OFF and LIST are very similar
to the OOGL file formats. The OOGL formats are not fully imple-
mented (e.g., there is currently no support for files with more than
4 dimensions), but on the other hand several enhancements have
been added. The FRAMES, DOT and LINE formats are specific
to Meshview, where the FRAMES format is used for key frame
animation, and DOT and LINE are used to display dots and lines
respectively.

The overall syntax is quite straightforward, and is documented
in an accompanying README file that we cannot describe in de-
tail here due to space limitations. The data files are composed of



lists of points in 3D or 4D, various color attachments, and texture
coordinates, all of which get translated in the implementation into
the obvious OpenGL representations.

5 Selected Controls

Below we present a selection of the possible controls in Meshview;
(u; v) denotes the incremental mouse coordinates.

3D viewing:
leftbutton 3D rotation (3D rolling ball) R3(u,v)
middlebutton 3D translation in x-y plane T3(u,v,0)
rightbutton 3D translation along z axis T3(0,0,-v)
Shift+right 3D rotation around z axis R2(u)
3D lighting:
Ctrl+left 3D rotation (3D rolling ball) R3(u,v)
Ctrl+middle 3D rotation around z axis R2(u)
4D viewing:
Shift+left xyw rotation (4D rolling ball) R4(u,v,0)
Shift+middle xzw rotation (4D rolling ball) R4(u,0,-v)

<Key>r Reset the 4D and 3D matrices and 3D
light direction, stop momentum.

<Key>F3 (3D mouse) Toggles 3D mouse.
* Left 3D mouse: 4D rolling ball
* Middle 3D mouse: 3D orientation and
position
* Right 3D mouse: reset

Appearances:
<Key>1 both sides of face use same color
<Key>2 two sides of face use different colors
<Key>3 4D depth color coding
<Key>4 texture coding
<Key>5,6,7 screen-door off, positive, negative
Utilities:
<Key>f toggle face drawing (default on)
<Key>e toggle edges
<Key>v toggle vertices
<Key>n toggle normals
<Key>u toggle unit quaternion sphere
<Key>p toggle palette
<Key>l toggle light ray
<Key>a toggle 4D orientation axes
Viewing:
Ctrl+p 3D perspective projection (default)
Ctrl+o 3D orthogonal projection
<Key>w,x,y,z 4D projection along w(default), x, y, or

z-axis
Shift+o 4D orthogonal projection (default)
Shift+p 4D polar projection

6 Applications

Meshview has been used in our laboratory to examine objects and
create imagery for journal articles since its conception in 1994.
With the addition of further features such as stereo, key-frame ani-
mation, texture, and screen door transparency during the last year,
many additional applications are possible. Among the specific ap-
plications for which Meshview has been employed in its bare or
task-enhanced forms, we note the following:

6.1 4D Mathematical Visualization

The production of the video animation “knotˆ4 ” [15], which con-
cerned the visualization of knotted spheres embedded in four Eu-
clidean dimensions, generated a family of very interesting objects

that begged to be explored interactively. Meshview in some sense
was originally motivated by our need for our own customizable sys-
tem for this purpose. As a result, some of the earliest models cre-
ated for Meshview came from the film; a typical 4D “spun knot,”
that is not even knotted is shown in Figure 6. Many other “classic”
4D mathematical figures are in the Meshview geometry library, in-
cluding the 4-torus (just the product of two circles) in Figures (1,3),
and the crosscap/Steiner Roman Surface in Figures (4,5), which can
in fact be rotated into one another in Meshview (a fact uncovered
during the early work by Banchoff on 4D visualization — see [1]);
the equations for both of these figures can be found in the classic
bookGeometry and the Imagination[16].

6.2 Complex Functions

Some of the first author’s earliest work on mathematical visu-
alization started with attempts to visualize the Fermat surfaces
[9, 10, 14], which are extensions of the Fermat-theorem equations
to two complex variables of the form

(z1)
n + (z2)

n = 1

which are in effect then-fold Riemann surfaces of the complex
equation

f(z) = (1� zn)(1=n) :

Meshview provides any number of ways of exploring the 2D man-
ifolds that result from solving these two real equations in four real
variables and looking at projections of the natural embedding in
four real dimensions. In Figure 9, we show such a surface color-
coded by the phase transformations from the fundamental domain;
Figure 10 shows the same object with pseudocolor coded 4D depth.
Figure 11 shows the two complex planesz1 = 0 andz2 = 0 su-
perimposed on then = 3 Fermat surface. Solutions of the closely
related equations(z1)m(z2)n = 1 are shown in Figures 7 and 8.

6.3 Quaternion Visualization

The relation of 4D unit quaternions to rotations, orientations, and
camera frame interpolation has been familiar to computer graphi-
cists since their relevance was pointed out by Shoemake in 1985
[18]. Meshview was used extensively to create the figures and ani-
mations accompanying our research on mapping streamline orienta-
tion frames to quaternion spaces [11]. Subsequent research [5] em-
ployed Meshview as well to visualize the nature of optimal quater-
nion curves and surfaces corresponding to frame assignments for
3D curves and surfaces. Figures 12 and 13 show the quaternion
form of several possible tangent frame assignments for a (2,3) torus
knot; Figure 14 adds an actual quaternion surface representing the
space of all possible such frames.

6.4 Context for Perceptual Experiments

Meshview’s basic facilities have been adapted to a series of exper-
iments currently underway in the Perception/Action laboratory at
the Indiana University Department of Psychology. The recently
added key-frame animation and deformation capabilities are essen-
tial here; future work on the perceptual nature of 3D and 4D rigid
versus elastic motion is planned in this context.

6.5 Virtual Reality Features

Several features of the current Meshview support desktop virtual
reality functionality. On a stereo-equipped SGI, the system will
bring up a stereo screen that may be viewed with Stereographics
CrystalEyes equipment. Various parameters can be adjusted to the



user’s taste. We generally assume a non-moving user so that head-
tracking, while feasible, is not a high priority in the unenhanced
desktop system.

Perhaps of more interest is the support (implemented under IRIX
6.x, but not difficult in general) for the Logitech 3D mouse, which
is a full six-degree-of-freedom device with four buttons. By em-
ploying the 4D rolling ball algorithm [4] in its purest form, the 3D
position alone of the 3D mouse can naturally control all six rotation
planes of a 4D mathematical object. This is accomplished by hav-
ing (x; y; z)-motions rotate in the(x;w),(y;w), and(z; w) planes,
respectively, while “rowing” circular motions of the mouse position
in the(y; z),(z; x), and(x; y) planes, respectively, produce 4D ro-
tations in the(y; z),(z; x), and(x; y) planes themselves, exhausting
the entire 4D orientation space. The motion of a single 3D point at
the tip of the 3D mouse can thus be used to seek out any possible
projection from 4D into 3D.

7 Conclusion and Future Work

The Meshview system is a minimalist approach to a very flexible
and full-featured utility for examining and building intuition about
4D structures, e.g., 4D geometry and topology, two complex vari-
ables, and quaternions. Its implementation strategy is to use only
C, Motif, and OpenGL, thereby facilitating portability, maintain-
ability, extensibility, and compactness of design. The supported
data formats conform very closely to the OOGL formats imple-
mented by Geomview [17], with a handful of extensions. A vari-
ety of desktop virtual reality techniques are incorporated, including
the 4D rolling ball method for manipulating 4D displays, switched-
field Stereographics stereography, and the Logitech flying mouse.

We anticipate a limited CAVETM [3] implementation in the near
future.

Future plans include a number of ambitious extensions to cre-
ate robust and publicly available implementations of related high-
dimensional visualization techniques, including interactive 4D rota-
tion and and volume rendering of 3-manifolds embedded in 4D [8],
4D renderings of 3D scalar fields [7], and automatic generation and
fast interactive rendering of “thickened” 2-manifolds in 4D [6, 2].
Specific extensions involving quaternion visualization and quater-
nion frame optimization are also envisioned, including quaternion
maps of streamlines and stream surfaces in the manner of [11], and
the automatic generation of optimal tubings of curves and framings
of surfaces as described in [5]. The general approaches to more
sophisticated data navigation strategies such as those proposed in
[12, 13] would also be appropriate extensions to the Meshview fam-
ily of interaction modes.

The URL for Meshview isftp://ftp.cs.indiana.edu/
and the file ispub/hanson/Meshview.1.2.tar.gz .
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Figure 3: 4D depth colored 4-torus Figure 4: Crosscap = 4D rotated Roman surface Figure 5: Steiner Roman surface

Figure 6: Twist-spun trefoil knot Figure 7:z1z2 = 1 Figure 8:z1(z2)2 = 1

Figure 9:N = 4 Fermat surface coded by 2D
complex phase transform

Figure 10: N = 4 Fermat surface with color
coded 4D depth

Figure 11:N = 3 Fermat surface withz1 = 0
andz2 = 0 complex planes

Figure 12: Quaternion Frenet frame of (2,3)
torus knot with color coded 4D depth

Figure 13: Selection of alternate quaternion tan-
gent frames for (2,3) torus knot

Figure 14: Quaternion manifold of allowed (2,3)
torus knot tangent frames
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