Bioinspired E-skins

Presented by: Jonathan Appiagyei

A new approach to tactile sensing

SENSORS

A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics

Clementine M. Boutry¹, Marc Negre¹, Mikael Jorda², Orestis Vardoulis¹, Alex Chortos¹, Oussama Khatib², Zhenan Bao^{1*}

The goal is to mimic human skin structure

- Four types of receptors lie in a structure called the spinosum
- The FA-I and FA-II receptors quickly measure dynamic forces and vibrations
- The SA-I and SA-II receptors measure static pressures over slower time scales

The e-skin below replicates the spinosum

- This e-skin in particular is able to measure both normal and shear forces
- Blue material is polyurethane
- Black objects in top layer are carbon nanotubes
- Grey layer is a dielectric
- Bottom silver devices are electrodes

Bioinspired e-skin

Each hill has multiple capacitors

- 26 capacitors on each ridge
- 1 capacitor at the top, 4 on the slopes, 4 on the corners, and 16 surrounding the hill

The result is a sensor with greater sensing

Below are typical approaches to tactile sensing

Typical approaches offer less resolution

Here are close-up views of the skin

This example shows readings from applying a normal force

- Each pyramid is 30um away(center-tocenter) from the other
- 7000kPa of force applied

A shear force and a normal force is applied to this ridge

5kPa-10kPa applied

Applied here is a tilt force

340kPa of force was applied

Observed is the signal response from a bead

A bead was removed and grabbed over and over

Changing pyramid size and distancing yields different results

Different regions have different sizing ideals

Spiral and orthogonal patterns were tested

An experiment with the e-skin in action

- LCR meter measures signal response
- Board with/without holes

The hand experiment without the ball

- Green arrow represents normal force
- Red is the e-skin

The hand experiment with a ball

Red arrows represent the shear force

The e-skin is used to prevent the hand from crushing the raspberry

Emulating biological features in nature

Mimicking Human and Biological Skins for Multifunctional Skin Electronics

Youngoh Lee, Jonghwa Park, Ayoung Choe, Seungse Cho, Jinyoung Kim, and Hyunhyub Ko*

Fingerprint-Like Skin

Skins with ridges enhance the detection of vibrations

- MEMS based sensor
- Aids in high-frequency sensing

Piezoelectric sensors allow for flexible skins

Self-Healing Skin

This skin uses a polymer to exploit hydrogen bonds for self-healing

This skin uses a supramolecular gel to heal

CNTs have also been experiment with in conductive self-healing skins

Response Visualization

There are various ways to exhibit illumination

- OLEDs and dyes have been used to show interactions with e-skins
- Electrochromic and thermochromic materials response to voltages differences and temperature
- The need for constant external power can be an issue (OLEDs e.g.)

An example of an OLED-based skin

A combination pressure and dyes can be used as well

