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Authors

* The paper is from MIT, specifically,
* Leslie P Kaelbling:

* focuses on research about data-driven method for planning.
* Founded Journal of Machine learning Research

* Joshua B Tenenbaum:
* focuses on filling in the gap between human cognition and Al



Uncertainties?

* Difference between simulators predictions and real-world
observations
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Fig. 1: The motion of an object being pushed appears stochastic
and possibly multi-modal due to imperfections in contact surfaces,
non-uniform coefficient of friction, stick/slip transitions, and micro
surface interactions. In this study, we propose to augment analytical
models to more accurately predict such outcomes while reasoning
about uncertainty.



Goal

* Fill in this gap between physical simulation and real world
observations.



Related Work

* Models for planar pushing:
* Ellipsoidal Limit Surfaces [Lynch et al.]
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Related Work

* Learning Contact Dynamics

* Neural network for one-step prediction [Kloss et al.]
* Flaws: only sufficient for the planar pushing case.
* One-step estimation doesn’t work well for long trajectories

* Uncertainty modeling

* Model using mixture of Gaussians, giving multi-modality, make it possible to
capture it. [Bauza and Rodriguez]



Problems of previous work

* Physical model:
* work in nominal cases, yet cannot deal with contact well.

* Existing Data-driven method:
* not very efficient and very domain-specific



Contribution

* Combine the physical model and data-driven method:

* Propose Data-Augmented Residual Models

* use physical simulation and then use a Learns the difference between
simulation and real world data



Techniques

* Physics Engine: Ellipsoidal limit surface
* Compute motion cone
* Inside: sticking
e QOutside: sliding
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Techniques

* Recurrent data-augmented residual model

* Based on previous model called VRNN.(it cannot condition on additional
inputs eg. Pushforces)

* Make it conditional, namely Conditional VRNNs.



Formulations
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Fig. 2: Model classes: (a) physics-based analytical models; (b) data-driven models; (¢) data-augmented residual models; (d) recurrent
data-augmented residual models; and (e) stochastic recurrent data-augmented residual models.
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Experiments
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Fig. 4: The two scenarios: ball bouncing and planar pushing.




Results — bouncing ball

Train Test

Models loss (x107%) trans (%) pos (mm) rot (deg) loss (x107%) trans (%) pos (mm) rot (deg)

Zero N/A N/A N/A N/A N/A 99.99 359.44 49.46
Physics N/A N/A N/A N/A N/A 1.93 6.91 7.71
Neural 0.41 0.72 242 1.85 0.68 0.84 2.81 248
Hybrid 0.36 0.54 1.86 1.73 0.47 0.60 2.04 2.03

TABLE I: Our hybrid model achieves the best performance in both position and rotation estimation for rect/, compared with methods
that rely on physics engines or neural nets alone. Here we show results on both training and test sets, as well as the optimization losses.
These numbers suggest that our Hybrid model is overfitting to the training set less than the pure Neural model. As we focus on long-term
prediction, we include the Zero baseline to show the scale and the challenging nature of the problem.



Results- bouncing ball

prediction, we include the Zero baselne o show the scale and the ¢

Models trans (%) pos (m) velocity (m/s%)

Zero 100.00 0.64 1.60
Physics 2741 0.16 1.06
Neural 9.16 0.058 0.43
Hybrid 242 0.016 0.14

TABLE II: Our hybrid model achieves the best performance in both
position and velocity estimation of the ball, compared with methods
that rely on physics engines or neural nets alone.



Experiment with different materials
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Materials Models trans (%) pos (mm) rot (deg)

Zero 99.99 339.12 48.36

lvwood Physics 251 5.49 10.38
PLYWo Neural 0.92 3.43 2.16
Hybrid 0.77 2.16 1.65

Zero 99.99 357.98 52.67

delrin Physics 1.89 5.78 12.07
Neural 0.81 2.81 2.50

Hybrid 0.62 2.09 2.19

TABLE III: Our Hybrid model performs well consistently across
object materials. Here for the rectangle made of plywood and delrin,
our model again outperforms all other baseline models.



Results — planar pushing
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Fig. 5: Prediction errors vs. training data size. Our hybrid model not only performs better, but also requires much less data to achieve a
given level of performance. In contrast, purely using purely data-driven models requires a larger training set and is not performing as well.



Discussions

* |Is the model general enough?
* How can it be adapted to scenarios that is not planar pushing?



