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Abstract— As robots enter novel, uncertain home and office
environments, they are able to navigate these environments
successfully. However, to be practically deployed, robots should
be able to manipulate their environment to gain access to new
spaces, such as by opening a door and operating an elevator. This,
however, remains a challenging problem because a robot will
likely encounter doors (and elevators) it has never seen before.

Objects such as door handles are very different in appearance,
yet similar function implies similar form. These general, shared
visual features can be extracted to provide a robot with the
necessary information to manipulate the specific object and carry
out a task. For example, opening a door requires the robot to
identify the following properties: (a) location of the door handle
axis of rotation, (b) size of the handle, and (c) type of handle (left-
turn or right-turn). Given these keypoints, the robot can plan the
sequence of control actions required to successfully open the door.
We identify these “visual keypoints” using vision-based learning
algorithms. Our system assumes no prior knowledge of the 3D
location or shape of the door handle. By experimentally verifying
our algorithms on doors not seen in the training set, we advance
our work towards being the first to enable a robot to navigate to
more spaces in a new building by opening doors and elevators,
even ones it has not seen before.

I. I NTRODUCTION

Recently, there is growing interest in using robots not only
in controlled factory environments but also in unstructured
home and office environments. In the past, successful nav-
igation algorithms have been developed for robots in these
environments. However, to be practically deployed, robots
must also be able to manipulate their environment to gain
access to new spaces. In this paper, we will discuss our work
towards enabling a robot to autonomously navigate anywhere
in a building by opening doors and elevators, even those it has
never seen before.

Most prior work in door opening (e.g., [1, 2]) assumes
that a detailed 3D model of the door (and door handle)
is available, and focuses on developing the control actions
required to open one specific door. In practice, a robot must
rely on only its sensors to perform manipulation in a new
environment. However, most modern 3D sensors, such as a
laser range finder, swissranger depth camera, or stereo camera,
often provide sparse and noisy point clouds. In grasping, some
recent works (e.g., [3, 4]) use learning to address this problem.
Saxena et al. [3] use a vision-based learning approach to
choose a point at which to grasp an object. However, a task
such as opening a door is more involved in that it requires a
series of manipulation tasks; the robot must first plan a path
to reach the handle and then apply a series of forces/torques
(which may vary in magnitude and direction) to open the door.

Fig. 1. Variety of manipulation tasks required for a robot to navigate in the
environment.

The vision algorithm must be able to infer more information
than a single grasp point to allow the robot to plan and execute
such a manipulation task.

In this paper, we focus on the problem of manipulation in
novel environments where a detailed 3D model of the object
is not available. We note that objects, such as door handles,
vary significantly in appearance, yet similar function implies
similar form. Therefore, we will design vision-based learning
algorithms that attempt to capture the visual features shared
across different objects that have similar functions. To perform
a manipulation task, such as opening a door, the robot end-
effector must move through a series of way-points in cartesian
space, while achieving the desired orientation at each way-
point, in order to turn the handle and open the door. A small
number of keypoints such as the handle’s axis of rotation and
size provides sufficient information to compute such a trajec-
tory. We use vision to identify these “visual keypoints,” which
are required to infer the actions needed to perform the task.
To open doors or elevators, there are various types of actions
a robot can perform; the appropriate set of actions depends
on the type of control object the robot must manipulate, e.g.,
left/right turn door handle, spherical doorknob, push-bardoor
handle, elevator button, etc. Our algorithm learns the visual
features that indicate the appropriate type of control action to
use.

For a robot to successfully open a door or elevator, it also
needs to plan a collision-free path to turn and push or pull
the handle while moving the robot base. For this purpose, we
use a motion planning algorithm. We test our algorithm on a
mobile manipulation platform, where we integrate different



components—vision, navigation, planning, control, etc., to
perform the task of opening the door.

Finally, to demonstrate the robustness of our algorithms,
we provide results from extensive experiments on 20 different
doors in which the robot was able to reliably open new doors
in new buildings, even ones which were seen for the first time
by the robot (and the researchers working on the algorithm).

II. RELATED WORK

Our work draws ideas from a variety of fields, such as
computer vision, grasping, planning, control, etc.; we will
briefly discuss some of the related work in these areas.

There has been a significant amount of work done in robot
navigation [5]. Many of these use a SLAM-like algorithm with
a laser scanner for robot navigation. Some of these works have,
in fact, even identified doors [6, 7, 8, 9, 10]. However, all of
these works assumed aknownmap of the environment (where
they could annotate doors); and more importantly none of them
considered the problem of enabling a robot to autonomously
open doors.

In robotic manipulation, most work has focused on develop-
ing control actions for different tasks, such as grasping objects
[11], assuming a perfect knowledge of the environment (in the
form of a detailed 3D model). Recently, some researchers have
started using vision-based algorithms for some applications,
e.g. [12]. Although some researchers consider using vision
or other sensors to perform tasks such as grasping [13, 14],
these algorithms do not apply to manipulation problems where
one needs to estimate a full trajectory of the robot and also
consider interactions with the object being manipulated.

There has been some recent work in opening doors using
manipulators [15, 16, 17, 1, 2]; however, these works fo-
cused on developing control actions assuming a pre-surveyed
location of a known door handle. In addition, these works
implicitly assumed some knowledge of the type of door
handle, since a turn lever door handle must be grasped and
manipulated differently than a spherical door knob or a push-
bar door.

Little work has been done in designing autonomous
elevator-operating robots. Notably, [18] demonstrated their
robot navigating to different floors using an elevator, but their
training phase (which requires that a human must point out
where the appropriate buttons are and the actions to take for
a given context) used the same elevator as the one used in
their test demonstration. Other researchers have addressed the
problem of robots navigating in elevators by simply having
the robot stand and wait until the door opens and then ask
a human to press the correct floor button [19, 20]. Kemp et
al. [21] used human assistance (“point and click” interface)
for grasping objects.

In the application of elevator-operating robots, some robots
have been deployed in places such as hospitals [22, 23].
However, expensive modifications must be made to the ele-
vators, so that the robot can use a wireless communication
to command the elevator. For opening doors, one can also
envision installing automatic doors, but our work removes the

TABLE I

V ISUAL KEYPOINTS FOR SOME MANIPULATION TASKS.

MANIPULATION TASK V ISUAL KEYPOINTS

TURN A DOOR HANDLE 1. LOCATION OF THE HANDLE
2. ITS AXIS OF ROTATION
3. LENGTH OF THE HANDLE
4. TYPE (LEFT-TURN,

RIGHT-TURN, ETC.)
PRESS AN 1. LOCATION OF THE BUTTON
ELEVATOR BUTTON 2. NORMAL TO THE SURFACE

OPEN A 1. LOCATION OF THE TRAY
DISHWASHER TRAY 2. DIRECTION TO PULL OR PUSH IT

need to make these expensive changes to the many elevators
and doors in a typical building.

In contrast to many of these previous works, our work
does not assume existence of a known model of the object
(such as the door, door handle, or elevator button) or a precise
knowledge of the location of the object. Instead, we focus on
the problem of manipulation in novel environments, in which
a model of the objects is not available, and one needs to rely
on noisy sensor data to identify visual keypoints. Some of
these keypoints need to be determined with high accuracy
for successful manipulation (especially in the case of elevator
buttons).

III. A LGORITHM

Consider the task of pressing an elevator button. If our
perception algorithm is able to infer the location of the button
and a direction to exert force in, then one can design a control
strategy to press it. Similarly, in the task of pulling a drawer,
our perception algorithm needs to infer the location of a point
to grasp (e.g., a knob or a handle) and a direction to pull. In
the task of turning a door handle, our perception algorithm
needs to infer the size of the door handle, the location of its
axis, and a direction to push, pull or rotate.

More generally, for many manipulation tasks, the perception
algorithm needs to identify a set of properties, or “visual
keypoints” which define the action to be taken. Given these
visual keypoints, we use a planning algorithm that considers
the kinematics of the robot and the obstacles in the scene, to
plan a sequence of control actions for the robot to carry out
the manipulation task.

Dividing a manipulation task into these two parts: (a) an
algorithm to identify visual keypoints, and (b) an algorithm to
plan a sequence of control actions, allows us to easily extend
the algorithm to new manipulation tasks, such as opening a
dishwasher. To open a dishwasher tray, the visual keypoints
would be the location of the tray and the desired direction to
move it. This division acts as a bridge between state of the
art methods developed in computer vision and the methods
developed in robotics planning and control.

A. Identifying Visual Keypoints

Objects such as door handles vary significantly in appear-
ance, yet similar function implies similar form. Our learning
algorithms will, therefore, try to capture the visual features that
are shared across different objects having similar function.



In this paper, the tasks we consider require the perception
algorithm to: (a) locate the object, (b) identify the particular
sub-category of object (e.g., we consider door handles of left-
turn or right-turn types), and (c) identify some propertiessuch
as the surface normal or door handle axis of rotation. An
estimate of the surface normal helps indicate a direction to
push or pull, and an estimate of the door handle’s axis of
rotation helps in determining the action to be performed by
the arm.

In the field of computer vision, a number of algorithms
have been developed that achieve good performance on tasks
such as object recognition [24, 25]. Perception for robotic
manipulation, however, goes beyond object recognition in that
the robot not only needs to locate the object but also needs
to understand what task the object can perform and how to
manipulate it to perform that task. For example, if the intention
of the robot is to enter a door, it must determine the type of
door handle (i.e., left-turn or right-turn) and an estimateof its
size and axis of rotation, in order to compute the appropriate
action (i.e., to turn the door handle left and push/pull).

Manipulation tasks also typically require more accuracy
than what is currently possible with most classifiers. For
example, to press an elevator button, the 3D location of the
button must be determined within a few millimeters (which
corresponds to a few pixels in the image), or the robot will
fail to press the button. Finally, another challenge in designing
perception algorithms is that different sensors are suitable for
different perception tasks. For example, a laser range finder
is more suitable for building a map for navigation, but a 2D
camera is a better sensor for finding the location of the door
handle. We will first describe our image-based classifier.

1) Object Recognition:To capture the visual features that
remain consistent across objects of similar function (and hence
appearance), we start with a 2D sliding window classifier. We
use a supervised learning algorithm that employs boosting to
compute a dictionary of Haar features.

In detail, the supervised training procedure first randomly
selects ten small windows to produce a dictionary of Haar
features [26]. In each iteration, it trains decision trees using
these features to produce a model while removing irrelevant
features from the dictionary. Figure 2 shows a portion of
the patch dictionary selected by the algorithm.1 Now, when
given a new image, the recognizer identifies bounding boxes
of candidate locations for the object of interest.

There are a number of contextual properties that we take
advantage of to improve the classification accuracy. Proximity
of objects to each other and spatial cues, such as that a door
handle is less likely to be found close to the floor, can be used
to learn a location based prior (partly motivated by [26]).

1Details: We trained 50 boosting iterations of weak decisiontrees with 2
splits using a base window size of 84 x 48 pixels. To select theoptimal values
of parameters, e.g., number of components used, type of kernel,etc., we used a
cross-validation set. We implemented this object recognizeron left and right
door handles and elevator call panel buttons. The door handle training set
consisted of approximately 300 positive and 6000 negative samples, and the
elevator call button training set consisted of approximately 400 positive and
1500 negative samples.

Fig. 2. Example features found by our Haar-Boosting-Kmeans classifier.

We experimented with several techniques to capture the
fact that the labels (i.e., the category of the object found)
have correlation. An algorithm that simply uses non-maximal
suppression of overlapping windows for choosing the best
candidate locations resulted in many false positives—12.2%
on the training set and 15.6% on the test set. Thus, we
implemented an approach that takes advantage of the context
for the particular objects we are trying to identify. For example,
we know that doors (and elevator call panels) will always
contain at least one handle (or button) and never more than
two handles. We can also expect that if there are two objects,
they will lie in close proximity to each other and they will
likely be horizontally aligned (in the case of door handles)or
vertically aligned (in the case of elevator call buttons). This
approach resulted in much better recognition accuracy.2

Figure 3 shows some of the door handles identified using
our algorithm. In our earlier version of the algorithm, we used
Support Vector Machines on a small set of features (computed
from PCA).3 Table II shows the recognition and localization
accuracies. “Localization accuracy” is computed by assigning
a value of1 to a case where the estimated location of the
door handle or elevator button was within2 cm of the correct
location and0 otherwise. An error of more than2 cm would
cause the robot arm to fail to grasp the door handle (or push
the elevator button) and open the door.

Once the robot has identified the location of the object in
an image, it needs to identify the object type and infer control
actions from the object properties to know how to manipulate
it. Given a rectangular patch containing an object, we classify
what action to take. In our experiments, we considered three
types of actions: turn left, turn right, and press. The accuracy

2In detail, we start with windows that have high probability of containing
the object of interest. These candidate windows are then grouped using K-
means clustering; the number of clusters are determined from the histogram
of the candidate window locations. In the case of one cluster, the cluster
centroid gives the best estimate for the object location. In the case of two
or more clusters, the centroid of the cluster with highest probability (the one
with the most candidate frames) is identified as the most likely location for
an object.

3SVM-PCA-Kmeans:For locating the object, we compute features that were
motivated in part by some recent work in computer vision [24, 27]and robotic
grasping [13]. The features are designed to capture three different types of
local visual cues: texture variations, texture gradients,and color, by convolving
the intensity and color channels of the image with 15 filters (9Laws’ masks
and 6 oriented edge filters). We compute the sum of energies of each of these
filter outputs, resulting in an initial feature vector of dimension 45. To capture
more global properties, we append the features computed from neighboring
patches (in a 4x4 grid around the point of interest). We then use PCA to
extract the most relevant features from this set. Finally, weuse the Support
Vector Machines (SVM) [28] learning algorithm to predict whether or not an
image patch contains a door handle or elevator button. This gave an accuracy
of 91.2% in localization of door handles.



Fig. 3. Results on test set. The green rectangles show the rawoutput from the classifiers, and the blue rectangle is the oneafter applying context.

TABLE II

ACCURACIES FOR RECOGNITION AND LOCALIZATION.

RECOGNITION LOCALIZATION

DOOR HANDLE 94.5% 93.2%
ELEVATOR BUTTONS 92.1% 91.5%

of the classifier that distinguishes left-turn from right-turn
handles was 97.3%.

2) Estimates from 3D data:Our object recognition algo-
rithms give a 2D location in the image for the visual keypoints.
However, we need their corresponding 3D locations to be able
to plan a path for the robot.

In particular, once an approximate location of the door
handle and its type is identified, we use 3D data from the
stereo camera to estimate the axis of rotation of the door
handle. Since, the axis of a right- (left-) turn door handle
is the left- (right-) most 3D point on the handle, we build
a logistic classifier for door-axis using two features—distance
of the point from the door and its distance from the center
(towards left or right). Figure 4 shows an example of the door-
axis found from the 3D point-cloud. Similarly, we use PCA
on the local 3D point cloud to estimate the orientation of the
surface—required in cases such as elevator buttons and doors
for identifying the direction to apply force.

However, the data obtained from a stereo sensor is often
noisy and sparse in that the stereo sensor fails to give depth
measurements when the areas considered are textureless, e.g.,
blank elevator walls [29]. Therefore, we also present a method
to fuse the 2D image location (inferred by our object recogni-

Fig. 4. The rotation axis of the door handle, shown by the yellow rectangle
in the image (left) and in the point-cloud (right, showing top-view). Notice
the missing points in the center of the handle.

tion algorithm), with a horizontal laser scanner (available on
many mobile robots) to obtain the 3D location of the object.
Here, we make a ground-vertical assumption—that every door
is vertical to a ground-plane [30].4 This enables our approach
to be used on robots that do not have a 3D sensor such as a
stereo camera (that are often more expensive).

B. Planning and Control

Given the visual keypoints and the goal, we need to design
motion planning and control algorithms to allow the robot to

4In detail, a location in the image corresponds to a ray in 3D, which would
intersect the plane in which the door lies. Let the planar laser readings be
denoted asli = (x(θi), y(θi)). Let the origin of the camera be atc ∈ R

3 in
arm’s frame, and letr ∈ R

3 be the unit ray passing from the camera center
through the predicted location of the door handle in the imageplane. I.e., in
the robot frame, the door handle lies on a line connectingc andc + r.

Let T ∈ R
2×3 be a projection matrix that projects the 3D points in the

arm frame into the plane of the laser. In the laser plane, therefore, the door
handle is likely to lie on a line passing throughTc andT (c + r).

t∗ = mint

P

i∈Ψ
||T (c + rt) − li||

2

2
(1)

whereΨ is a small neighborhood around the rayr. Now the location of the
3D point to move the end-effector to is given bys = c + rt∗.



Fig. 5. An illustration showing how to obtain the locations of the end-effector
from the visual keypoints.

successfully execute the task. The planning algorithm should
consider the kinematics of the robot and also criterion such
as obstacle avoidance (e.g., opening a dishwasher tray without
hitting the objects in the tray).

For example, to turn a door handle the robot needs to move
the end-effector in an arc centered at the axis of rotation of
the door handle. (See Figure 5.) The visual keypoints such
as length of the door handled and the axis of rotation were
estimated from the vision-based learning algorithms. Using
these keypoints, we can compute the desired locationsPi ∈ R

3

of the end-effector during the manipulation task.
To determine the correct control commands, we find the

joint angles of the robot that will take the end-effector through
the locationsPi. The robot must pass through these landmarks
in configuration space; however, the problem of computing
joint angle configurations from end-effector locations is ill-
posed. Therefore, we use additional criterion such as keeping
the wrist aligned with the axis of rotation and preventing the
joints from reaching their limits or the arm from hitting any
obstacles. To plan such paths, we build upon a Probabilistic
RoadMap (PRM) [31] motion planning algorithm for obtaining
a smooth, collision-free path for the robot to execute.

Fig. 6. Planning a path to open the door.

IV. EXPERIMENTS

A. Robot

Our robotic platform (which we call STAIR 1) consists of a
harmonic arm (Katana, by Neuronics) mounted on a Segway
robotic mobility platform. The 5-dof arm is position-controlled
and has a parallel-plate gripper. Our vision system uses a Point
Grey Research stereo camera (Bumblebee XB3) and a laser
scanner (Hokuyo) mounted on a frame behind the robotic arm.

B. Experiments

We used a Voronoi-based global planner for navigation [32];
this enabled the robot to localize itself in front of and facing

TABLE III

ERROR RATES OBTAINED FOR THE ROBOT OPENING THE DOOR IN A TOTAL

NUMBER OF 34 TRIALS.

DOOR NUM OF RECOG. CLASS. LOCALIZA - SUCCESS-
TYPE TRIALS (%) (%) TION (CM) RATE

LEFT 19 89.5% 94.7% 2.3 84.2%
RIGHT 15 100% 100% 2.0 100%
TOTAL 34 94.1% 97.1% 2.2 91.2%

Fig. 7. Some experimental snapshots showing our robot openingdifferent
types of doors.

a door (or elevator panel) within20cm and±20 degrees. An
experiment began with the robot starting at a random location
within 3m of the door. It used lasers to navigate to the door,
and our vision-based classifiers to find the handle.

In the experiments, our robot saw all of our test locations
for the first time. The training images for our vision-based
learning algorithm were collected in completely separate build-
ings, with different doors and door handle shapes, structure,
decoration, ambient lighting, etc. We tested our algorithmon
two different buildings on a total of five different floors (about
20 differentdoors). Many of the test cases were also run where
the robot localized at different angles, typically between-
30 and +30 degrees with respect to the door, to verify the
robustness of our algorithms.

In a total of 34 experiments, our robot was able to suc-
cessfully open the doors31 out of 34times. Table III details
the results; we achieved an average recognition accuracy of
94.1% and a classification accuracy of 97.1%. We define
the localization error as the mean error (in cm) between the
predicted and actual location of the door handle. This led to
a success-rate (fraction of times the robot actually openedthe
door) of 91.2%. Notable failures among the test cases included
glass doors (erroneous laser readings), doors with numeric
keypads, and very dim/poor lighting conditions. These failure
cases have been reduced significantly (in simulation) with the
new classifier. (The current experiments were run using our
earlier svm-pca-kmeans classifier.)

For elevator button pushing and door pulling experiments,
we have only performed single demonstrations on the robot.
Due to the small size of the elevator buttons (2 cm diameter)
and the challenge of obtaining very accurate arm-vision system
calibration, reliably pushing the buttons is much more difficult,
even if the simulations show high performance. Our robot has
a fairly weak gripper, and therefore pulling the door open is



Fig. 8. Snapshots showing our robot opening a dishwasher tray.

also difficult because of the very small effective workspace
in which it can exert enough torque to open a door. Also
many of the doors are spring-loaded, making it impossible
for this particular arm to pull them open. In future work, we
plan to use active vision [33], which takes visual feedback into
account while objects are being manipulated and thus provides
complementary information that would hopefully improve the
performance on these tasks.

Videos of the robot opening new doors and elevators are
available at:

http://ai.stanford.edu/∼asaxena/openingnewdoors

To demonstrate how our ideas can be extended to more
manipulation tasks, we also tested our algorithms on the task
of opening a dishwasher tray in a kitchen. Using our 3D
classifiers, we identified the location of the tray and the visual
keypoints, i.e., the direction in which to pull the tray open.
Here, training and testing was done on same dishwasher but
test cases had different objects/position of the tray as compared
to the training set. By executing the planned path, the robot
was able to pull out the dishwasher tray (Figure 8).

V. CONCLUSION

To navigate and perform tasks in unstructured environments,
robots must be able to perceive their environments to identify
what objects to manipulate and how they can be manipulated
to perform the desired tasks. We presented a framework
that identifies some visual keypoints using our vision-based
learning algorithms. Our robot was then able to use these
keypoints to plan and execute a path to perform the desired
task. This strategy enabled our robot to navigate to new places
in a new building by opening doors and elevators, even ones
it had not seen before. In the future, we hope this framework
will aid us in developing algorithms for performing a variety
of manipulation tasks.
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