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Abstract— As robots enter novel, uncertain home and office
environments, they are able to navigate these environments
successfully. However, to be practically deployed, robots should
be able to manipulate their environment to gain access to new
spaces, such as by opening a door and operating an elevator. This,
however, remains a challenging problem because a robot will
likely encounter doors (and elevators) it has never seen before.

Objects such as door handles are very different in appearance,
yet similar function implies similar form. These general, shared
visual features can be extracted to provide a robot with the
necessary information to manipulate the specific object and carry
out a task. For example, opening a door requires the robot to
identify the following properties: (a) location of the door handle
axis of rotation, (b) size of the handle, and (c) type of handle (left
turn or right-turn). Given these keypoints, the robot can plan the
sequence of control actions required to successfully open the dio
We identify these “visual keypoints” using vision-based learning Fig. 1. Variety of manipulation tasks required for a robot fwigate in the
algorithms. Our system assumes no prior knowledge of the 3D environment.
location or shape of the door handle. By experimentally verifying
our algorithms on doors not seen in the training set, we advance The vision algorithm must be able to infer more information
%Ugrévgrkaté’e"ysa{gsabﬁg\:\? éh?ldfiift tt? ec:‘aebr']?na :;):Ort to :g‘Vi?atett? than a single grasp point to allow the robot to plan and execut
even or?es it has not seelil bef%re)./ P 9 0015 ane EIevaor: such a-manlpulauon task. . L

In this paper, we focus on the problem of manipulation in
|. INTRODUCTION novel environments where a detailed 3D model of the object

Recently, there is growing interest in using robots not onfg not available. We note that objects, such as door handles,
in controlled factory environments but also in unstructurevary significantly in appearance, yet similar function imepl
home and office environments. In the past, successful naimilar form. Therefore, we will design vision-based ldam
igation algorithms have been developed for robots in theatgorithms that attempt to capture the visual featureseshar
environments. However, to be practically deployed, robogeross different objects that have similar functions. Tdgren
must also be able to manipulate their environment to ganmanipulation task, such as opening a door, the robot end-
access to new spaces. In this paper, we will discuss our waector must move through a series of way-points in caatesi
towards enabling a robot to autonomously navigate anywhexeace, while achieving the desired orientation at each way-
in a building by opening doors and elevators, even thosesit hgoint, in order to turn the handle and open the door. A small
never seen before. number of keypoints such as the handle’s axis of rotation and

Most prior work in door opening (e.g., [1, 2]) assumesize provides sufficient information to compute such a traje
that a detailed 3D model of the door (and door handléyry. We use vision to identify these “visual keypoints,” iain
is available, and focuses on developing the control actioage required to infer the actions needed to perform the task.
required to open one specific door. In practice, a robot muBEb open doors or elevators, there are various types of a&tion
rely on only its sensors to perform manipulation in a new robot can perform; the appropriate set of actions depends
environment. However, most modern 3D sensors, such a®rathe type of control object the robot must manipulate,, e.g.
laser range finder, swissranger depth camera, or stereacaamieft/right turn door handle, spherical doorknob, push-taor
often provide sparse and noisy point clouds. In graspingieso handle, elevator button, etc. Our algorithm learns the alisu
recent works (e.g., [3, 4]) use learning to address thislpmb features that indicate the appropriate type of controloacto
Saxena et al. [3] use a vision-based learning approach use.
choose a point at which to grasp an object. However, a taskFor a robot to successfully open a door or elevator, it also
such as opening a door is more involved in that it requiresreeeds to plan a collision-free path to turn and push or pull
series of manipulation tasks; the robot must first plan a pate handle while moving the robot base. For this purpose, we
to reach the handle and then apply a series of forces/torquse a motion planning algorithm. We test our algorithm on a
(which may vary in magnitude and direction) to open the doanobile manipulation platform, where we integrate diffdren




TABLE |

components—vision, navigation, planning, control, eto., t
VISUAL KEYPOINTS FOR SOME MANIPULATION TASKS

perform the task of opening the door.

Finally, to demonstrate the robustness of our algorithmsMANIPULATION TASK | VISUAL KEYPOINTS
we provide results from extensive experiments on 20 differe| TURN ADOORHANDLE | 1. LOCATION OF THE HANDLE
_doors in vyhi_ch the robot was al_ale to reliably open new dqors : :_TESNngf SE $3:LT/L?\IELE
in new buildings, even ones which were seen for the first time . TYPE (LEFT-TURN,
by the robot (and the researchers working on the algorithm)). RIGHT-TURN, ETC.)
PRESS AN . LOCATION OF THE BUTTON

Il. RELATED WORK ELEVATOR BUTTON . NORMAL TO THE SURFACE

Our work draws ideas from a variety of fields, such as OPENA - LOCATION OF THE TRAY
computer vision, grasping, planning, control, etc.; welwi DISHWASHER TRAY : DIRECTION TO PULL OR PUSH IT
briefly discuss some of the related work in these areas.

There has been a significant amount of work done in rob@g€d to make these expensive changes to the many elevators
navigation [5]. Many of these use a SLAM-like algorithm wit&nd doors in a typical building. _
a laser scanner for robot navigation. Some of these works,hav In contrast to many of these previous works, our work
in fact, even identified doors [6, 7, 8, 9, 10]. However, all ofloes not assume existence of a known model of the objgct
these works assumedkaownmap of the environment (where (Such as the door, door handle, or e_Ievator button) or a geeci
they could annotate doors); and more importantly none ohthdnowledge of the location of the object. Instead, we focus on
considered the problem of enabling a robot to autonomoudi}e Problem of manipulation in novel environments, in which
open doors. a model of the objects is not available, and one needs to rely

In robotic manipulation, most work has focused on develo@ NOiSy sensor data to identify visual keypoints. Some of
ing control actions for different tasks, such as graspinga these keypoints need to be determined with high accuracy

[11], assuming a perfect knowledge of the environment (@ tffor successful manipulation (especially in the case ofagtav
form of a detailed 3D model). Recently, some researchers ha&Httons).
started using vision-based algorithms for some applioatio I1l. ALGORITHM
e.g. [12]. Although some researchers consider gsing VisionNconsider the task of pressing an elevator button. If our
or other sensors to perform tasks such as grasping [13, lfdrception algorithm is able to infer the location of thetbat
these algorithms do not apply to manipulation problems @hegq 5 direction to exert force in, then one can design a contro
one _need_s to es_timate_a full traj_ectory _of the rqbot and alggategy to press it. Similarly, in the task of pulling a deaw
consider interactions with the object being manipulated.  oyr perception algorithm needs to infer the location of anpoi
There has been some recent work in opening doors usigggrasp (e.g., a knob or a handle) and a direction to pull. In
manipulators [15, 16, 17, 1, 2]; however, these works fqne task of turning a door handle, our perception algorithm
cused on developing control actions assuming a pre-sutve¥gseds to infer the size of the door handle, the location of its
location of a known door handle. In addition, these workgyis and a direction to push, pull or rotate.
implicitly assumed some knowledge of the type of door \jore generally, for many manipulation tasks, the perceptio
handle, since a turn lever door handle must be grasped %ﬂgorithm needs to identify a set of properties, or “visual
manipulated differently than a spherical door knob or a pusReypoints” which define the action to be taken. Given these
bar door. visual keypoints, we use a planning algorithm that consider
Litle work has been done in designing autonomouge kinematics of the robot and the obstacles in the scene, to
elevator-operating robots. Notably, [18] demonstratedirth pjan a sequence of control actions for the robot to carry out
robot navigating to different floors using an elevator, it he manipulation task.
training phase (which requires that a human must point outpjyiding a manipulation task into these two parts: (a) an
where the appropriate buttons are and the actions to take gp@mithm to identify visual keypoints, and (b) an algonittto
a given context) used the same elevator as the one usegdh a sequence of control actions, allows us to easily exten
their test demonstration. Other researchers have addrésse the algorithm to new manipulation tasks, such as opening a
problem of robots navigating in elevators by simply havingishwasher. To open a dishwasher tray, the visual keypoints
the robot stand and wait until the door opens and then agkuld be the location of the tray and the desired direction to
a human to press the correct floor button [19, 20]. Kemp giove it. This division acts as a bridge between state of the
al. [21] used human assistance (“point and click” interfacgyt methods developed in computer vision and the methods

for grasping objects. developed in robotics planning and control.
In the application of elevator-operating robots, some tebo

have been deployed in places such as hospitals [22, 23], ldentifying Visual Keypoints

However, expensive modifications must be made to the ele-Objects such as door handles vary significantly in appear-
vators, so that the robot can use a wireless communicatiance, yet similar function implies similar form. Our leargi

to command the elevator. For opening doors, one can algorithms will, therefore, try to capture the visual fe@sithat
envision installing automatic doors, but our work remouas t are shared across different objects having similar functio
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In this paper, the tasks we consider require the percepti
algorithm to: (a) locate the object, (b) identify the pautar
sub-category of object (e.g., we consider door handlesftf Ie
turn or right-turn types), and (c) identify some propertsesh
as the surface normal or door handle axis of rotation.
estimate of the surface normal helps indicate a direction
push or pull, and an estimate of the door handle’s axis o,;ig. 2
rotation helps in determining the action to be performed by

the arm. . _ We experimented with several techniques to capture the
In the field of computer vision, a number of algorithmg,ct that the labels (i.e., the category of the object found)
have been developed that achieve good performance on tg correlation. An algorithm that simply uses non-maxima
such as object recognition [24, 25]. Perception for robotig,,nression of overlapping windows for choosing the best
manipulation, however, goes beyond object recognitiomat t 4 gidate locations resulted in many false positives—12.2%
the robot not only needs to Iocqte the object but also neggs he training set and 15.6% on the test set. Thus, we
to understand what task the object can perform and how jipiemented an approach that takes advantage of the context
manipulate |t.to perform that tasl§. For example,_ if the iti@m ¢ the particular objects we are trying to identify. For exale,
of the robot is to enter a door, it must determine the type gfe know that doors (and elevator call panels) will always
door handle (i.e., left-turn or right-turn) and an estimatéts conain at least one handle (or button) and never more than
size and axis of rotation, in order to compute the appropriafy, handles. We can also expect that if there are two objects,
action (i.e., to turn the door handle left and push/pul).  they will lie in close proximity to each other and they wil
Manipulation tasks also typically require more accurayely e horizontally aligned (in the case of door handles)
than what is currently possible with most classifiers. FQpically aligned (in the case of elevator call buttonshisT
example, to press an elevator button, the 3D location of thg, ach resulted in much better recognition accufacy.
button must be determined within a few millimeters (which Figure 3 shows some of the door handles identified using
corresponds to a few pixels in the image), or the robot wi§ aigorithm. In our earlier version of the algorithm, weeds
fail to press the button. Finally, another challenge in geSig g, nnort \iector Machines on a small set of features (computed
perception algorithms is that different sensors are sl&t&ly  from PCA)2 Table Il shows the recognition and localization
different perception tasks. For example, a laser range ffindg..racies. “Localization accuracy” is computed by assign
is more suitable for building a map for navigation, but & 213 yajue of1 to a case where the estimated location of the
camera is a better sensor for finding the location of the dogg,r handle or elevator button was withirem of the correct
handle. We will first describe our image-based classifier.  |5cation ando otherwise. An error of more tha? cm would
1) Object RecognitionTo capture the visual features that.5,,se the robot arm to fail to grasp the door handle (or push
remain consistent across objects of similar function (a@nce he elevator button) and open the door.
appearance), we start with a 2D sliding window classifier. We once the robot has identified the location of the object in
use a supervised learning algorithm that employs boostng dp, image, it needs to identify the object type and infer amntr
compute a dictionary of Haar features. actions from the object properties to know how to manipulate
In detail, the supgrvised training procedu_re_ first randomly Gjven a rectangular patch containing an object, we dass
selects ten small windows to produce a dictionary of Hagfhat action to take. In our experiments, we considered three

features [26]. In each iteration, it trains decision tresing types of actions: turn left, turn right, and press. The aacyr
these features to produce a model while removing irrelevant

features from the dictionary. Figure 2 shows a portion of 2|n detail, we start with windows that have high probabilitiya@ntaining

o ; the object of interest. These candidate windows are theopg using K-
the patch dictionary selected by the algomhmlow’ when means clustering; the number of clusters are determined frenhigtogram

given a new image, the recognizer identifies bounding boXgsthe candidate window locations. In the case of one cluster cluster
of candidate locations for the object of interest. centroid gives the best estimate for the object location.hin ¢ase of two

; more clusters, the centroid of the cluster with highesbphility (the one
There are a number of contextual properties that we ta\gv%h the most candidate frames) is identified as the most liketation for

advantage of to improve the classification accuracy. Pritxim an object.
of objects to each other and spatial cues, such as that a do&8VM-PCA-KmeansZor locating the object, we compute features that were
handle is less Iikely to be found close to the floor, can be usigtivated in part by some recent work in computer vision [24, 2] robotic

. . . grasping [13]. The features are designed to capture thriéeratit types of
to learn a location based prior (partly motivated by [26])- local visual cues: texture variations, texture gradieais| color, by convolving

the intensity and color channels of the image with 15 filter& s’ masks
1Details: We trained 50 boosting iterations of weak decidiees with 2 and 6 oriented edge filters). We compute the sum of energieaaf ef these
splits using a base window size of 84 x 48 pixels. To selecbtitanal values filter outputs, resulting in an initial feature vector of dinston 45. To capture
of parameters, e.g., number of components used, type of ketoglye used a more global properties, we append the features computed feighinoring
cross-validation set. We implemented this object recogrorefeft and right patches (in a 4x4 grid around the point of interest). We thea BCA to
door handles and elevator call panel buttons. The door kamdining set extract the most relevant features from this set. Finally,use the Support
consisted of approximately 300 positive and 6000 negativepss, and the Vector Machines (SVM) [28] learning algorithm to predict @ther or not an
elevator call button training set consisted of approxima#)0 positive and image patch contains a door handle or elevator button. This ga accuracy
1500 negative samples. of 91.2% in localization of door handles.

Example features found by our Haar-Boosting-Kmeaassdier.



TABLE Il
ACCURACIES FOR RECOGNITION AND LOCALIZATION

RECOGNITION | LOCALIZATION
DOOR HANDLE 94.5% 93.2%
ELEVATOR BUTTONS | 92.1% 91.5%
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%
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Fig. 4. The rotation axis of the door handle, shown by theoyeltectangle
. L . . in the image (left) and in the point-cloud (right, showing 4apw). Notice
of the classifier that distinguishes left-turn from rightft the missing points in the center of the handle.

handles was 97.3%.

2) Estimates from 3D dataOur object recognition algo- tion algorithm), with a horizontal laser scanner (avaiéabh
rithms give a 2D location in the image for the visual keypsint many mobile robots) to obtain the 3D location of the object.
However, we need their corresponding 3D locations to be alpere, we make a ground-vertical assumption—that every door
to plan a path for the robot. is vertical to a ground-plane [36]This enables our approach

In particular, once an approximate location of the doab be used on robots that do not have a 3D sensor such as a
handle and its type is identified, we use 3D data from thgereo camera (that are often more expensive).
stereo camera to estimate the axis of rotation of the door )
handle. Since, the axis of a right- (left-) turn door handiE: Planning and Control
is the left- (right-) most 3D point on the handle, we build Given the visual keypoints and the goal, we need to design
a logistic classifier for door-axis using two features—dista Motion planning and control algorithms to allow the robot to
of the point from the QOor and its distance from the Center“ln detail, a location in the image corresponds to a ray in 3Diclviwould
(to_WardS left or right). Flgure_: 4 shows ap e_zxample of the doo|l;1tersect the plane in which the door lies. Let the planaedasadings be
axis found from the 3D point-cloud. Similarly, we use PCAienoted as; = (z(6;),y(6;)). Let the origin of the camera be ate R3 in
on the local 3D point cloud to estimate the orientation of th&m's frame, and let € R? be the unit ray passing from the camera center
surface—required in cases such as elevator buttons and ddasl, e redeied ocaon of e doorhandle n e e e
for identifying the direction to apply force. Let T € R?*3 be a projection matrix that projects the 3D points in the

However, the data obtained from a stereo sensor is oft@f frar_ne.into the_plane o_f the Iasgr. In the laser plane, thexethe door
noisy and sparse in that the stereo sensor fails to give deB?ﬁdle 's likely to lie on a line passing througfe and 7 (c ).
measurements when the areas considered are texturelgss, e. t* =ming 3, g ||T(c+1t) — 1|3 1)
blank elevator walls [29]. Therefore, we also present a lmthhere\ll is a small neighborhood around the rayNow the location of the
to fuse the 2D image location (inferred by our object recegnsD point to move the end-effector to is given by= c 4 rt*.



i | ——— iy TABLE Il
8. 1 Initial ERROR RATES OBTAINED FOR THE ROBOT OPENING THE DOOR IN A TOTAL

Axis g rosition NUMBER OF 34 TRIALS.
of rotation : 2
’ DOOR [NUM OH RECOG. | CLASS. [LOCALIZA{ SUCCESS
TYPE |TRIALS| (%) (%) |TION (CM) RATE
Final LEFT 19 | 89.5% | 94.7% | 2.3 84.2%
Position RIGHT | 15 | 100% | 100% 2.0 100%
Fig. 5. Anillustration showing how to obtain the locatiorfdfee end-effector | TOTAL | 34 | 94.1% | 97.1% 2.2 91.2%

from the visual keypoints.

consider the kinematics of the robot and also criterion sug
as obstacle avoidance (e.g., opening a dishwasher traputith {
hitting the objects in the tray).
For example, to turn a door handle the robot needs to movE
the end-effector in an arc centered at the axis of rotation of
the door handle. (See Figure 5.) The visual keypoints such
as length of the door handi& and the axis of rotation were
estimated from the vision-based learning algorithms. Ysin
these keypoints, we can compute the desired locatiprsR?
of the end-effector during the manipulation task. ‘
To determine the correct control commands, we find thyg. 7. Some experimental snapshots showing our robot opatiffegent
joint angles of the robot that will take the end-effectorotigh  types of doors.
the locationsP;. The robot must pass through these landmarks -
door (or elevator panel) within0cm and+20 degrees. An

in configuration space; however, the problem of computin@>< . b ith the robot starti i dom lonati
joint angle configurations from end-effector locations lls i penment began wi € robot starting at a rancom lonatio
within 3m of the door. It used lasers to navigate to the door,

posed. Therefore, we use additional criterion such as keepi . . .
the wrist aligned with the axis of rotation and preventing thand our V|S|on—.based classifiers to find the handle. .

joints from reaching their limits or the arm from hitting any In the_expgnments, our. rgbot. saw all of our te_sF locations
obstacles. To plan such paths, we build upon a Probabilisft?(f the first time. The training images for our vision-based

RoadMap (PRM) [31] motion planning algorithm for obtaininqeammg algc_Jrlthm were collected in completely separakizo
a smooth, collision-free path for the robot to execute. ngs, with different doors and door handle shapes, stractur
' decoration, ambient lighting, etc. We tested our algorithm

two different buildings on a total of five different floors @izt

20 differentdoors). Many of the test cases were also run where
the robot localized at different angles, typically between
30 and +30 degrees with respect to the door, to verify the
robustness of our algorithms.

In a total of 34 experiments, our robot was able to suc-
cessfully open the door81 out of 34times. Table Il details
the results; we achieved an average recognition accuracy of
94.1% and a classification accuracy of 97.1%. We define
the localization error as the mean error (in cm) between the
predicted and actual location of the door handle. This led to
a success-rate (fraction of times the robot actually opehed
door) of 91.2%. Notable failures among the test cases ieclud

IV. EXPERIMENTS glass doors (erroneous laser readings), doors with numeric
A. Robot keypads, and very dim/poor lighting conditions. Theseufail

Our robotic platform (which we call STAIR 1) consists of ££25€S have been reduced significantly (in simulation) vinén t
harmonic arm (Katana, by Neuronics) mounted on a Segwa§" classifier. (The current egpenments were run using our
robotic mobility platform. The 5-dof arm is position-coatied  €&'lier svm-pca-kmeans classifier.) . _
and has a parallel-plate gripper. Our vision system usesra Po FOr €lévator button pushing and door pulling experiments,
Grey Research stereo camera (Bumblebee XB3) and a Ia%r have only performed single demonstrations on the robot.

scanner (Hokuyo) mounted on a frame behind the robotic arfU€ o the small size of the elevator buttons (2 cm diameter)
and the challenge of obtaining very accurate arm-visiotesys

B. Experiments calibration, reliably pushing the buttons is much more diiffi,
We used a Voronoi-based global planner for navigation [323ven if the simulations show high performance. Our robot has
this enabled the robot to localize itself in front of and fagi a fairly weak gripper, and therefore pulling the door open is

Fig. 6. Planning a path to open the door.
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Fig. 8. Snapshots showing our robot opening a dishwashgr tra

also difficult because of the very small effective workspadel]
in which it can exert enough torque to open a door. Als 2]
many of the doors are spring-loaded, making it impossible
for this particular arm to pull them open. In future work, we13]
plan to use active vision [33], which takes visual feedbaut& i 14]
account while objects are being manipulated and thus pesvi&
complementary information that would hopefully improve th[15]
performance on these tasks.

Videos of the robot opening new doors and elevators g
available at:

http://ai.stanford.edu/~asaxena/openingnewdoors 17

To demonstrate how our ideas can be extended to mJ)lr%]
manipulation tasks, we also tested our algorithms on tHe td$9]
of opening a dishwasher tray in a kitchen. Using our SBO]
classifiers, we identified the location of the tray and thei@is
keypoints, i.e., the direction in which to pull the tray open21]
Here, training and testing was done on same dishwasher but
test cases had different objects/position of the tray aspesed |55
to the training set. By executing the planned path, the robot

was able to pull out the dishwasher tray (Figure 8). (23]

V. CONCLUSION

To navigate and perform tasks in unstructured environmen[(234]
robots must be able to perceive their environments to iflenti25]
what objects to manipulate and how they can be manipulaéeg]
to perform the desired tasks. We presented a framew R
that identifies some visual keypoints using our vision-das¢27]
learning algorithms. Our robot was then able to use these
keypoints to plan and execute a path to perform the desirﬁg]
task. This strategy enabled our robot to navigate to neweglac
in a new building by opening doors and elevators, even onig8l
it had not seen before. In the future, we hope this framewoylg,
will aid us in developing algorithms for performing a vasiet

of manipulation tasks.
(31]
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