
N just the past decade, neuroprostheses and BMIs
have evolved from science fiction to clinical science.
Neuroprosthetic devices have been approved by the

US Food and Drug Administration and are commercially
available. In addition, the first clinical trials of BMIs for
humans are underway. Simultaneous development in both
of these areas is providing hope to victims of trauma and
stroke as a way to overcome handicaps resulting from pa-
ralysis or amputation. 

Current BMI algorithms allow patients to use their
thoughts to communicate directly through a computer. For
example, current clinical trials of BMIs for use by humans
focus on asking patients who have little or no motor func-
tion to use the BMI to move a cursor on a computer screen
or a keyboard as a way to communicate with others.23,42

This type of BMI uses a neuroprosthetic implant in the
brain to extract spatial degrees of freedom (for example,
up/down, left/right) from a number of neurons. 

A next step is to use similar techniques to control para-
lyzed or prosthetic limbs. Uncovering the relationship be-
tween neural signals and limb position and movement
would enable the development of natural BMIs (which
use the neural signals in the same way they already are
used in the nervous system) and neurally controlled pros-

theses. This merger of BMIs and robotics could return
motor function to paralyzed patients or individuals with
amputations by routing neural commands to individual ac-
tuators.20–22,68,71,74,76 Alternatively, remotely operated devic-
es controlled by neural commands could be used to pro-
vide precise human manipulation in distant or hazardous
environments. Both of these applications rely on the as-
sumptions that neural activity could be translated into in-
tended naturalistic movements and that these movements
could then be used to command the movement of a pros-
thetic device or paralyzed muscles. Animal studies are
underway to correlate neural signals with the endpoint tra-
jectory of the arm of an animal in two or three spatial
dimensions.16,28,33,59,60,83 Numerous statistical techniques
have been explored to better model the highly nonlinear
relationship between neuronal signals and limb move-
ments.8,69

In this paper, we study the question of how to design a
prosthetic hand that would use BMI. The complexity of
our hand mechanisms is one aspect that separates humans
from other species, and it is not surprising that a dispro-
portionately large part of the human brain is used to con-
trol hand movements. Even if motor functions can be re-
stored to legs and arms following traumas or strokes,
victims of such events can only interact with the world in
limited ways if they do not have a functional hand. The
more than 4 million people in the US who are unable to
use their own hands due to paralysis, deformity, or ortho-
pedic impairment could benefit from a complete BMI sys-
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tem for hand movements (according to the Vital Health
and Statistics National Health Interview Survey, National
Center for Health Statistics, 1996 [http://www.cdc.gov/
nchs/data/series/sr_]). This is why the development of a
robotic hand that is designed specifically for a neural
interface is critical in restorative neurosurgery. 

A robotic hand that would be part of a complete BMI
system must be more anatomically accurate than a corre-
sponding robotic arm. Hands are involved in intimate con-
tacts and dexterous interactions with objects that require
the user to control not only the finger endpoint locations (as
do current BMIs that control robotic arms) but also the joint
angles, forces, and perhaps most importantly, finger stiff-
ness. To duplicate all of these human properties in a robot-
ic hand, the most direct and perhaps the optimal approach
would be to duplicate the anatomical musculoskeletal
structure of the human hand. In this paper we focus on the
critical issues involved in building robotic hands for BMI
and the justifications for requiring lower-level neuromuscu-
loskeletal details in designing both mechanical and control
systems. In the section directly following this one, we
describe three key criteria in designing a prosthetic hand.
After that, we review the currently available robotic hands,
including a new device that targets the neural interface. In
the final section we discuss the lower-level control structure
necessary for high-fidelity, dexterous control with BMI.

Three Key Criteria for BMI Robotic Hands

When researchers consider a robotic hand as a prosthet-
ic device, the focus is on dexterity. The number of fingers
and joints is key for clinicians and engineers. However,
what the users consider to be crucial is not necessarily
aligned with what engineers or clinicians think. In this
section we review popular prosthetic devices and outline
three key criteria that need to be addressed in designing a
robotic hand that a person with an amputation would actu-
ally wear.

Conforming to the Societal Norm

There is a societal expectation to look “normal.” When
disabled people walk on the street, they might be noticed
because they look or move differently from this norm. Leg
prostheses can be covered up with pants and shoes, and
they frequently are not noticed. However, hand prostheses
are not as easy to hide. They cannot simply be concealed
with a glove unless the shape, size, and posture of the
device resemble a regular hand. A hook or two-fingered
hand cannot be concealed. For this reason, even though
there are numerous controllable prosthetic hands available
on the market, the most popular ones are nonarticulated
but aesthetically pleasing systems such as the Livingskin
hand (Aesthetic Concerns Prosthetics, Inc., Middletown,
NY) and the Dermatos hand (Alatheia Prosthetics
Rehabilitation Center, Brandon, MS). These devices allow
users to interact with some objects, and silicone filling can
allow some vibratory tactile stimulation to be transmitted
to the residual fingers or hand. Furthermore, if the pros-
thetic hand looks like a real hand but doesn’t move like
one, people easily notice it as unusual. Just as people can
pick up slight limps, if prosthetic fingers move with un-
usual or mechanical trajectories, people will identify this

to be abnormal. Ideally, a BMI robotic hand should both
look and move like a real hand.

Comfort of Prosthetic Devices 

If a prosthetic device is not comfortable, the user will
not wear it frequently enough to learn how to use it effec-
tively or benefit from it fully. The comfort of a prosthetic
device is affected by its size, weight, the ease of putting it
on and taking it off, and its interface with the stump and the
neural signal source. For example, the lack of hard edges
may allow a device to be worn while sleeping. Joints and
movable parts must be shielded so nothing can get pinched
and no food crumbs can get inside. No parts should heat up,
even under extreme usage. All of these issues are challeng-
es in designing a robotic hand. Matching the weight of the
prosthetic hand with that of the original limb while also
matching the degrees of freedom is extremely challenging
when using current materials. As discussed later, most ro-
botic hands built to date cannot be classified as either com-
fortable or convenient.

Ease of Control

If the BMI algorithm for control of a prosthetic hand
does not preserve the relationship between the cortical sig-
nals and the original hand movements, it could be difficult
for the user to learn to control the prosthetic device. If this
happens, or if it takes too much time to train the device to
adapt to the user’s neural signals, he or she probably will
abandon the prosthetic device.

To control a BMI device that is currently in clinical tri-
als, the user is instructed, for example, to imagine a bal-
loon floating upward, which moves the cursor on the com-
puter screen upward. As the user thinks about the balloon
moving, the neural signals are recorded and distinguished
from neural signals that are transmitted when the user is
not thinking of the balloon. Freehand and other similar
neuroprosthetic systems provide pinching and grasping
behaviors that are commanded by electrical stimulation of
the devices through the actions of functional muscles or
joint movements (for example, contralateral shrugging
motion of shoulders) that are unrelated to the hand
area.30,32,45,63,70 These examples work well for their applica-
tions if the number of degrees of freedom that they control
is kept relatively low. However, a greater number of con-
trol strategies would be required to provide easy control of
a highly articulated prosthetic hand and to train the hand
to adapt to the user’s neural signals. 

One way to express human hand movements, although
it allows for fewer degrees of freedom, is to use a princi-
pal set of hand postures, known as primitives or syner-
gies.54,66,67 It has been shown that most of the grasp mo-
tions can be achieved with a combination of only a few
primitive postures. It has also been shown that stimulating
a specific set of motor neurons in the primary motor cortex
results in a set of postures used for grasping.24,25,34 These pri-
mitive postures can be important in allowing simple move-
ments such as holding a coffee mug or a pen, but they can
not be used for dexterous interactions with objects that
involve force and stiffness control.

To provide a person who has had a limb amputated with
a fully dexterous prosthetic device that is easy to control,
it may be best to use the cortical control structure that
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interacted with the original hand. The brain is probably
plastic enough to learn some modifications to the original
mapping from cortical signals to finger movements. How-
ever as more of this highly nonlinear relationship is cap-
tured within the BMI system, it will be easier for the user
to learn to control the prosthesis. The incorporation of this
highly nonlinear relationship into the design of a prosthesis
requires not only advanced statistical methods but also
modeling of the anatomical nonlinearity in the device itself. 

Currently Available Robotic Hands

In this section we review the currently available anthro-
pomorphic robotic hands, address the reasons for needing
an anatomical robotic hand for BMI, and describe the de-
sign of the ACT Hand. 

There have been numerous anthropomorphic robotic
hands made for various reasons, including those con-
structed to perform various assembly tasks (BarrettHand;
Barrett Technology, Inc., Cambridge, MA), for the inves-
tigation of human-like manipulation abilities,4,38,55,65 and as
a part of a humanoid robot48,55 (Fig. 1). Some of these
hands achieved dexterity in performing specific tasks
matching that of human hands; however, none of these
hands is completely anatomically equivalent to a human
hand, for one of the following three reasons. First, in
designing the device, it was never important to mimic the
biology of the hand. As long as the specific tasks the cre-
ators wanted to achieve could be accomplished in some-
what human-like ways, a design that was not strictly
anatomical was acceptable. Second, making the hand an-
atomically equivalent was too complex or otherwise too
difficult, or the space involved was too limited to fit every-
thing needed. As a result, the creators, understandably, sim-
plified the actual anatomical structure when making their
design. A typical example of this is to limit the degrees of
freedom within each finger. The Cog hand and the
Belgrade/USC hand have a single degree of freedom per
finger.4,55,56 The Robonaut hand has 12 total degrees of free-
dom for five fingers,48 and the JPL/Stanford hand has three
degrees of freedom per finger.65 Third, the goal was to con-
struct a hand that mimicked a human hand’s degrees of
freedom and its joint movements but not its biological con-
trol mechanisms. Each finger of the Utah/MIT hand has
four degrees of freedom, the same as a human finger,38 but
each joint is actuated by two dedicated cables, unlike a
human joint, in which a complex web of tendons actuates
the joints. In addition, the lateral degree of freedom at the
MCP joints is not anatomically accurate in its kinematics. 

Lee and Shimoyama46 built a prosthesis that mimicked
the extrinsic muscles of a human hand but did not include
the intrinsic muscles due to their complexity. The Sha-
dowHand (Shadow Robot Co., London, United Kingdom)
and the Gifu Hand41 (Dainichi Co., Ltd., Kani, Japan) have
four joints per finger and fairly accurate ranges of motion
for each joint. Of the ones currently available, these two
prostheses are perhaps the closest to human hands. How-
ever, because the goal in their design was not for use in a
BMI, their joint movements are not kinematically accurate
to the human counterparts, human force/stiffness modula-
tion cannot be mimicked, and the neural inputs to the mus-
cles cannot be used to move the fingers. In a consortium
project in the European Union, investigators are working

on a device called the CyberHand that is designed to
recreate the natural link that exists between neural signals
and the hand.17,18 This prosthetic hand will interface with
the peripheral neural signals that used to arrive at muscles
of the original hand. Because this hand does not mimic the
human musculoskeletal structure, the neural signals will
be interpreted to correlate with the joint movements. Fur-
thermore, although this hand has passive compliance, it is
not the same compliance as in the human hand. 

As a way to understand the routing structure of human
tendons and to find the optimal routing method for robot-
ic cable, the force capabilities of human fingers have been
studied and compared with those of two robotic hand sys-
tems.3 Typical robotic hands have symmetrical flexion/
extension force capabilities, whereas human fingers have
flexion-dominant force production capabilities. It has
been shown that for a robotic finger with four degrees of
freedom, expressed as N, particular arrangements of con-
trol cables to create either two times N or N plus one
degrees of freedom will yield a finger that achieves the
same range of forces as a human digit.62 Valero-Cuevas78

used the principles of robotic manipulation to analyze
human digits as serial manipulators and was able to pre-
dict muscle activity levels for specific force production.
Biggs and Horch6 built a three-dimensional kinematic
model of the index finger and the muscles that actuate it. 

Numerous studies have been conducted on the anatomy
and function of the human finger extensor mechanism,
also known as the dorsal aponeurosis.7,26,27,31,39,44,58,73 Gar-
cia-Elias, et al.,26,27 measured seven human extensor mech-
anism specimens to determine the average stiffness values
for different branches of the structure. They also measured
the changes in geometry of the weblike structure of the
same specimens for different finger postures and deter-
mined that although changes in length along individual
segments were relatively small, the spatial orientations of
the segments varied considerably.26

When put together, these investigations are helping en-
gineers in the design and construction of a robotic hand
for a BMI that it is anatomically accurate compared with
the human counterpart, and in which the force/stiffness
modulation is mimicked and the neural inputs to the mus-
cles can be used to move the fingers.

Advantages of Anatomical Structure for BMI

Although the majority of robotic hands do not mimic
anatomical structures accurately, there are several reasons
why it is crucial to do so for BMIs. 

Original Control Strategies are Usable. When the pros-
thetic hand is anatomically correct, the input to this hand can
use the same neural signals that arrived at the muscles in the
original hand. Neurons that encode muscle-level commands
can be used along with the neurons that encode other, high-
er-level commands. The user’s own spinal reflex can be
used appropriately. Also, the more similar the mechanical
structure is to a human hand, the less learning time is re-
quired for the user to simulate dexterous behavior.

Peripheral Nonlinearity is Modeled in Hardware. The re-
lationship between the cortical signals and the finger joint
movements is not only a high-dimension relationship, but
it is also highly nonlinear. Removing some of this nonlin-
earity by using hardware that mimics the biomechanics of
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the hand vastly simplifies the BMI algorithms needed.
Furthermore, dexterous behavior with stiffness and force
controls can be simulated with fewer actuators if the
anatomical structure is mimicked. Natural passive degrees
of freedom are incorporated automatically.

Partial Prosthetic Device is Possible. If the partial pros-
thetic hand is built so that it is anatomically correct, sub-
components could be integrated back into the user’s hand
at any transitional locations. For example, a patient who is
missing a few segments of a finger can get a functional
digit by having the existing musculoskeletal system
stitched to an anatomically correct prosthetic finger. The
patient could then use exactly the same neural control
techniques that had been used to control the original fin-
ger. This anatomical approach allows as much of each
patient’s residual structure as possible to be preserved and
available for incorporation in a complete BMI system. If
the prosthetic device is not anatomically correct, then the
entire original hand might have to be amputated to be con-
nected to the whole prosthetic hand system.

Design of the ACT Hand

For the advantages listed earlier to become manifest, it
is clear that the development of an anatomically correct
prosthetic hand with musculoskeletal accuracy is critical
for BMI. The mechanical model presented in this section
is called the ACT Hand (The Robotics Institute, Pitts-
burgh, PA).19,29,81,82

Figure 2 shows an ACT Hand integrated into a robotic
arm (WAM Arm; Barrett Technology, Inc.). This hand
replicates a human hand’s degrees of freedom, kinematics,
number of bones and muscles, and muscle strengths 
as well as its musculotendon origin and bone insertion
points, so that forces can be applied by the muscles at the
same locations and along the same vectors as they are in
the human hand. In addition, this hand has replicated the
human hand’s passive musculotendon properties, overall
size, and tendon routing structure. Musculotendon passive
properties are known to be spring-like and allow compli-
ance to the fingers. To replicate the tendon routing struc-
ture, the structure of the extensor mechanism was investi-
gated and mimicked.5,82 Modeling of the extensor hood
onto a mechanical finger revealed that the extensor mech-
anism provides independent control of the MCP joint and
acts not only as an extensor but also as a flexor, abductor,
adductor, or rotator, depending on the finger’s posture. 

To provide correct dynamics in the extensor mecha-
nism, the shape of the bone surface was replicated. Three-
dimensional data obtained in human bones was used in
our computer-assisted device system to model the subtle
bumps, dips, and curves and to integrate our mechanical
joints directly into our design.81 Furthermore, the bone
mass was matched with its human counterpart by assign-
ing to our models a density equal to that of human bone
(1.9 g/cm3) and removing extra materials from inside the
bone structure.14 Small cylindrical volumes were added to
represent the estimated synovial fluid at the proximal end
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FIG. 1. Photographs of sample anthropomorphic robotic hands. A: The JPL/Stanford Hand (reproduced with per-
mission from Professor Salisbury). B: The Belgrade/USC hand (reproduced with permission from George Bekey).
C: The BarrettHand (reproduced with permission from Barrett Technology, Inc. [http://www.barretttechnology.com/
robot/products/hand/handfram]). D: Cog Hand. E: The Robonaut hand (reproduced with permission from the
National Aeronautics and Space Administration). F: The Keio Hand (reproduced with permission from Professor
Maeno). G: The ShadowHand (reproduced with permission from the Shadow Robot Co., (c) 2006). 

http://www.aans.org/education/journal/neurosurgical/May06/20-5-3f1.html


to mimic the joint mass properties. These volumes were
assigned a density equal to that of water (1.0 g/cm3).

To mimic actions of human joints, three critical proper-
ties were matched at each one. First, the geometry of each
joint was matched to have the same degrees of freedom,
range of motion, and relationships between the axes as its
human counterpart. Second, the internal friction of each
joint was also mimicked. Third, the elastic properties of
each joint were matched to ensure the consistent dynamic
performance of each joint by itself and in relation to the
others. Most importantly, these critical properties were
designed so that their use would not affect the other com-
ponents of the system. 

The joint axes were placed in the correct anatomical
position for accurate finger dynamics. For example, the
ACT thumb recreated five anatomical axes of a human
hand to represent hand biomechanics accurately.19

Computer simulation of a thumb model with intersecting
and orthogonal axes at the MCP and carpal metacarpal
universal joints predicted that forces would be generated
at the thumb tip that would not match what humans would
produce.80 In addition, Hollister, et al.,35,36 reported that
modeling the robotic thumb with nonperpendicular and
offset rotational axes provided the kinematic basis for
other important anatomical characteristics, such as muscle
moment arms about a given rotational axis. Using the
more complex model of nonorthogonal and nonintersect-
ing joints more accurately preserved the workspace of the
thumb. For the ACT Hand, this could be achieved without
added actuation complexity because the motors are con-
nected indirectly to the bones through the tendons instead
of being mounted directly within the joint, as is done in
other robotic hands. 

An effective moment arm created by the muscles is crit-
ical to the biomechanical mapping between the muscle
activation level and the kinematic configuration. The de-
sign decision to use the exact three-dimensional bone
geometry and add a tendon routing structure was specifi-

cally aimed at preserving the relationship between the
muscles and the moment arm at all joint angles and for all
degrees of freedom. In particular, the moment arm is not
constant with the joint angle.2,72 Sample data for the mo-
ment arm from the ACT thumb are shown in Fig. 3A. The
majority of the data for the ACT finger fell within one
standard deviation of cadaveric measurements.19

The choice of which actuators to use for the ACT Hand
was difficult because none of the ones currently available
matched the combination of size, weight, and strength in
the muscles involved in controlling a human hand. Many
actuators have been developed to simulate muscles. Some
of these devices are made with shape memory alloys,61

hydrogel polymers,75 and pneumatics.13 The most popular
muscle-like actuators used in practice are McKibben-style
pneumatic devices because they are small and compli-
ant.15,77 In addition, they respond quickly, unlike those
made with hydrogel polymers, and have a reasonable trav-
el length compared with those made with shape memory
alloys. On closer inspection of natural muscle properties,
however, it becomes evident that the compliance of a Mc-
Kibben muscle simulation is significantly different from
that of human muscles. On the other hand, a system that
uses servomotors could more precisely mimic the proper-
ties of human muscle by using external springs and con-
trol. Servomotors are more efficient sources of power than
other actuators, so they are more effective in terms of size
and weight than alternatives such as batteries, controllers,
valves, pumps, and other components. Nonlinear, custom-
made springs were added in parallel to simulate the pas-
sive compliance of the muscles.29 This parallel structure
provides faster response, the necessary compliance to
achieve stable force control,37,64 and the ability to use a
simpler control algorithm for the motor drive. 

The ACT Hand has a sensory feedback structure equiv-
alent to that of muscle spindles and Golgi tendon organs
in a human hand. (In a human hand, the muscle spindles
detect the length, and the Golgi tendon organs detect the
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FIG. 2. Photographs showing the ACT Hand used for BMI.
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tension of each muscle.) With this anatomical sensory
feedback structure, the proprioceptive information that is
fed back to the cortex can be used for the BMI. The ACT
Hand does not provide joint angle sensing, but through kin-
ematic calculations (and even some tactile feedback), users
should be able to infer the joint angles. High-density, com-
pliant skin is under development.43 With this skin, a rough
estimate of the joint angles could be provided by monitor-
ing the stretching of the skin near the joints. The tactile
feedback provided by the skin is also critical for a BMI. 

Finally, system identification experiments were con-
ducted on the assembled fingers to ensure that when the
individual components of the robotic hand such as ten-
dons, bones, joints, and muscles were put together, the
whole system had properties similar to those of its human
counterpart. The data from the joints were correlated and
shown, using static system identification, to have an R2 of
more than 0.9 (Fig. 3F). 

The ACT Hand is a robotic hand that is built to enable the
use of BMI applications. It also has been used as a test bed
to study the biomechanics and neuromuscular control of
human hand movement so that the BMI system can be fur-
ther improved. With this level of anatomical accuracy, it
should be possible to satisfy the design criteria of conform-
ing to the societal norm and providing adequate ease of con-
trol. The comfort criterion should improve as the weight of
the device drops with advances in material science. 

Lower-Level Hand Controller for BMI

To take full advantage of the anatomically correct struc-
ture of the hardware, it is crucial to preserve the lower-
level neuromusculoskeletal control structure that is part of
the hierarchical BMI control. Recreating dexterous behav-

ior requires not only moving the prosthetic endpoint to the
desired position in space but also producing the desired
limb force and stiffness. In this section, we describe the
lower-level details that are necessary to simulate human-
level dexterity as a part of a BMI controller.

It has been shown that neural signals predict dynamic
movements of hands better when the lower-level muscu-
loskeletal parameters are explicitly provided.49,57 Afshar
and Matsuoka1 noted that the dynamic index finger con-
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FIG. 3. A–E: Graphs of comparisons of moment arms in data obtained in cadavers and an ACT thumb, showing most
ACT moment arms within one standard deviation of values obtained in cadavers. F: Graph of results of system identi-
fication experiments conducted in an MCP system, showing validation of the mechanical design compared with human
data (R2 > 0.9). AA = abduction/adduction; ADPo = adductor pollicis; APL = abductor pollicis longus; CMC = carpal
metacarpal; FE = flexion/extension; FPB = flexor pollicis brevis; FPL = flexor pollicis longus; IP = interphalangeal; 
MP = metacarpal phalangeal.

FIG. 4. Graph showing joint angle predictions of a neural net-
work with an EMG-based torque estimate as input. Solid lines are
measured joint angles, dotted lines are predicted by the network.
ABD = metacarpophalangeal joint abduction; DIP = distal inter-
phalangeal joint; MCP = MCP joint flexion; PIP = proximal inter-
phalangeal joint.
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figuration (described by four joint angles over time) was
predicted from examining EMG studies both with and
without using the musculoskeletal kinematic relationship.
The generic model consisted of a three-layer artificial
neural network that mapped the neural signals directly
onto the joint angles. For the model of the kinematic rela-
tionship, the same neural network was trained on a differ-
ent set of inputs-an EMG-based torque estimate. For each
joint degree of freedom, there was an EMG-based torque
estimate that represented the combination of EMG signals
that in turn represented the local musculoskeletal relation-
ship. In the case of the index finger, there were seven
EMG signals (one for each muscle) and four EMG-based
torque estimate signals (one for each degree of freedom).
Despite the fact that the number of input parameters was
lower in the EMG-based torque estimate approach, the
model that incorporated the local relationship acted as a
predictor of the finger movement that allowed for more
generalization. Both models can be sufficiently trained to
predict the finger movements when the test movements
are the same type as the trained ones (for example, devices
trained on ballistic movements and tested on ballistic
movements; Fig. 4). However, when the models were
used to test a movement type that was different from the
trained one (for example, trained on ballistic movements
and tested on corrective movements), the EMG-based
torque estimate network (R2 = 0.84) significantly outper-
formed the EMG network (R2 = 0.58) (p , 0.05). These
results highlight the importance of having peripheral
details in the hardware and software to improve the corre-
lation between the neural signals and hand movements. 

In simulation, it was also shown that adding detailed
lower-level models showed improvements in the limb con-
trols over the models solely controlled with higher-level
signals.47 The model included three simplified lower-level
controls: those dealing with random force-pulse pertur-
bations, fusimotor control model, and postural stabiliza-
tion with antagonistic muscles (Fig. 5). With these models,

which incorporated lower-level details, the simulated limb
could maintain stability that was not possible without them,
despite delays and perturbations. Furthermore, the model
provided a way to resolve redundancy in the system. Be-
cause there are more muscles than controllable joint degrees
of freedom, there is theoretically an infinite number of mus-
cle activation patterns for a given set of dynamic limb posi-
tions. Modeling the lower-level structures provides a way
to identify the optimal stiffness and force control in a limb
for a given task. 

These examples show that the fidelity of the BMI to a
human hand is likely to improve significantly when mod-
els of lower-level details, even if simplified, are included.
Numerous realistic models of lower-level structure and
neuromuscular control systems have been proposed.9–12,

40,50,51–53,79,84 It will be critical to integrate these findings into
the hand control of a BMI. 

Conclusions

As BMIs for limb control become available to patients
in the near future, hand dexterity will play one of the big-
gest roles in the functional outcome for these individuals.
It is extremely challenging to merge the design of a hand
that patients will find comfortable and aesthetically pleas-
ing enough to wear with an engineering solution that will
provide the most dexterity. Although a variety of interme-
diate solutions might be possible, ultimately a hand de-
signed for a BMI should be anatomically correct in its
structure. Furthermore, the more lower-level accuracy of
control that can be provided, the more dexterity and sta-
bility the hand will have. 

Disclosure

Dr. Matsuoka works for the Robotics Institute at Carnegie Mel-
lon University, where the ACT Hand is currently being developed.
She has a financial interest in the device, but her coauthors do not. 
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FIG. 5. Drawings showing simulation algorithms. A: Hierarchical model showing the relationship between the brain,
spinal cord, muscle and tendons, and feedback signal. B: The model used to test random force perturbation. C: The
model used to test fusimotor control strategies. Force sensor is omitted and velocity sensor provided with variable gain
set by fusimotor neuron, g. D: The model used to test postural maintenance by a pair of antagonist muscles. (Reprinted
with permission from Loeb, et al: Exp Brain Res 126:1–18, 1999, with kind permission from Springer Science and
Business Media and Dr. Loeb.)

http://www.aans.org/education/journal/neurosurgical/May06/20-5-3f5.html
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