
468 IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 2, APRIL 2008

VII. DISCUSSION AND SUMMARY

In Sections III–VI, admittance selection conditions for four typi-
cal two-PC states each in single-point contact were presented. The
strategies and procedures can be used for any combination of two
single-contact PCs. In general, for each PC, translational variables δij

are chosen based on the PC’s type. Using translational variables δij

and orientational variables (u, θ), the contact wrenches wi and error-
measure vector d are obtained and the interaction of the wrenches from
the two PCs is addressed in the calculation of their magnitudes. Then,
by (5), the error-reduction function is expressed in terms of (δij ,u, θ).
The function obtained is a polynomial in (δij , sin θ) with coefficients
being functions of u and the admittance A. Based on the nature of
the contact and the properties of the error-reduction function, selection
conditions for the admittance are obtained.

Sections III–VI present results for four of the six combinations of two
single-point contact PCs. The remaining two combinations are similar.
Note that both the wrench associated with {e − e} contact (34) and the
wrench associated with {{v − f} contact (22) contain only the linear
term in sin θ. Thus, for {f − v, e − e} contact, the approach presented
in Section V for {f − v, v − f} contact can be used. Similarly, the
approach presented in Section VI for {e − e, e − e} contact can be
used for {v − f, e − e} contact.

The admittance selection conditions are obtained by geometric and
force analysis of each contact state. Redundant coordinates δij are used
to describe the translational variation. These coordinates are treated as
independent variables in a large range (without considering the con-
straints due to contact). Thus, the conditions obtained are conservative.
To make the conditions less conservative, the range of configuration
variables considered can be decomposed into a number of nonoverlap-
ping subranges, each addressed with equivalent conditions.

In this paper, a single admittance control law (1) is considered for
each contact state. The sufficient conditions obtained impose condi-
tions on the admittance to ensure error reducing motion for the entire
contact state. Due to uncertainty in identifying which contact state ac-
tually occurs, a single admittance control law (1) could be used for
all contact cases, if the conditions for all contact states were satisfied
simultaneously.

In practice, the selection of an appropriate admittance A can be
formulated as a search routine to find an admittance matrix A subject
to the appropriate conditions. For instance, an optimization procedure
can be used to find an admittance matrix for which sufficient conditions
such as those described in the paper are used as “constraints.” An
example illustrating the application of error-reduction conditions to
obtain a desired admittance was presented in [5] for a planar case. This
procedure applies to the spatial cases as well.

In summary, we have presented conditions for admittance selection
of a polyhedral rigid body for force-guided assembly in cases having
two point contact PCs. We have shown that, for these cases, the ad-
mittance control law can be selected based on its behavior at a finite
number of configurations. If the error-reduction conditions are satisfied
at these configurations, the error reduction conditions will be satisfied
for all intermediate configurations.
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Toward a Natural Language Interface for Transferring
Grasping Skills to Robots

Maria Ralph and Medhat A. Moussa

Abstract—In this paper, we report on the findings of a human–robot
interaction study that aims at developing a communication language for
transferring grasping skills from a nontechnical user to a robot. Partici-
pants with different backgrounds and education levels were asked to com-
mand a five-degree-of-freedom human-scale robot arm to grasp five small
everyday objects. They were allowed to use either commands from an
existing command set or develop their own equivalent natural language
instructions. The study revealed several important findings. First, individ-
ual participants were more inclined to use simple, familiar commands than
more powerful ones. In most cases, once a set of instructions was found to
accomplish the grasping task, few participants deviated from that set. In
addition, we also found that the participant’s background does appear to
play a role during the interaction process. Overall, participants with less
technical backgrounds require more time and more commands on aver-
age to complete a grasping task as compared to participants with more
technical backgrounds.

Index Terms—Grasping, human–robot interaction, natural language in-
struction, skill transfer, user-adaptive robotics.

I. INTRODUCTION

In the last few years, both personal and service robots have be-
come a popular area of study within the robotics community. With
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current advances, robots are now being seen as assistants in corporate
offices [1], aids for the elderly [2], helpers for the disabled [3], and
as museum tour guides [4]. Yet there still remain several challenges.
One key challenge is how these robots will interact with nontechnical
users. Since many everyday users do not have the necessary program-
ming skills to control these complex machines, new interaction modes
must be developed. Skills such as grasping will play an increasingly
important role as robots are used more regularly in homes and offices.
Developing robots that can grasp a variety of objects in an unstructured
environment still remains a significant challenge.

A. Related Work

There are currently several emerging human–robot interaction
modes for applications involving both service and personal robots.
Each presents one way of controlling robots, which differs from the
more traditional computer-based programming approach typically used
in industry.

The first mode is teleoperation and telepresence, which has been
used to tightly control a robot’s movements. For example, the National
Aeronautics and Space Administration’s (NASA) Robonaut project [5]
incorporates telepresence for conducting tasks in space, while Fong
et al. [6] use a graphical user interface to control a mobile robot through
a cluttered laboratory environment. Although the use of teleoperation
and telepresence has produced successful robot control, this mode of
interaction still requires time and practice to master.

The second mode is gesturing and imitation. By demonstrating such
tasks as spindle assembly [7], robots acquire skills that can later be gen-
eralized to other tasks such as changing a paper towel roll in a user’s
home. Other work [8] explores demonstrating navigation skills to mo-
bile robots, where a robot follows a human teacher as they demonstrate
how to traverse a given path around a room. Although this approach is
more intuitive for transferring skills between humans and robots, there
still remains several challenges including the handling of inaccurate
demonstrations and correcting unwanted robot movements.

The third mode is natural language instruction, which has become a
common mode of interaction either on its own or as part of a multimodal
interaction system. The use of natural language provides an easier
communication medium, whereby users do not have to be experts in
order to quickly begin commanding a robot. For example, in [9], a
group of nonexpert users were asked to instruct mobile robots from
one location to another in a miniature town environment.

The last mode is multimodal interaction where the use of both speech
and vision systems is typical. This approach has been used for appli-
cations such as word–action associations and grasping. For example,
the Robota project [10] examines interactions between children and a
doll-like robot named Robota. The children explore word–action asso-
ciations by teaching Robota simple arm movements and the names for
different body parts. In [11], multimodal interaction is used to teach a
robot a sequence of buttons to be pressed. A robot observes a human
teacher press a series of buttons and learns to associate certain buttons
pressed with a name and a given order. Multimodal interaction is also
being used for grasping tasks [12] where, using both a speech and
vision system, a robot is trained by a human teacher to grasp objects
using an interactive demonstration approach.

B. Paper Contribution and Organization

Although some of the interaction approaches reviewed do incorpo-
rate nonexpert users, none have used nonexpert users when teaching
robots to grasp. Our goal is to investigate how nonexpert users play a
role in transferring grasping skills to a robot. The first step is to de-
velop a communication language specifically focused on grasping that

translates nonexpert users natural language instructions to appropriate
robotics commands that a robot can execute. Once the robot executes
the commands successfully, it can learn from its experience how to
grasp other objects [13], [14]. This mimics how humans train their
young children to grasp and manipulate various objects.

This paper’s contribution is a study where a group of nonexpert users,
who have never programmed a robot before, use natural language to
instruct a robot arm to grasp several small everyday objects. Our interest
is to observe the type of language used, how it was used, and the impact
of the user’s background and experience on the command preferences
and usage. This paper is a significant expansion over earlier work [15],
where only the impact of the user’s background was briefly discussed.
As far as we know, this is the first study of its kind focused on using
natural language by nonexpert users for grasping tasks.

The paper is divided into the following sections. Section II outlines
details of the study. Section III presents the first set of results focusing
on the participants communication language used for commanding
the robot. Section IV reports the second set of results focusing on
the impact of the participant’s background and command selection.
Section V concludes our discussion and outlines future work.

II. STUDY DETAILS

A. Experimental Setup Design

The setup for this study followed the typical stages used in us-
ability studies [16]. First, a test plan was developed that outlined the
objective of the study and what metrics would be recorded. Second,
questionnaires were distributed in order to select the appropriate group
of participants. This was followed by the preparation of relevant testing
material such as how participant data would be recorded, pretest and
posttest questionnaires, participant consent forms, and task outlines.
The test was then conducted with each participant, and a debriefing
session was held to gather additional relevant information. The experi-
mental protocol was reviewed and approved by the Ethics Board at the
University of Guelph.

Furthermore, we conducted an earlier separate pilot study that had
only four participants, but with a similar experimental setup to the one
discussed here [17]. Lessons learned from that previous study helped
fine tune the final setup of the current study. For example, we added
a practice session for each participant and provided explanations of
basic robot movements and primitive commands. We also introduced
the think-aloud method [18] to encourage participants to verbalize their
thought process throughout the experiment.

Participants were asked to command a five-degree-of-freedom CRS
A255 human-scale robot arm, equipped with a two-fingered parallel
gripper, to grasp five small objects using any of the primitive com-
mands listed in Table II. Once grasped, objects were lifted upward and
away from the table surface up to a height decided on by each of the
participants. The order of the objects presented to participants was a
comb, followed by a spoon, tweezers, a key, and a tensor bandage clip,
as shown in Fig. 1(a). The objects used in the study were deliberately
selected from items typically found in a home environment, and were
considered a challenge to grasp. This contrasts with typical grasping
studies, where “laboratory friendly” objects such as cones, balls, and
blocks are typically used. Participants were asked to grasp objects in
an order that was based primarily on size. The largest object in the set
(i.e., the longest), the comb, was selected as the first object for users
to grasp. The final object in the set was the tensor bandage clip, which
was the smallest and most challenging of the group. This order pro-
vided participants with a relatively easier object to grasp first, where
the level of difficulty gradually increased for subsequent objects pre-
sented. Objects were positioned within a marked off area, as shown in
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Fig. 1. Objects set and pose used during interaction sessions.

Fig. 1(b). During each session, the participant’s language, sequence of
commands, number of commands, and time to complete the task were
recorded.

B. Participants

The participant group consisted of 15 participants ranging in age,
occupation, education level, and experience with technology, as shown
in Table I. Participants were evenly distributed into one of the three par-
ticipant classification groups (beginner, intermediate, and advanced),
resulting in five participants per group. Participant group assignments
were based on a background/screening questionnaire collected from a
pool of potential participants. The beginner group was considered the
least technical of the three groups. Participants did not use computers
or alternative interaction devices on a regular basis, expressed anxi-
ety about using new technology, and were overall more intimidated
to interact with robots. The intermediate group used computers on a
regular basis at work, and occasionally at home. These participants
were interested in interacting with robots, had some experience with
alternative interaction devices, and expressed less anxiety about using
new technology. The advanced group was considered the most techni-
cal of the three groups. This group used computers both at home and at
work on a regular basis. Other interactive devices were used more often
than the other two groups and their interest in using robots or any new
technology was very high. It is important to note that although some
participants hold university degrees, in some cases, these individuals
were still not considered computer experts or experts with technology.

Participants were informed of their involvement in a robotics exper-
iment; however, details of the experiment were withheld until partici-
pants entered the laboratory facility. The first object, the comb, was used
as a practice session for all the participants. The practice session did
not have a time limit and participants were encouraged to experiment
with the set of primitive commands provided. A time limit was also
not placed on participants for the remainder of the objects in the study.
On average, participants required just under 45 min approximately to
complete grasping all five objects. The position of the robot and partic-
ipant during each of the interaction sessions is shown in Fig. 2. During
interaction sessions, participants spoke directly to the robot and main-
tained eye contact with the robot’s end-effector throughout most of the
interaction session. A Wizard of Oz type approach [19], [20] was used
for the speech interface, where an operator selected commands from a
GUI, based on the participant’s language. In this study, this approach
is preferable to using a fully integrated speech recognition system,
since restrictions would have been placed on what the user could and
could not say based on the speech systems lexicon of commands. By
removing this potential roadblock, the user’s dialog opens up, allowing
language for existing and new commands to be used.

C. Operator Details

The operator received 2 months of initial training with the robot’s
GUI prior to commencing the study. Every effort was taken to ensure
that the operator did not influence each participant’s choice of language
or commands used during the study. The operator only provided feed-
back to participants about the robot’s limitations (i.e., maximum range
of motion reached), the current status of the robot (i.e., busy, ready for
next command), and prompted participants for more information when
new natural language commands were encountered. In this case, the
operator prompted participants to define these new commands by an
equivalent series of primitive commands from the list in Table II. For
example, instructions such as “level off” found in Table III were broken
down into either a “tilt up” or “tilt down” command, which was used
to align the robot’s end-effector at a perpendicular angle to the table
surface. In some cases, such as the “bend your arm over” command also
shown in Table III, the robot was not capable of executing this type of
complex command, since it required the coordination of several simple
commands. In this event, the command was recorded with the user’s
expected direction of motion; however, the robot did not execute the
command due to limitations in both the robot’s range of motion and
the GUI used. The operator informed participants of this limitation and
requested an alternative command be issued.

D. Primitive Command Set

As illustrated in Table II, the primitive command set consisted of
12 commands, 11 of which were considered simple, more predictable
commands. The Move Closer command was used as the only complex
command choice. Complex commands involve more than one simple
command. For example, combining Move Down with Move Forward
results in a complex command. The Move Closer command produces
a final gripper position closer to the object’s geometric centre. The
orientation of the gripper, however, does not change. This command
was included to test how often participants used commands they were
less familiar with.

A standard scalar equation with a coefficient of motion f (1) was
used to determine the relative distance between the tool frame and the
object frame.

d =
√

(f (x1 − x2 ))2 + (f (y1 − y2 ))2 + (f (z1 − z2 ))2 (1)

The coefficient of motion f was used to ensure the proportionality
between the robot’s degree of motion and its location with respect to the
object. In other words, the farther apart the tool and object frames, the
larger the translation. Likewise, the closer the tool and object frames,
the smaller the translation. Possible values for f included 0.1, 0.3,
0.6, and 0.9 for translations toward the object and 1, 3, 6, and 9 for
translations away from the object once the object was grasped. This
equation was used to map participant expectations to the executed
actuator motion as closely as possible.

The coefficient of motion f was initially set to a default value of
0.3. This initial setting was changed according to the participant’s
language. For example, if descriptive terms such as “a lot” were used,
then f was set to 0.9. Once the factored distance d was calculated,
this value was used as the robot’s translation for any of the primitive
commands provided. However, instructions for orienting the gripper
still used standard degree values ranging from 1◦ to 90◦. Each command
was executed as one continuous motion, moving the robot’s arm from
one location to another within the robot’s workspace. Following failed
grasp attempts in which the object moved, the object was repositioned
back to its original pose before another grasp attempt was made.
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TABLE I
STUDY PARTICIPANTS

Fig. 2. Interaction session.

III. RESULTS I: COMMUNICATION LANGUAGE

All participants initiated their own commands without any help from
the operator, and were able to grasp all five objects using the supplied
primitive command set. However, there were other interesting findings.

A. Natural Language Mapping of Primitive Commands

During each experiment, common terms emerged for the primitive
commands provided, as shown in Table II. Language such as “lift
up,” and “move outward” were commonly used to refer to the Move
Up and Move Forward primitive commands. Participants also used
objects in the laboratory to give the robot some sense of orientation.
Commands such as Move Left became “move closer to me,” likewise
Move Right became “move away from me” or “move the other way.”
Participants also viewed the robot as a human arm, using terms similar
to those used to explain new skills between people. Language such as
“straighten your arm out” was commonly used in place of the Move
Forward command.

B. New Commands

The study also revealed new commands, as shown in Table III, from
participant feedback and interaction sessions. New commands were
generated by participants without the help of the operator. In this case,
participants used language typically found in human–human interac-
tions to instruct the robot. The “turn sideways” command, for example,
was used to orient the gripper by some θ value either perpendicular or
parallel to the table surface. Language such as “point to the object” was
also used to position the robot’s gripper directly over the object.

Participants also provided feedback, encouragement, and verbal-
ized disappointment at commands that did not meet their expectations.

Feedback from participants such as “you’re almost there,” and “you’ve
got it” were used to give the robot some sense of its location and the
success of the grasp attempted. Participants also provided encourage-
ment such as “good” and “that’s it” to the robot in much the same way
as children are encouraged during the learning of a new skill. If the
robot did not perform as expected, participants verbalized their disap-
pointment to the robot through language such as “oh that’s wrong.” In
some cases, the robot moved much further than participants expected.
In this case, participants used language such as “go back to where you
were” to command the robot to return to its previous location. This
type of command was recorded, but not executed by the robot.

C. Command Translation and Implicit Assumptions

While mapping various commands to natural language, we observed
that participants often made implicit assumptions about the robot’s be-
havior. Commands such as Move Down, for example, were issued with
the assumption that the robot would intuitively know how far to move.
During the practice session, participants issued a Move Down com-
mand to the robot, then sat staring at the robot expecting an additional
downward motion to take place. When asked what they expected for
the Move Down command, participants responded that they “expected
the robot to move all the way down to the table surface in one mo-
tion.” Eventually, participants included terms such as “a little” or “a
lot” with commands issued. Typical descriptive terms used by partic-
ipants for translating and rotating the robot’s tool frame are shown in
Table IV. Values for f were used as part of (1), whereas θ values were
used directly by the command itself. Since values shown in Table IV
only require a target position to be known a priori, this allows for a
more generalized approach, which can be used for other types of robots
and tasks.

Participants also chose to leave out commands altogether when is-
suing several of the same commands in sequence. For example, com-
mands such as Move Forward and Move Down were followed by
languages such as “again” or “keep going.” Assumptions were also
made concerning locations for objects in the laboratory. Participants
assumed that the objects located in the laboratory were known to the
robot a priori. This assumption produced language that included these
locations as landmarks for positioning the robot’s gripper. The robot
was also viewed as a machine, where participants were unsure of what
the robot knew a priori. This resulted in simple direct language, which
was restricted to short-contained instructions. Assumptions were also
made regarding the robot’s end-effector. Participants viewed a 180◦

rotation instead of a 360◦ rotation of the end-effector as a full turn.
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TABLE II
COMMON NATURAL LANGUAGE INSTRUCTIONS

TABLE III
NEW LANGUAGE

TABLE IV
DESCRIPTIVE LANGUAGE AND VARIABLE ASSIGNMENTS

Since a parallel gripper was attached as the grasping tool, a 180◦ rota-
tion appeared to produce the same gripper configuration as the robot’s
initial gripper configuration. This produced language such as “turn half
way” for 90◦ rotations.

D. Misinterpreted Commands

Although commands from the primitive command set were ex-
plained to participants prior to commencing the experiment, some
participants still misinterpreted how certain commands would be exe-
cuted. The Move Down command, for example, was interpreted as the
Tilt Down command, pitching down the tool frame instead of moving
the entire arm downward. Other misinterpreted commands included
Move Up and Tilt Up. Again, the tool frame was thought to pitch
upward instead of moving the entire robot’s arm upward. There was
also some confusion regarding the Rotate command. Here, participants
interpreted the command as a rotation of the robot’s “body”, instead of

a roll of the tool frame around its approach axis (X). Suggestions for
changing the command included using the word “turn” such as “turn
your wrist around.”

E. Perceptions

Based on the participant’s seating arrangement, some participants
viewed certain commands differently. Move Forward, for example, was
seen as the Move Left command based on the participant’s perspective,
since participants were seated at a 90◦ angle to the left of the robot.
Likewise, commands such as Tilt Down and Tilt Up were viewed dif-
ferently depending on the orientation of the gripper. At 0◦, the tool
frame’s approach axis (X) is parallel to the table surface below. Once
the gripper is tilted upward or downward to within +/−45◦, the com-
mand is perceived as a tilt down or tilt up movement. The participant’s
perception changes once the tool frame moves beyond +/−45◦. From
here, the Tilt Up command becomes “tilt up and back,” and the Tilt
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Fig. 3. Average number of commands recorded per object for beginner, inter-
mediate, and advanced users.

Down command becomes “tilt down and back.” Likewise, once the
tool frame moves beyond +/−90◦, Tilt Up and Tilt Down commands
become “tilt up and forward” and “tilt down and forward.”

F. Participant Behavior Observed

During the course of the study, it was found that most participants
eventually developed their own individual language for moving the
robot into a desired position and orientation. Once established, usually
by the second or third object, participants seldom deviated from this
established instruction set.

Some participants also found the use of natural language instructions
to be a challenge for certain movements such as orienting the robot’s
tool frame. Trying to rotate the end-effector by a desired θ value using
ordinary language, other than degrees, was a difficult task. Other par-
ticipants found translating the robot’s tool frame to be more difficult.
Issuing a Move Down command, for example, was straightforward;
however, finding the descriptive language to indicate how far the robot
should move was more of a challenge.

All participants used a “stop” command initially in order to control
the robot’s motion more closely. Participants issued a command such as
Move Down followed by “stop now” when the robot reached a desired
location. Participants also used metrics to establish tighter control of
the robot’s movements. Language such as “move down 1 inch” was
used in order for participants to predict the robot’s behavior.

Several participants also chose to personalize the robot. Unique
names such as “Robin,” “Rachel,” “Max,” and “Sandpiper” were as-
signed to the robot. In most cases, the robot’s new name was used
prior to the command. Language such as “Robin, I want you to move
forward,” was used to clearly direct the current instruction to the robot.

IV. RESULTS II: PARTICIPANT’S BACKGROUND

AND COMMAND SELECTION

Answers from pretest and posttest questionnaires along with in-
formation gathered from each interaction session were collected and
analyzed.

A. General Observations

We tracked the amount of time and the total number of commands
used to grasp each object as performance indicators. Overall, Figs. 3 and
4 suggest that the inclusion of a practice session leads to a significant
improvement for both the number of commands and times recorded
by participants from the first object (i.e., the comb) to the second

Fig. 4. Average time recorded per object for beginner, intermediate, and ad-
vanced users.

Fig. 5. Other results for all objects for beginner, intermediate, and advanced
users.

object (i.e., the spoon) used in the study. Furthermore, all participants,
regardless of background, experienced difficulty with one or more
objects in the object set. Of the five objects used, the key appeared
to be the most problematic one, with most participants experiencing
declines in individual performance. This was followed by the tweezers,
the tensor clip, and the spoon.

Some participants chose to align the gripper with the handle of the
object on the table, much the same way as they would retrieve these
types of objects. For example, most participants grasped the spoon by
its handle, instead of by its round concave section, which has a larger
surface area. This approach suggests that participant preferences and
experience do play a role in grasp choices. Participants also chose
gripper configurations, which resulted in unstable grasps, as shown in
Fig. 5. Unstable grasps are grasping configurations that result in an
object moving once the gripper fingers touch the object due to linear or
angular misalignment. Linear misalignment occurs when the gripper is
not centered directly over the object. Angular misalignment takes place
when the gripper is not positioned at a perpendicular angle relative to
the object’s main axis. In both the cases, the object either moves during
a grasp attempt or is grasped using a small surface area, increasing
the likelihood for slippage to occur afterward. Some participants also
tried to scoop the practice object, the comb, by tilting and attempt-
ing to close the gripper on the object. Once this approach proved
unsuccessful, alternative gripper configurations were successfully
found.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 14, 2010 at 14:17 from IEEE Xplore.  Restrictions apply. 



474 IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 2, APRIL 2008

B. Comparison of Participant Groups

1) Beginner Group: This group appeared to approach the task with
the most caution, asking questions and gathering as many details as
possible. All participants in this group requested a “slow” movement
when the robot approached the object. Participants needed to be in
complete control of the robot to ensure unwanted movements could
be contained. Some beginner participants in the study also grasped
objects using a unique gripper configuration. Typically, following a
pitch down of the tool frame by −90◦, the tool frame is then rolled 90◦

to prepare for a grasp attempt. However, some participants on occasion
chose instead to rotate the tool frame between 0◦ and 90◦, choosing,
for example, to rotate the gripper by 68◦ and 77◦. Participants believed
that this type of angular alignment produced a more stable grasp for
certain objects.

This group was also the only group that did not use the Move
Closer command. Participants in this group either did not realize that
this command was available or expressed feeling uncomfortable using
instructions that were less predictable. Since the robot’s final location
could not be visualized, participants felt that there was a potential for
the robot to move too close to the object. Overall, participants in this
group appeared to use a trial and error approach the longest in order
to establish a clear mental model of the robot’s capabilities. Figure 5
shows that this group also produced the most number of failed grasp
attempts, the highest number of unstable grasps, and performed early
hand preshaping less often than the other two groups in the study.

2) Intermediate Group: This group was less apprehensive when con-
trolling the robot than the beginner group. Participants did not require
significant feedback from the operator and asked fewer questions dur-
ing each interactive session. They also appeared to use a trial and error
approach for a shorter period of time as compared to the beginner group,
and produced the second highest number of failed grasp attempts and
unstable grasp choices, as shown in Fig. 5.

3) Advanced Group: Some participants in the advanced group exper-
imented with the robot’s limitations. In some cases, participants grasped
an object, then commanded the robot to bring the object to them. In
this case, commands in the primitive command set were used to move
objects from the table toward the participant’s outstretched hand. This
additional step suggests task planning by the advanced group.

This group, for the most part, did not deviate from the list of primitive
commands provided. Most participants in this group did not ask many
questions to further clarify either the given commands or the task in
general. Questions asked were of a more technical nature with more
interest placed on the robot’s physical limitations. This group also
appeared to be the most methodical of the three groups. Figure 5 shows
that the advanced group recorded the lowest number of failed grasp
attempts and unstable grasps of all the three groups. This group also
appears to perform early hand preshaping slightly more often than the
other two groups in the study.

C. Participant Feedback

Some participants expressed feeling a steep learning curve during the
initial stages of the study. Although a practice session was provided,
participants still felt that they needed to go through all five objects
before feeling more confident in commanding the robot. For most
participants, initial opinions changed from robots being intimidating to
not being intimidating following individual interaction sessions. Views
on programming robots, however, did not change for the most part.
Most participants still felt that it was a challenge to effectively program
the robot even after a successful interaction session. Some participants
also stated that they would more likely use complex commands further
away from the object to get closer to the object, but would still use

the simple command set once the gripper was positioned closer to the
object. These participants indicated that they would consider using
complex commands more often if the movements were predictable,
but stated that a collection of simple more straightforward commands
would still be preferred.

V. DISCUSSION AND FUTURE WORK

Several important findings were revealed during the course of the
study. First, while the study had a wide range of participants and ob-
jects, most participants were capable of finding a set of communication
commands to accomplish the grasping tasks. This set was developed
over time once the user became more comfortable with the robot. The
set used by most participants consisted of a small number of simple
commands, not advanced, more “intelligent” commands. This is a sig-
nificant result since one of the major issues of human–robot interaction
(HRI) is the parsing of the user’s language into meaningful commands.
If the user, as this study shows, prefers a small set of simple commands
with limited impact, then designing a speech recognition system, for
at least transferring grasping skills, could be much easier. Another in-
teresting finding is the fact that users tend to use commands that they
have experience with and have worked with before, regardless of the
availability of more capable commands. It would be interesting to see
if a long-term interaction study will support this finding, particularly
as users transition from novice to expert users.

The study had several quantitative results such as: 1) the number of
commands issued; 2) the total interaction times recorded; 3) percentage
of failed grasp attempts; 4) percentage of unstable grasps chosen; and
5) percentage of users performing early hand preshaping. Furthermore,
it also revealed that the user’s background does play some role in the
interaction process. Yet, despite these differences between the three
groups, the participant’s background does not, however, impact his/her
ability to successfully instruct the robot to grasp various objects. To
our knowledge, this is the first time that a study focused on grasping,
and nonexpert users has shown this important finding.

Can these findings be generalized to other more complex grippers
and robots? The gripper used in this study is a basic two-fingered paral-
lel gripper. The grasps produced by this gripper (precision or tip grasps)
can be easily duplicated by more complex multifingered hands. The
objects grasped are small objects that are difficult to grasp. Thus, it is
reasonable to say that the results in this study can be generalized to more
complex grippers and objects as long as the required grasp is a precision
or tip grasp, which one can say is the most common grasp for pick and
place tasks. The degrees of freedom of the robot played no role in these
findings, since all of the commands used were high-level commands.

A. Grasping Skill Transfer

Grasping is a two-stage operation. The first stage consists of reach-
ing toward the object while orienting the hand in a particular pose,
while the second stage starts once the fingers contact the object and
the hand closes. The initial approaching hand pose is dependent on the
grasping task and on the experience of the person grasping the same
or similar objects before. Thus, in robotics, a proper grasping configu-
ration must take into consideration the functionality of the object and
the object’s use, even when using multifingered hands. This study’s
aim is to develop a natural language interface that allows nontechnical
users to command a robot to reach and grasp an object in the same
way as they would. The resulting command sequence and final pose
implicitly represents each user’s grasping skills and preferences. If the
robot can now learn from these interaction sessions of how to reach
for and grasp other objects, this will lead to developing user-adaptive
robots. But, much work remains. We have collected 60 records, where
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each represents the command sequence of one user grasping one object.
These records along with other sensory data, like vision and tactile data,
can then be used as input data to a learning system that can learn how
to grasp objects from actual grasping experiments. Moussa [13], [14]
tested such a grasping system in a simulated environment using an ob-
ject set that included 28 everyday objects with very promising results.
But, this work did not include any user-specific grasping configurations
or preferences.

Our next step is to enhance this natural language interface by adding
a learning component. Using the data collected, we plan to explore
finding patterns of commands that could be used to predict the user’s
next command and the type of object grasped, thus leading to faster
interaction between the user and the robot. Our view is that this could
eventually lead to meta grasping commands like “grasp this object like
you grasp a comb.”
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Disassembly Path Planning for Complex
Articulated Objects

Juan Cortés, Léonard Jaillet, and Thierry Siméon

Abstract—Sampling-based path planning algorithms are powerful tools
for computing constrained disassembly motions. This paper presents a vari-
ant of the Rapidly-exploring Random Tree (RRT) algorithm particularly
devised for the disassembly of objects with articulated parts. Configura-
tion parameters generally play two different roles in this type of problems:
some of them are essential for the disassembly task, while others only need
to move if they hinder the progress of the disassembly process. The pro-
posed method is based on such a partition of the configuration parameters.
Results show a remarkable performance improvement as compared to stan-
dard path planning techniques. The paper also shows practical applications
of the presented algorithm in robotics and structural bioinformatics.

Index Terms—Articulated mechanisms, disassembly paths, molecular
interactions, path planning algorithms, robotic manipulation.

I. INTRODUCTION

This paper1 addresses the problem of automatically computing
motions to disassemble objects. The problem can be formulated as
a general path planning problem [2], [3] (see Section III). Indeed,
path planning concepts and algorithms have been applied to solve
different instances of the (dis)assembly planning problem (see Sec-
tion II). The instance treated in this paper considers two objects, with
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