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Abstract

In this paper we focus on the concept of low-dimensional posture sub-
spaces for artificial hands. We begin by discussing the applicability
of a hand configuration subspace to the problem of automated grasp
synthesis, our results show that low-dimensional optimization can be
instrumental in deriving effective pre-grasp shapes for a number of
complex robotic hands. We then show that the computational advan-
tages of using a reduced dimensionality framework enable it to serve
as an interface between the human and automated components of an
interactive grasping system. We present an on-line grasp planner that
allows a human operator to perform dexterous grasping tasks using
an artificial hand. In order to achieve the computational rates re-
quired for effective user interaction, grasp planning is performed in a
hand posture subspace of highly reduced dimensionality. The system
also uses real-time input provided by the operator, further simplify-
ing the search for stable grasps to the point where solutions can be
found at interactive rates. We demonstrate our approach on a number
of different hand models and target objects, in both real and virtual
environments.

KEY WORDS—interactive grasping, dexterous robotic hands,
hand prosthetics.

1. Introduction

The vision of ubiquitous robotic assistants, whether in the
home, the factory or in space, will not be realized without the
ability to grasp typical objects in human environments. The
human hand, the most versatile end-effector known, is capa-
ble of a wide range of configurations and subtle adjustments.
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In an attempt to match its abilities, a number of anthropo-
morphic robotic designs have been proposed in the literature,
e.g. by Vande Weghe et al. (2004); such models often include
human-like kinematics and simplified tendon networks. How-
ever, the increase in versatility has come at the cost of simi-
larly increased complexity. As the number of degrees of free-
dom (DOFs) of robotic hands starts to approach the case of the
human hand, effective autonomous algorithms that can handle
high-dimensional configuration spaces are required in order to
take advantage of the new designs.

If we wish to reproduce human-like grasping it would seem
natural to draw inspiration not only from the hardware of the
human hand, but also from the software; that is, the way the
hand is controlled by the brain. This may initially sound like
an overly lofty goal: a large part of the human cortex is dedi-
cated to grasping and manipulation, and it would seem reason-
able to assume that all of this cognitive machinery is dedicated
to finely controlling individual joints and generating highly
flexible hand postures. However, results in both robotics and
neuroscience research that we review in this paper point to the
contrary, suggesting that a majority of the human hand control
during common grasping tasks lacks individuation in finger
movements.

1.1. Low-dimensional Posture Subspaces

In this paper, we use low-dimensional hand posture subspaces
to express coordination patterns between multiple DOFs for
robotic hands. In particular, we consider linear subspaces
defined by a number of basis vectors that we refer to as eigen-
grasps. Each eigengrasp is a vector in the high-dimensional
hand posture space; we use linear combinations of a relatively
small number of these vectors to obtain a wide range of hand
postures for grasping tasks.

A key aspect when using this approach is the trade-off be-
tween its computational advantages and the implied reduction
in the range of directly accessible hand postures. An eigen-
grasp subspace is only useful in as much as it contains enough
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variance in hand posture to allow for successful completion
of the grasping task. In this paper we start from the results of
Santello et al. (1998), who applied dimensionality reduction
methods on a large set of human grasping postures obtained
from user studies. Their results show that a two-dimensional
subspace contains more than 80% of the variance in hand pos-
ture. The analysis of human digit coordination patterns during
grasping is in general a very active area of research; in Sec-
tion 2 we provide an overview of current results and discuss
their implications for our approach to robotic grasping.

Our main interest in this study is the application of low-
dimensional posture subspaces for robot hands, taking a con-
structive, rather than exploratory approach. Instead of attempt-
ing to derive optimal posture subspaces (either analytically or
through user studies), we focus on the applicability of this
concept: given a particular set of eigengrasps, we aim to con-
struct algorithms that take advantage of operating in a low-
dimensional domain. In Section 3 we present an eigengrasp
planning algorithm that can be used to obtain form-closure
grasps using dexterous hands that have traditionally been very
difficult to plan for. The core of this algorithm is an opti-
mization procedure that operates along two eigengrasp direc-
tions; even when using such a reduced dimensionality space,
we show that the planner is successful in deriving stable multi-
fingered grasps for a large variety of target objects.

1.2. Interactive Grasp Planning

One of the key features of the low-dimensional grasp planning
algorithm we introduce is the ability to simplify the search for
a form-closure grasp posture when using a dexterous hand.
However, a grasp is completely defined only by a combina-
tion of intrinsic DOFs (finger joint angles) and extrinsic DOFs
(wrist position and orientation relative to target object). The
application of eigengrasp subspaces only addresses the finger
posture component; a significant amount of computational ef-
fort still has to be spent in order to determine the position and
orientation of the wrist. In order to take full advantage of the
eigengrasp dimensionality reduction, we need to also reduce
the complexity of the extrinsic components of a grasp.

In Section 4 we show how the eigengrasp planning frame-
work can be applied in the case where the approach direction
for a grasping task is partially provided by a human operator in
real time. This application stems from the area of hand neuro-
prosthetics, where a human user must interact with an artificial
limb using limited communication channels. In particular, we
assume that the operator has no direct control over finger pos-
ture, which has to be set by the automated grasp planner. Com-
putational efficiency thus becomes a critical requirement, as
the system’s response should be fast enough to allow for inter-
active operation.

We define an interactive grasp planner as a system that can
accept input from a human operator during the execution of

the grasp and adapt to on-line input changes. We show that by
combining reduced dimensionality grasp planning with wrist
position input provided by a human operator, we can meet
these constraints: the system that we present generally requires
approximately 2 seconds to find a form-closure grasp for a
user-specified wrist position, and between 10 and 15 seconds
for the complete execution of a grasping task. This framework
allows the human user to not only set initial guidelines for the
grasp planner, but also to react to its behavior and successfully
complete the grasping task even if they have no direct control
over finger posture.

1.3. Related Work

Attempts to formalize the human tendency to simplify the
space of possible grasps can be traced back to Napier’s
pioneering grasp taxonomy (Napier 1956), updated later
by Cutkosky (1989). Iberall (1997) later reviewed a large field
of work on grasp taxonomies, from areas such as anthropol-
ogy, biomechanics, rehabilitation and robotics. These studies
suggest that, while the configuration space of dexterous hands
is high-dimensional and very difficult to search directly, most
useful grasps can be found in the vicinity of a small number of
discrete points. This approach has generated significant inter-
est in both human and robotic grasping research; in this section
we review a number of results on autonomous grasp planning
for robotic hands. In the following section we also discuss in
more detail the kinesiologic aspects that are closely related to
the approach presented in this paper.

Miller et al. (2003) used Cutkosky’s grasp taxonomy con-
cept to define a number of starting positions, or pre-grasps,
when searching for good grasps of a given object using a ro-
botic hand. Cipriani et al. (2006) applied this concept for pros-
thetic hands, assuming that the human operator can only select
from a small set of pre-grasp shapes, relying on the passive
mechanical adaptability of the CyberHand design (Carrozza et
al. 2006) to complete the grasp. Aleotti and Caselli (2006) used
a Cyberglove to record human grasp trajectories and postures
and replicated them on the same target objects using NURBS.
Li et al. (2007) used a shape-matching approach, sampling
an object into a dense cloud of oriented points and matching
against a small database of known human hand poses.

We note that choosing a good grasp can also be formulated
as a problem in the contact space of the object to be grasped
rather than the configuration space of the hand, as shown for
example by Roa and Suarez (2007). However, such approaches
usually require inverse kinematics in order to guarantee that
the contacts are physically satisfiable by a real robotic hand.
An alternative to the use of inverse kinematics is presented
by Platt et al. (2002, 2004), starting with the hand in contact
with an object and combining multiple control laws for per-
forming incremental contact adjustments.
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When a robot is operating in an unknown environment, the
amount of sensory information can be insufficient for con-
structing a complete three-dimensional model of the target ob-
ject. Saxena et al. (2008) present a learning approach where
logistic regression is used to infer good grasping points for
a simple gripper based directly on two-dimensional images,
without building an explicit object model. Their method fo-
cuses on the ability to learn the appearance subspace of gras-
pable objects or features; in the eigengrasp framework pre-
sented here we explore the use of subspaces for hand postures.
These approaches can thus be considered as complementary.
Other methods for operating in unstructured environments in-
clude explicitly modeling the uncertainty associated with in-
accurate range sensors, as shown by Hsiao et al. (2007), and
using tactile sensing to compensate for other sensing errors, as
demonstrated by Edsinger and Kemp (2006). Finally, for com-
prehensive overviews regarding fully autonomous grasp syn-
thesis for robotic hands we also refer the reader to the reviews
of Shimoga (1996) and Bicchi and Kumar (2000).

2. Eigengrasps

An important difficulty in understanding and reproducing hu-
man grasping ability is the large number of DOFs involved,
which gives rise to an enormous set of possible configurations.
One possible explanation for human efficiency in selecting ap-
propriate grasps assumes that humans unconsciously simplify
the large search space through learning and experience. San-
tello et al. (1998) investigated this hypotheses by collecting a
large set of data containing grasping poses from subjects that
were asked to shape their hands in order to mime grasps for
a large set (n = 57) of familiar objects. Principal component
analysis of this data revealed that the first two principal com-
ponents account for more than 80% of the variance, suggesting
that a very good characterization of the recorded data can be
obtained using a much lower-dimensionality approximation of
the DOF space. In our work, we refer to the principal compo-
nents of the dataset of hand configurations described above as
eigengrasps.

While numerical analysis of human hand postures can re-
veal the “synergies” in the data, it tells us very little about
the causes of this intrinsic low-dimensional nature. Two ex-
planations seem natural: the first assumes that inter-digit coor-
dination is caused by mechanical constraints in the anatomy of
the hand. This direction suggests building robotic hands with
highly interconnected finger actuation mechanisms. An exam-
ple is the prototype developed by Brown and Asada (2007),
using a low-dimensional control system along directions sim-
ilar to those presented by Santello et al. (1998). The second
explanation assumes that motor control synergies take place
at a higher level in the central nervous system, as discussed
for example by Mason et al. (2001) and Cheung et al. (2005).

This approach implies the use of low-dimensional control al-
gorithms for dexterous robotic hands, such as that presented
in this paper. However, the nature of human control synergies
is still an open question and an active area of research, and
combinations of the two approaches discussed above also seem
very likely.

Another important aspect concerns the relationship be-
tween eigengrasps and the task being performed. Todorov and
Ghahramani (2004) have shown that the execution of differ-
ent manipulation tasks (such as flipping pages or crumpling
paper) is characterized by different sets of principal compo-
nents. Interestingly, Thakur et al. (2008) have identified a pos-
ture subspace even in the less-constrained setting of haptic ex-
ploration tasks. Mason et al. (2001) and Santello et al. (2002)
have also shown that hand posture during the reach phase of
a complete reach-to-grasp action is described by a different
(and lower-dimensional) principal component spectrum than
the grasp phase. These results show that, when using a low-
dimensional control space for robotic hands, the choice of the
subspace has to be correlated with the proposed task.

Finally, all of the studies discussed so far have used prin-
cipal component analysis, and thus have addressed only lin-
ear subspaces that can be extracted from hand posture data.
Linear decomposition has been successfully used in the past
on different types of biometric data, ranging from face ap-
pearance (Turk and Pentland 1991) to the dynamics of arm
motion (Fod et al. 2002). However, non-linear dimensional-
ity reduction methods can potentially reveal different mani-
fold structures of the same data. Tsoli and Jenkins (2007) com-
pared a number of such methods, including isomap and locally
linear embedding, for extracting two-dimensional non-linear
manifolds from human hand motion data. Their results show
that, while low-dimensional manifolds can be obtained using
a number of different methods, non-linear approaches can pro-
vide better separation between the low-dimensional projec-
tions of different task domains and thus simplify the task of
low-dimensional teleoperation.

2.1. Application for Robotic Hand Models

One common thread that can be observed in the body of work
discussed above is that the usefulness of a hand posture sub-
space has traditionally been quantified by how well it approx-
imates a given set of input data. This exploratory approach is
natural in the context of studying the human hand. In this paper
we propose a modified approach oriented towards application
for artificial hands: given a hand posture subspace, we use it to
synthesize new hand postures to accomplish a particular task.
We see this effort as complementary to current attempts of
understanding and extracting relevant low-dimensional data:
if eigengrasp-based algorithms can be proven effective, they
would only benefit from further optimization of the operation
subspace.
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The task that we focus on throughout this paper is achiev-
ing stable grasps of a target object. We are thus interested in
dexterous grasps that can resist a wide range of disturbances,
rather than object-specific manipulation scenarios. To achieve
this goal, we propose an algorithm that actively searches a low-
dimensional subspace for appropriate hand postures. We base
our approach on published results obtained from human grasp-
ing data, which can also be applied to robotic models using an
empirical mapping as described below. While we have found
our choices to produce good results for achieving stable grasps
of a large variety of objects common in human environments,
the optimal choice of eigengrasps for non-human hands, as
well as the choice of which eigengrasps to use for different
or more specialized tasks, are open questions and interesting
directions for future research.

In this study, we apply the eigengrasp concept to a total of
four dexterous hand models: the Barrett hand (Barrett Tech-
nologies, Cambridge, MA), the DLR hand (Butterfass et al.
1998), the Robonaut hand (Lovchik and Diftler 1998) and
finally a 20-DOF model of a human hand. For the human
hand we have directly used the eigengrasp subspace obtained
by Santello et al. (1998), taking advantage of the fact that it
has been derived through rigorous study over a large number
of recorded samples. Since such data is not available for ro-
botic hand models, we have derived eigengrasp directions at-
tempting to define grasp subspaces similar to those obtained
using human hand eigengrasps. In most cases, such decisions
could be based directly on the similarities with the human
hand: for example, the human metacarpophalangeal (MCP)
and interphalangeal (IP) joints can be mapped to the proximal
and distal joints of robotic fingers. In the case of the Barrett
hand, changes in the spread angle DOF were mapped to hu-
man finger abduction. All of our hand models, as well as the
two dominant eigengrasps used in each case, are presented in
Table 1.

The eigengrasp concept allows us to design flexible control
algorithms that operate identically across all of the presented
hand models. The key to this approach is that the eigengrasps
encapsulate the kinematic characteristics of each hand design.
Control algorithms that operate on eigengrasp directions do
not need to be customized for low-level operations, such as
setting individual DOFs, and can concentrate on the high-level
task. All of the results presented in this paper were obtained by
treating all hand models identically, without the need for any
hand-specific tuning or change in parameters.

2.2. Effective DOFs

In the applied example of grasp planning, we need to con-
sider whether the eigengrasp subspace contains the hand pos-
tures needed for stable grasps of the target objects. A corol-
lary question is whether results obtained using a small set of
eigengrasps would imply that the other DOFs of the hand are

useless. As mentioned above, in the case of the human hand,
the two dominant eigengrasps have been shown to encapsu-
late most of the variance in posture over a large set of grasps.
However, eigengrasps 3 through 6 (in decreasing order of im-
portance), while accounting for less than 15% of the posture
variance, do not represent noise and have been shown by San-
tello et al. (1998) to be related to the object to be grasped.
Furthermore, the study was performed in the absence of the
real object, as subjects were asked to reproduce grasps from
memory. This suggests that, even if we choose to perform the
grasp planning stage in a low-dimensional space, during the
final stages of the grasp the shape of the object will force the
hand to deviate from eigengrasp space in order to conform ex-
actly to its surface.

We therefore use a two-stage approach to the task of au-
tomated grasp synthesis: first, hand posture is optimized in
a low-dimensional eigengrasp space. The dimensionality re-
duction makes this process computationally tractable even for
complex dexterous hand models. In the second stage, starting
from the best hand posture found in eigengrasp space, the hand
is closed by flexing all of the finger joints at equal rates until
contact with the target object stops all motion. This step does
not require the control algorithm to perform any more pose
refinement at a computational level, but only to issue a binary
“close all fingers” command after which the final pose is deter-
mined implicitly through contact with the object. However, it
takes advantage of the versatility of complex kinematic chains,
where multiple DOFs allow the hand to better match the sur-
face of the object.

3. Grasp Synthesis through Low-dimensional
Posture Optimization

In general, automatic grasp synthesis can be approached as
an optimization problem, seeking to maximize the value of a
high-dimensional quality function Q that characterizes a given
combination of hand posture and position:

0= f@p,w), peRd,weR(’, (D

where d is the number of intrinsic hand DOFs, p represents the
hand posture and w contains the position and orientation of the
wrist.

We first present our implementation of the quality function,
then discuss the optimization algorithm that is applied to max-
imize it over a space of possible hand postures. In general,
most quality function formulations are highly non-linear, with
complex constraints as well as gradients that are difficult, or
even impossible, to compute analytically. These problems are
compounded by the high dimensionality of the optimization
domain. Consider, for example, the case of the human hand
model, where d = 20: this results in a 26-dimensional opti-
mization domain, rendering most optimization algorithms in-
tractable. However, we can choose a basis comprising b eigen-
grasps, with b < d, and a hand posture placed in the subspace
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Table 1. Eigengrasps defined for the robotic hand models used in this paper.

Thumb flexion

Eigengrasp 1 Eigengrasp 2
Model |DOFs — gengrasp o EETE1A%p
Description min | max Description min \ max
Barrett 4 Spread angle opening w —> Finger flexion %—’
Prox. joints flexion Dist. joints flexion
DLR 12 Finger abduction Prox. joints extension

Thumb flexion

-l‘_\l.‘"i )./ i .\‘.7{

Thumb flexion an 3‘ \LS‘ Thumb flexion “ & - PISENEY

Robonaut| 14 MCP flexion '\/ —» % MCP extension - / — UY)
Index abduction / ‘ b ] PIP flexion | S | S

Thumb rotation
20 Thumb flexion
MCP flexion
Index abduction

Human

T
V.- @

Thumb flexion

MCP extension 5
PIP flexion

defined by this basis can be expressed as a function of the am-
plitudes a; along each eigengrasp direction:

b
P=pnt )y aei, @)
i=1

where py, is a “mean” posture that describes the origin of the
eigengrasp subspace. Each eigengrasp e; is a d-dimensional
vector and can also be thought of as a direction of motion in
joint configuration space. Motion along one eigengrasp direc-
tion will usually imply motion along all (or most) degrees of
freedom of the hand:
e =le1 ein eiql- 3)
Once this subspace is defined, a hand posture can
be completely determined by the amplitude vector a =
lai ... a] € RP. Therefore, when hand posture optimiza-
tion is performed in eigengrasp space, the grasp quality func-
tion over this subspace takes the form
Q=f(aw), aecR’, weR" “)
where a is the vector of eigengrasp amplitudes. When operat-
ing in a two-dimensional subspace, we therefore have a total
of eight variables to optimize, including two eigengrasp ampli-
tudes and six variables for the wrist position and orientation,
independent of the particular hand model that is being used for
the grasping task.

3.1. Quality Function Formulation

Most grasp quality metrics that have been proposed in the lit-
erature are based on the locations of the contacts between the
hand and the target object. Our context is somewhat different:
we need a quality metric that can also assess the quality of a
pre-grasp, where the hand is very close, but not in contact with
the target. For each hand model, we pre-define a number of ex-
pected contact locations by sampling each link of the fingers
as well as the palm, as shown in Figure 1(a). The value of
the quality function is maximized for those hand postures that
bring each expected contact location as close as possible to the
target object. We are therefore searching for postures where
the hand is wrapped around the object, generating a large con-
tact area using all of the fingers as well as the palm. As shown
in Figure 1(b), for each desired contact location on the hand,
identified by the index i, we define the local surface normal
n; as well as the distance o; between the desired contact loca-
tion and the target object. We then compute a measure J; of the
distance (both linear and angular) between the desired contact
and the surface of the object:

0: i -0
=M+O~;ﬂ, 5)
a |oi|

where o is a scaling parameter required to bring the range of
useful linear distances (measured in millimeters) in the same
range as the normalized dot product between #; and o; (in our

study we use a value of a = 50). For a given hand posture, the
total value of the quality function is then computed as:

di
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Fig. 1. Examples of desired contact locations for posture op-
timization. (a) Complete set of pre-defined desired contact lo-
cations for the DLR, Robonaut and human hands. (b) For a
desired contact with index i, we define the surface normal #;
and the current distance to the target object o;.

0= > (-3 6)

all desired
contacts

In most cases, the hand postures that maximize the value
of Q create an enveloping grasp of the object, especially for
complex models grasping objects similar in size to the hand.
The optimized value of this function can be seen as a mea-
sure of how well the hand shape can be set in order to match a
given object while operating in a low-dimensional subspace. In
Section 4, we also present an alternative quality function for-
mulation that includes a built-in notion of grasp wrench space
analysis.

3.2. Optimization Algorithm

After choosing the formulation of the quality function Q, the
optimization is performed using the simulated annealing algo-
rithm with the fast cooling schedule and neighbor-generation
function presented by Ingber (1989). The stochastic nature of
this algorithm makes it a particularly good choice for our task:
since new states are generated as random neighbors of the cur-
rent state, computation of the quality function gradient is not
necessary, and the algorithm works well on non-linear func-
tions. Furthermore, the possibility of a “downhill move” to a

state of lower quality allows it to escape local optima which
can trap greedier methods such as gradient ascent.

Algorithm 1 Simulated annealing over grasp quality function.
for all variables of CurrentState do
CurrentState.variable = RandomValue()
end for
QCurrent = Quality(CurrentState)
Iterations = 0
QSaved =0

while Iterations # MaxIterations do
{Generate a new state as a neighbor of current state}
repeat
for all variables of NewState do
{Sim. Annealing neighbor generation function}
NewState.variable = Ngbr(CurrentState.variable)
end for
Apply ForwardKinemat ics(NewState)
if collisions detected or joint limits exceeded
legalState = false
else legalState = true
until legalState == true

QNew = Quality(NewState)
if QNew > QSaved then

Insert NewState in SavedStatesList

QSaved = lowest quality value in SavedStateList
end if

{Sim. Annealing probability of "jumping" to new state. }
PJump = Probability(QCurrent, QNew)
if PJump > 0.5 then
CurrentState = NewState
QCurrent = QNew
end if
Iterations = Iterations + 1
end while

The complete optimization procedure is presented in Al-
gorithm 1, which uses the following conventions. The vari-
ables that make up a given state (such as CurrentState or New-
State) are the entries of the eigengrasp amplitude vector a
and the wrist position and orientation vector w. These vari-
ables are the target of the optimization. The Quality func-
tion for a given hand state is computed as in (6). We have im-
plemented this algorithm using our publicly available Grasplt!/
simulation engine (Miller and Allen 2004), which performs the
ForwardKinematics computation and contact and colli-
sion detection. Finally, the functions Nbr, for computing a
“neighbor” of a variable, and Probability, for deciding
whether a “jump” to a new state is performed, are implemented
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k = 5000 k = 15000 k = 25000 k = 29000

N

k = 30000 k = 40000 k = 60000 k = 70000
Fig. 2. Simulated annealing example over 70,000 iterations.

Each image shows the best state found until iteration k.

as described by Ingber (1989). Briefly, the simulated anneal-
ing algorithm implements the following guidelines: (a) during
early iterations, it allows large changes in the search variables
and often jumps to worse states in order to sample the entire
domain of the optimized function; (b) as the algorithm pro-
gresses, it predominantly samples increasingly smaller neigh-
borhoods of the current solution and only allows jumps that
improve its quality measure.

A detailed example of the execution of this algorithm, in-
volving the Robonaut hand grasping a glass, is presented in
Figure 2. The figure shows the temporary solution (best state
found so far) at various points during the optimization. Fig-
ure 3 also shows how the current search state evolves over the
full iteration range. We can observe what is considered typical
behavior for a simulated annealing implementation. First, the
search goes through random states, accepting bad positions as
well as good positions. As the annealing schedule progresses,
the search space is sampled more often in the vicinity of the
good states, while bad states are no longer accepted.

Owing to the stochastic nature of simulated annealing, dif-
ferent executions of the optimization algorithm can result in
slightly different hand postures. However, the same stochastic
nature enables it to “jump out” of unpredictable local optima
(such as the intermediate “peaks” in Figure 3) and, with a high
probability, converge to the same regions of the optimization
space, leading to consistency between different executions. Fi-
nally, in the later stages, the search is confined in a small neigh-
borhood around the best state, which is progressively refined.
The total time required for the optimization presented here was
143 seconds, or 2.0 ms per iteration, using a commodity desk-
top computer. The most significant amount of computation
was spent checking the feasibility of each generated state (i.e.
checking for collisions and inter-penetrations). We also note
that increasing the number of iterations beyond 70,000 yields

Quality
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Fig. 3. Evolution of quality function (top) and eigengrasp am-
plitudes (bottom) of the current search state during simulated
annealing

highly diminished returns; all of the optimizations reported in
the rest of this section where performed over an identical range
of 70,000 iterations, or approximately 150 seconds of compu-
tation.

3.3. Optimization Results and Discussion

In this section we present quantitative testing results of the op-
timization method presented above. We discuss the best di-
mensionality of the optimization subspace, the nature of the
hand postures that can be found through our optimization al-
gorithm in this subspace, and its overall applicability for the
task of dexterous grasp planning.

In order to study the impact of the dimensionality of the
search space on the results of the optimization, we compared
the results obtained using the human hand in an eigengrasp
subspace of dimensionality ranging from one to six. All of the
tests were performed on a set of seven objects with diverse
geometry, such as a flask, shoe, hammer, etc. To reduce the
influence of the stochastic component of simulated annealing,
the optimization for each combination of object and number
of eigengrasps was repeated five times and the results were
averaged. The complete results, showing how the value of the
quality function varies with the dimensionality of the space at
various points in the optimization, are presented in Figure 4.

The results show that, in our optimization range, a two-
dimensional subspace provides the best results. A more de-
tailed analysis also reveals that, in the early stages of the op-
timization, a one-dimensional space is qualitatively similar,
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Fig. 4. The best value of the quality function at different mo-
ments during the optimization algorithm, depending on the
dimensionality of the optimization subspace. All of the tests
were performed using the human hand and averaged over a set
of five executions for each of seven test objects.

while in the latter stages a higher-dimensional space can pro-
vide a viable alternative. This is an expected trend, as an in-
crease in the dimensionality of the search space intuitively
requires additional computational power to provide benefits.
However, we must note that these results could also be indica-
tive of our specific optimization algorithm, or of the set of cho-
sen objects, rather than the intrinsic nature of the eigengrasp
subspace. In particular, it is difficult to explain exceptions to
the overall trend, such as the relative benefit yielded by a five-
dimensional space compared with either four or six dimen-
sions. This is compounded by the fact that it is very difficult to
find intuitive explanations for human eigengrasps ranked be-
low the first two. Furthermore, to the best of our knowledge,
no set of objects has been accepted as a definitive benchmark
of robotic grasping performance. Based on our current results,
we have chosen a two-dimensional subspace as offering the
best compromise between computational effort and optimiza-
tion results; all of the experiments presented in the rest of this
paper, including the interactive grasp planning application that
is the focus of Section 4, were performed using two eigen-
grasps.

In order to test the effectiveness of our framework for the
task of dexterous robotic grasp planning, we have applied the
two-dimensional eigengrasp optimization using all four pre-
viously discussed robotic hand models on a set of six ob-
jects. Figure 5 shows the result of the annealing search for
each hand—object combination. Our focus in this section is to
evaluate the best hand postures that can be found in eigen-
grasp space. Therefore, Figure 5 presents the best hand posture
found by the optimization algorithm without any additional
refinements, allowing a direct assessment of the optimization
method through visual inspection of its output.

These results show that, when the search is confined to a
low-dimensional eigengrasp space, it does not reach a global

optimum of the quality function where all of the desired con-
tact locations touch the target object. However, the local op-
timum found in eigengrasp space can be used as a pre-grasp
by performing the additional adjustment where the hand leaves
the planning subspace in order to conform to the surface of the
object: execution of the binary “close all fingers” command,
allowing all fingers to close until motion is stopped by contact
with the object (Figure 6). We use form-closure as the analysis
criterion for the resulting grasps, as our goal is the synthesis of
stable grasps with no weak points.

In order to perform a quantitative analysis of the pre-grasps
obtained through posture optimization, we can apply this ad-
justment to the 20 distinct solutions with the highest quality
values found by one execution of the optimization algorithm.
We consider two solutions as being distinct if either the dis-
tance between the hand positions they define exceeds 20% of
the object size, or the difference between wrist orientations
exceeds 20°. After closing the fingers, we count the number
of distinct optimized pre-grasps that result in form-closure. In
order to account for the stochastic element, we repeated the
test for each hand—object combination five times. The average
number of form-closed grasps (as well as the standard devia-
tion) for all cases are presented in Table 2. Each optimization
was performed over 70,000 iterations, with an average running
time of 158 seconds. In the case of the human hand, Figure 6
also shows all of the final grasps obtained when using as pre-
grasps the corresponding postures from Figure 5.

These findings confirm our expectations of eigengrasp
space as a pre-grasp or grasp planning space: in general, clos-
ing the fingers of a dexterous hand starting from a random
configuration is not enough to obtain a stable grasp. Our results
show that if the starting position is the result of the eigengrasp
optimization algorithm we can obtain multiple solutions: on
average, 20 optimized pre-grasps result in seven form-closed
grasps for a given hand and object. Interestingly, our algorithm
performs at its best for the more dexterous designs, with kine-
matic structures approaching that of the human hand. This re-
sult can be explained by the fact that all of the eigengrasps
subspaces that we use originate from a study of human grasp-
ing; as the mapping to robotic hands becomes less intuitive,
the effectiveness of the planning method is also decreased. Fu-
ture methods for subspace mapping between hands should also
take into account their relative size (for example, the palm and
finger span of the DLR hand are approximately twice as large
as those of its human counterpart). Overall, the results confirm
our starting hypothesis: a low-dimensional algorithm can take
advantage of highly dexterous hand designs for synthesizing
stable grasps in a computationally efficient way.

4. On-line Interactive Dexterous Grasping

In the previous section we have presented an optimization al-
gorithm that uses a low-dimensional subspace when searching
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Fig. 6. Examples of final grasps obtained from optimized postures by closing each finger until motion is stopped by contact with

the object.

for hand postures that match the shape of a grasped object.
However, a significant amount of computational effort was
dedicated to optimizing extrinsic DOFs (wrist position and ori-
entation, six variables) versus intrinsic DOFs (eigengrasp am-
plitudes, two variables). As the focus has been on dimension-
ality reduction for the intrinsic DOF domain, no attempt has
been made to simplify the extrinsic DOF search domain. For
fully autonomous grasp synthesis this is a necessary compo-

nent: a correct finger posture is only relevant when combined
with an appropriate wrist position relative to the target object.

An important category of grasp planning applications that
does not require complete autonomy stems from the field of
neural hand prosthetics. Such devices combine a degree of hu-
man control with artificial hardware and algorithms. Formal-
izing this concept using our framework means that an external
operator can specify desired values for some, but not all, of
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Table 2. Number of form-closed grasps obtained from 20 pre-grasps found in a two-dimensional eigengrasp space (average
and standard deviation over five executions for each hand and object).

Ashtray Shoe Glass Flask Phone Plane
Average SD Average SD Average SD Average SD Average SD Average SD
Barrett 2.8 2.2 1.0 1.0 5.8 53 34 1.7 14 2.1 4.0 3.1
DLR 11.0 3.6 6.0 34 0.8 0.8 32 2.7 2.8 3.6 1.8 0.8
Robonaut 7.0 23 9.0 1.7 14.4 3.7 14.4 3.7 10.0 2.8 3.6 2.3
Human 14.6 23 11.0 2.5 11.2 1.6 134 35 8.4 2.3 1.8 1.3

the variables that define a grasp. For example, Taylor et al.
(2002) have enabled a primate to directly control the linear ve-
locity of the endpoint of a robot arm through three DOFs in
real time. This control was achieved by measuring the activ-
ity of individual cortical neurons that correspond to individual
preferred directions of each neuron in space. The vector sum of
preferred directions of a population of neurons, each scaled by
their individual unit activity, provided the velocity of robotic
end-effector movement.

In contrast, controlling finger posture has proven to be sig-
nificantly more difficult. A number of possible approaches are
described in the literature, including electromyography (Zecca
et al. 2002) and cortical implants (Taylor et al. 2003). These
studies have shown success in decoding a limited number of
information channels, therefore controlling a highly dexter-
ous hand for interactive grasping remains an open and chal-
lenging problem. In this study we propose a grasp planning
method that combines the eigengrasp framework for reducing
the dimensionality of the hand configuration space with real-
time operator input simplifying the spatial components of the
search. Our goal is to enable an operator to complete dexterous
grasping tasks with limited direct control over finger posture.

4.1. System Overview

In our current implementation, the user provides on-line in-
formation on the position and orientation of the wrist. This
data is currently provided using a six-DOF magnetic tracker.
While we have not yet integrated this component in a real pros-
thetic system, it is our directional goal; we envision that hand
position information will by extracted from cortical activity
in a similar fashion to the primate study described above. In
contrast, finger posture is entirely controlled by the automatic
component, which selects an appropriate hand shape by com-
bining information about the geometry and pose of the target
object with the position input provided by the operator. The
only additional information needed from the user is a binary
“click” command for completing a grasp, which we describe
below.

It is important to note that our approach must compensate
for the lack of complete user grasp data by using knowledge

of the target object geometry, as well as its initial position rel-
ative to the hand. In previous work (Kragic et al. 2001), we
have shown that it is possible to perform grasp planning us-
ing a vision-based system for object recognition and localiza-
tion. Compared with the optimization method presented in the
previous section, this system also has to satisfy two impor-
tant criteria: first, the output has to be in the form of explicit
form-closure grasps rather than optimized pre-grasps; second,
solution grasps must be found at a fast enough rate to enable
on-line interaction with the operator and usage of real-time in-
put. The execution of a grasping task must therefore be per-
formed at a speed that approaches natural human behavior, of
the order of seconds as opposed to minutes.

A high-level overview of the complete system and the in-
teraction with the operator is provided in Figure 7. The plan-
ning algorithm runs on the Grasplt! simulator platform. Even
though the grasp planner runs in a simulated environment, the
results can be applied to a real robotic hand, allowing the user
to interact with the hand directly and use it to pick up sur-
rounding objects. The simulator receives user input and sends
it to the grasp planner which processes it and outputs poten-
tial grasps, which are in turn used to generate commands for
the robotic hand. The operator can hold the hand and approach
the target object; the position of the hand relative to the tar-
get is tracked using a Flock of Birds (Ascension Corp., VA)
magnetic tracker. We have also applied our method on a range
of more complex hand designs (including the DLR hand, the
Robonaut hand as well as the human hand model) using the
virtual environment in Grasplt!; the operator can change the
position of the virtual wrist by directly manipulating the mag-
netic tracker. In both cases, wrist position is supplied as the
input to the grasp planner, but the operator has no direct con-
trol over finger posture.

4.2. User Interaction with Grasp Planner

In general, in order to uniquely identify a grasp, three variables
are needed to specify the position of the wrist and three more
for its orientation. In the context of our application, we expect
the user to specify a desired approach direction to the target;
however, the presence of such external input does not fully
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Fig. 7. Interactive grasp planning using wrist position input
from a human operator. Top: system overview; Bottom: ap-
plied examples using a real Barrett hand (left) and a dexterous
hand in a simulated environment (right).

eliminate the spatial component of the grasp planning search.
First, it is not practical to wait until the user has brought the
wrist into a final grasping position before starting the search
for an appropriate finger posture, as this behavior would de-
crease the interactivity of the system. Rather, it is preferable
to start the search early, and attempt to predict where the user
intends to place the wrist. Second, this prediction allows the
system to offer feedback to the user: as soon as an anticipated
grasp is found, the grasp planner can shape the fingers accord-
ingly. The user can then decide whether the grasp is satisfac-
tory and either continue towards the target or choose another
approach direction if the system is unable to find an acceptable
solution.

This behavior can be implemented efficiently by re-
parameterizing the spatial component of the grasp planner as
shown in Figure 8. For each hand model, we define a preferred
search direction d based on the kinematics of the hand, usu-
ally normal to the palm. Then, starting from a hand position
specified by the operator, we search for good grasps in a con-
ical region around the search direction using three variables:
the distance |d| along the approach direction, as well as two
angular variables, 8 and ¢. The operator is instructed to ap-

Fig. 8. Search directions defined for the Barrett and human
hand models. The direction of the vector d is pre-defined rel-
ative to the palm. Its magnitude, as well as the values of the
angles 6 and ¢ are variables defining a conical search area.

proach the object along a direction that is generally similar to
the search cone; however, the search directions are defined in
order to make this a natural choice. In the examples in Fig-
ure 8 this means that the user is asked to keep the palm ap-
proximately facing the target, as opposed to other possibilities
such as a sideways or backwards approach.

The role of this parameterization is to reduce the number of
extrinsic DOFs that are used for grasp planning, focusing on
areas where good grasps are most likely to be found. Using this
heuristic, the search will automatically ignore states where, for
example, the hand is facing away from the target object. How-
ever, the user is not expected to specify an exact wrist position
for a good grasp; by searching along the approach direction d
the planner attempts to anticipate the intended final grasp. The
angular variables § and ¢ allow the planner to compensate for
noisy measurements in the intended wrist position, and allow
for more flexibility in the search for solution grasps. By adding
these three variables to the eigengrasp amplitudes describing
hand posture, we obtain a low-dimensional domain that can be
searched fast enough to respond to on-line changes in the wrist
position input provided by the human operator.

4.3. Quality Function Formulation using Scaled Contact
Wrench Spaces

When the posture optimization algorithm is used for on-line
grasping tasks, we use a formulation of the quality function Q
that is better adapted for interactive operation. Recall that, in
the form presented in Section 3, our formulation rewards hand
postures that bring all of the fingers, as well as the palm, as
close to the surface of the object as possible. For the applica-
tion presented here, it is necessary to also reward hand postures
that create stable, but not necessarily enveloping grasps (con-
sider as an example the case of a fingertip pinch grasp applied
on a thin object). We therefore propose an alternative quality
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W3

Fig. 9. Contact wrench space example using a Coulomb fric-
tion cone.

function which is fast to compute and can assess the potential
quality of a pre-grasp posture using a modified version of the
grasp wrench space (GWS) € metric introduced by Ferrari and
Canny (1992). A detailed description of this metric in its orig-
inal form is beyond the scope of this paper; we provide a brief
overview below, and for further details we also refer the reader
to the study by Miller and Allen (1999).

For each contact i, we assume that the space of forces
and torques that can be transmitted is bounded by the con-
vex hull of a finite set of six-dimensional wrenches w; ; where
1 < j < k. The convex hull of these wrenches forms the con-
tact wrench space. We note that this approach imposes a linear
form for what are normally quadratic friction constraints; for
example, in the case of Coulomb friction, the force compo-
nents of w; ; sample the contact friction cone (Figure 9), and
the respective torque components are null. In order to define
the GWS, the contact wrenches from all contacts are first ex-
pressed relative to a common coordinate system. This coordi-
nate system is usually anchored at the center of mass of the
object and the choice of axes directions is arbitrary. We denote
the matrix that transforms a wrench from the local coordinate
system of contact i to the global object coordinate system by
R,‘ (S R6X6.

In our implementation, we are usually assessing the qual-
ity of a pre-grasp shape where the fingers are not in contact
with the target. Therefore, we assume that the hand can apply
potential contact wrenches using the desired contact locations
shown in Figure 4. When computing the GWS, we scale the
potential wrenches at each desired contact proportional to the
inverse of the distance metric ¢; computed as in (5):

GWS = ConvexHull

k
U (1—5i)RiUWi,j . (D

all desired Jj=1
contacts

Thus, if the value of d; is small, the contact will have a sig-
nificant contribution to the GWS, and states that bring it closer
to the object surface will be rewarded with a higher quality
value. If, in contrast, the desired contact is far from the object,
it will not significantly affect the grasp quality measurement. If
the contact is far enough from the object so that its correspond-

Fig. 10. Multiple contact wrench spaces, each scaled based on
the contact distance metric J;.

ing weight of 1 — J; is negative, it is completely excluded from
the computation.

After building the GWS, we compute the € quality mea-
sure as described by Ferrari and Canny (1992) and Miller and
Allen (1999). The quality of the grasp is considered equal to
the radius € of the largest six-dimensional ball, centered at the
wrench space origin, that can be enclosed within the GWS. If
€ = 0, then the origin itself is not contained in the hull, and
the grasp does not have form-closure. For € > 0, the grasp
can resist any disturbance, and the maximum magnitude of the
contact forces needed to resist a disturbance is inversely pro-
portional to €.

The process is illustrated in Figure 10 for the DLR hand
grasping a disk. In this example, each contact is modeled by
a friction cone, approximating Coulomb friction for rigid bod-
ies, but other local contact models can also be used. For exam-
ple, the ability to create stable, encompassing grasps with sub-
sets of fingers is increased by using soft fingertips that deform
during contact. In addition to tangential friction, such contacts
can also apply frictional torque. The friction cone is thus re-
placed by a four-dimensional “friction ellipsoid” which con-
strains the relationship between tangential force and frictional
torque (Howe and Cutkosky 1996). This effect can be captured
by linearizing the friction ellipsoid and using the appropriate
contact wrenches w; ;, as shown by Ciocarlie et al. (2007).
This method enables the use of rubber-coated fingertips for
our robotic hands, without compromising the accuracy of the
grasp quality computations.

4.4. Computation of Form-closure Grasps

The automated grasp planner searches for solution grasps in
two stages. The first stage is the posture optimization algo-
rithm presented in Section 3, using the quality function for-
mulation described above. For interactive tasks, each run of
the simulated annealing algorithm is performed over 2,000
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Fig. 11. Example of a complete grasping task: initial approach, finger pre-shaping using grasp planning result, continued approach

and final grasp execution.

iterations, taking advantage of the fact that the search do-
main is five-dimensional (two eigengrasp amplitudes and three
wrist position/orientation variables), as opposed to the eight-
dimensional domain used for fully autonomous searches. Af-
ter reaching this number of iterations, the search is restarted
by resetting the annealing temperature. As a result, the plan-
ner does not get stuck if one particular search fails; rather, the
search is restarted and takes advantage of any changes in the
approach direction provided by the operator.

The user-specified reference wrist position is updated con-
tinuously during the search. The results of the optimization are
therefore always relative to the current position of the wrist.
However, we recall that the low-dimensional optimization pro-
cedure can still only produce pre-grasp shapes; in order for the
system to allow successful completion of the task, final grasp-
ing postures satisfying the form-closure requirement are neces-
sary. In order to achieve interactive rates, this expensive com-
putation is only performed using the best pre-grasps found dur-
ing each run of the annealing optimization, which are queued
and sent to the second stage of the planning process.

For each candidate pre-grasp resulting from the first stage,
we use the contact detection engine within Grasplt! to com-
pute the final grasp that results by closing the fingers on the
object. Once the contacts between the hand and the object have
been determined, we compute the exact quality value of the
final grasp using the GWS € quality in its original form pre-
sented by Ferrari and Canny (1992). If the grasp is found to
have form-closure, it is saved, along with its associated quality
value, as a potential solution, and used by the next component
of the system, which is responsible for interaction with the hu-
man user.

‘When computing the final grasping posture resulting from a
candidate pre-grasp, we take into account specific mechanical
properties of the hand, such as passive mechanical adaptation
to the shape of the target. A number of robotic hands, such as
the Barrett hand, the SDM hand (Dollar and Howe 2007) and
the CyberHand (Carrozza et al. 2006) rely on passive mechani-
cal adaptation, as it significantly increases grasp stability with-
out increasing the complexity of the control mechanisms. All

of the results involving the Barrett hand presented in this paper
take into account its adaptive actuation mechanism which al-
lows distal joints to close even when proximal joints controlled
by the same motor have been stopped due to contact.

In our implementation, the two planning phases described
in this section (simulated annealing search for pre-grasps and
final grasp testing for form-closure) run in separate threads. As
soon as a candidate pre-grasp is found, it is queued for testing,
but the search for new candidates continues independently of
the testing phase. Also, candidate pre-grasps are independent
of each other, and can be tested simultaneously. This paral-
lelism allows us to take advantage of the current evolution in
multi-core architectures, largely available on standard desktop
computers.

We can now provide a complete step-by-step walkthrough
of a grasping task that combines user input and automated
grasp planning. Figure 11 shows the execution of a grasp pro-
ceeding through the following stages.

e As the user approaches the target object, the grasp plan-
ner searches for a good grasp in a cone-shaped area
around the given approach direction. When a solution
is found, it is used to set the hand posture, allowing the
user to react. If multiple solutions are found, that which
is closest to the current user approach direction is chosen
for presentation (i.e. the solution with the lowest values
for the angular variables 8 and ¢).

e The planner continuously attempts to improve the cur-
rent result, by finding new grasps that are closer to the
current position established by the user.

e If the planner is unable to find a grasp in the current
search area, or if the user is not satisfied with the result-
ing hand posture, the user can reposition the hand and
attempt to grasp a different part of the target object.

e If the user is satisfied with the hand posture, they con-
tinue along the current approach direction. As the real
hand position approaches the target grasp, the fingers are
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Fig. 12. Examples of interactive grasping tasks; each image shows the grasp found for a different approach direction or target
object. In all cases the object was successfully grasped and lifted off the table.

Fig. 13. Examples of interactive grasping tasks executed in simulated environments. Bottom row images also show the user
providing the approach direction via a magnetic tracker. All of the presented grasps have form-closure.

gradually closed around the object. The user can there-
fore predict where the object will be touched and finally
issue a “close all fingers” command which completes
the grasping task.

4.5. Results

Figure 12 presents the application of our method using the Bar-
rett hand in a real environment, while Figure 13 shows inter-
active grasps performed in a simulated environment using the

DLR hand, the Robonaut hand and the human hand model. In
most cases, the images show only the final grasp applied by the
user; owing to space constraints we are unable to include im-
ages showing the evolution of the grasping task from approach
direction, pre-grasp and final grasp. In order to better evaluate
the interactive nature of our application, a video clip showing
a number of complete examples is provided in Extension 1.
For any given grasping task, the exact computational effort
required to find a stable grasp depends on the complexity of
the hand and target object, as well as the approach direction
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chosen by the user. On average, the first stage of the grasp
planning algorithm processes approximately 1,000 hand pos-
tures per second, while the second testing phase, running in
parallel, can evaluate approximately 20 candidate pre-grasps
per second. In most cases, solution grasps are found at inter-
active rates: in the example presented in Figure 11, the grasp
planner found eight stable grasps in 13.6 seconds of compu-
tation. These are representative numbers for the behavior of
the system, which generally requires less than 2 seconds to
find a solution grasp for a new approach direction. All of our
tests were performed using a commodity desktop computer
equipped with a 2.13 GHz Intel Core2 CPU.

The ability of the system to allow for successful task com-
pletion in a short time is more difficult to quantify, as it also
depends on how well the user reacts to the behavior of the au-
tomated components. All of the results presented in Figures 12
and 13, as well as in the video presented in Extension 1, were
obtained at interactive rates, usually requiring between 5 and
15 seconds from first approach to final grasp execution. For
the more difficult tasks, taking up to 30 seconds to complete,
we found two main reasons that led to the increased execu-
tion time: either the planner repeatedly failed to find form-
closure grasps for selected approach directions, or the human
user could not interpret some of the finger postures selected
by the planner and had to attempt different grasps. These cases
represent a small minority of our tests and examples; however,
the tests were performed by well-trained users familiar with
the inner workings of the planning algorithm.

As a next development step, we intend to test our system in
user studies with untrained subjects. This study will allow us
to quantify more precisely how the interaction paradigm that
we have chosen affects user experience. Informal responses
from our current experiments showed that the attempts of the
planner to anticipate where the operator intended to place the
hand, and thus shape the fingers accordingly, were occasion-
ally unsuccessful. In such cases, even if the planner succeeded
in finding a stable grasp, the user did not execute it and rather
attempted a different approach direction. This communica-
tion channel can potentially be improved in both directions,
by providing the operator with more clues about the results
of the planner as well as more means to influence its behav-
ior. We believe that such features must complement improve-
ments to the core planning algorithm itself, as we progress
towards a prosthetic system that can be deployed in the real
world.

5. Conclusions

In this paper we have proposed the use of a low-dimensional
subspace of the hand DOF space for finding hand postures
appropriate for a given task. Using quantitative data derived
from human studies we have defined such a control subspace
for grasping common objects. We have introduced the concept

of eigengrasps as the defining dimensions of this subspace and
have extended this framework for a number of robotic hand de-
signs, with the complete set of hand models used in this study
ranging from 4 to 20 intrinsic DOFs. As long as the eigen-
grasp space provides a good approximation of the hand mo-
tion required for a given task, algorithms can be designed to
operate in this space and take advantage of the dimensionality
reduction. We have presented a low-dimensional hand posture
optimization method applied for stable grasp synthesis; the re-
sults show that, while not containing exact grasping postures,
a two-dimensional eigengrasp space can serve as an effective
pre-grasp or planning space even for highly dexterous hand
models.

The eigengrasp space also acts as an interface between the
kinematic structure of the hand and higher-level task planning.
Therefore, for a given task, it is possible to use a unified treat-
ment for a number of robotic hand models, even though the
kinematic specifications may be significantly different. Ow-
ing to the dimensionality reduction of the configuration space,
it allows also algorithms for complex dexterous hands to be
used in applications that require fast computational rates. One
such example, arising in the field of hand neuroprosthetics, is
an interactive grasping task where a human operator controls
the position and orientation of the wrist, but has no direct con-
trol over finger posture. We have presented a grasp planner
that interfaces between the operator and the artificial hand by
selecting appropriate finger postures fast enough for on-line
interaction.

In order to achieve interactive rates, this search is separated
into two processes: the first finds a small number of optimized
pre-grasps in a low-dimensional eigengrasp subspace, while
the second one processes these results and computes the qual-
ity of the final grasping positions. Our interaction method al-
lows the user to provide wrist position and orientation input to
the grasp planner, effectively guiding the search in a small re-
gion around a desired approach direction. We have tested this
system in both real and simulated environments and have pre-
sented results involving a number of different hand models and
objects.

In the work presented here we have used control subspaces
derived from user studies on human grasping, mapped em-
pirically to robot hand kinematics. Instead, we would like to
be able to compute the optimal eigengrasp subspace for a
given robotic hand model and task. One possible approach
is to perform a dense sampling of the high-dimensional con-
trol space of the robotic hand, then find the low-dimensional
decomposition that contains most of the desirable hand pos-
tures. The sampling process for the hand configuration space
can be performed off-line, therefore computational restrictions
can be somewhat relaxed. However, in the case of very com-
plex hands with 20 or more intrinsic DOFs, this task is in-
tractable even with an off-line assumption. Such cases will
require a novel approach and will be the subject of future
research.
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Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://www.ijrr.org

Table of Multimedia Extensions

Extension Type  Description
1 Video Examples of grasping tasks executed
using our interactive planner
References

Aleotti, J. and Caselli, S. (2006). Grasp recognition in virtual
reality for robot pregrasp planning by demonstration. /EEE
International Conference on Robotics and Automation, Or-
lando, FL, pp. 2801-2806.

Bicchi, A. and Kumar, V. (2000). Robotic grasping and con-
tact: a review. IEEE International Conference on Robotics
and Automation, pp. 348-353.

Brown, C. and Asada, H. (2007). Inter-finger coordination and
postural synergies in robot hands via mechanical imple-
mentation of principal components analysis. I[EEE-RAS In-
ternational Conference on Intelligent Robots and Systems,
pp. 2877-2882.

Butterfass, J., Hirzinger, G., Knoch, S. and Liu, H. (1998).
DLR’s articulated hand, part I: hard- and software architec-
ture. IEEE International Conference on Robotics and Au-
tomation, pp. 2081-2086.

Carrozza, M. C., Cappiello, G., Micera, S., Edin, B. B., Beccai,
L. and Cipriani, C. (2006). Design of a cybernetic hand for
perception and action. Biological Cybernetics, 95(6): 629—
644.

Cheung, V. C. K., d’Avella, A., Tresch, M. C. and Bizzi, E.
(2005). Central and sensory contributions to the activation
and organization of muscle synergies during natural motor
behaviors. Journal of Neuroscience, 25(27): 6419-6434.

Ciocarlie, M., Lackner, C. and Allen, P. (2007). Soft finger
model with adaptive contact geometry for grasping and ma-
nipulation tasks. Joint Eurohaptics Conference and IEEE
Symposium on Haptic Interfaces, pp. 219-224.

Cipriani, C., Zaccone, F., Stellin, G., Beccai, L., Cappiello, G.,
Carrozza, M. and Dario, P. (2006). Closed-loop controller
for a bio-inspired multi-fingered underactuated prosthesis.
IEEE International Conference on Robotics and Automa-
tion, pp. 2111-2116.

Cutkosky, M. R. (1989). On grasp choice, grasp models, and
the design of hands for manufacturing tasks. IEEE Trans-
actions on Robotics and Automation, 5: 269-279.

Dollar, A. and Howe, R. (2007). Simple, robust autonomous
grasping in unstructured environments. /[EEE International
Conference on Robotics and Automation, pp. 4693-4700.

Edsinger, A. and Kemp, C. (2006). Manipulation in human
environments. IEEE-RSJ International Conference on Hu-
manoid Robotics, pp. 102-109.

Ferrari, C. and Canny, J. (1992). Planning optimal grasps.
IEEE International Conference on Robotics and Automa-
tion, pp. 2290-2295.

Fod, A., Mataric, M. and Jenkins, O. (2002). Automated
derivation of primitives for movement classification. Au-
tonomous Robots, 12: 39-54.

Howe, R. and Cutkosky, M. (1996). Practical force-motion
models for sliding manipulation. The International Journal
of Robotics Research, 15(6): 557-572.

Hsiao, K., Kaelbling, L. and Lozano-Perez, T. (2007). Grasp-
ing POMDPs. IEEE International Conference on Robotics
and Automation, pp. 4685-4692.

Iberall, T. (1997). Human prehension and dexterous robot
hands. The International Journal of Robotics Research, 16:
285-299.

Ingber, L. (1989). Very fast simulated re-annealing. Journal of
Mathematical and Computer Modelling, 12(8): 967-973.
Kragic, D., Miller, A. and Allen, P. (2001). Real-time tracking
meets online planning. /[EEE International Conference on

Robotics and Automation, Seoul, pp. 2460-2465.

Li, Y., Fu, J. L. and Pollard, N. S. (2007). Data-driven grasp
synthesis using shape matching and task-based pruning.
IEEE Transactions on Visualization and Computer Graph-
ics, 13(4): 732-747.

Lovchik, C. S. and Diftler, M. A. (1998). The Robonaut hand:
a dextrous robot hand for space. IEEE International Con-
ference on Robotics and Automation, 907-912.

Mason, C. R., Gomez, J. E. and Ebner, T. J. (2001). Hand syn-
ergies during reach-to-grasp. Journal of Neurophysiology,
86: 2896-2910.

Miller, A. and Allen, P. (1999). Examples of 3-D grasp quality
computations. IEEE International Conference on Robotics
and Automation, Detroit, MI, pp. 1240-1246.

Miller, A. and Allen, P. K. (2004). Grasplt!: a versatile simu-
lator for robotic grasping. IEEE Robotics and Automation
Magazine, 11(4): 110-122.

Miller, A. T., Knoop, S., Christensen, H. I. and Allen, P. K.
(2003). Automatic grasp planning using shape primitives.
IEEE International Conference on Robotics and Automa-
tion, pp. 1824-1829.

Napier, J. R. (1956). The prehensile movements of the human
hand. Journal of Bone and Joint Surgery, 38: 902-913.

Platt, R., Fagg, A. H. and Grupen, R. (2002). Nullspace com-
position of control laws for grasping. IEEE International
Conference on Robotics and Automation, Washington, DC,
pp. 1717-1723.

Platt, R., Fagg, A. H. and Grupen, R. (2004). Manipulation
gaits: sequences of grasp control tasks. IEEE International

Downloaded from http://ijr.sagepub.com at CARNEGIE MELLON UNIV LIBRARY on January 14, 2010


http://www.ijrr.org/ijrr_2009/105606.htm
http://ijr.sagepub.com

Ciocarlie and Allen / Hand Posture Subspaces for Dexterous Robotic Grasping 867

Conference on Robotics and Automation, New Orleans,
LA, pp. 801-806.

Roa, M. and Suarez, R. (2007). Geometrical approach for
grasp synthesis on discretized 3D objects. /EEE-RSJ In-
ternational Conference on Intelligent Robots and Systems,
pp- 3283-3288.

Santello, M., Flanders, M. and Soechting, J. F. (1998). Pos-
tural hand synergies for tool use. Journal of Neuroscience,
18(23): 10105-10115.

Santello, M., Flanders, M. and Soechting, J. F. (2002). Patterns
of hand motion during grasping and the influence of sen-
sory guidance. Journal of Neuroscience, 22: 1426—1435.

Saxena, A., Driemeyer, J. and Ng, A. (2008). Robotic grasping
of novel objects using vision. The International Journal of
Robotics Research, 27(2): 157-173.

Shimoga, K. B. (1996). Robot grasp synthesis algorithms: a
survey. The International Journal of Robotics Research, 15:
230-266.

Taylor, D. M., Tillery, S. H., and Schwartz, A. B. (2002). Di-
rect cortical control of 3D neuroprosthetic devices. Science,
296(5574): 1829-1832.

Taylor, D., Tillery, S. H. and Schwartz, A. (2003). Information
conveyed through brain control: cursor versus robot. [EEE

Transactions on Neural Systems and Rehabilation Engi-
neering, 1(2): 195-199.

Thakur, P. H., Bastian, A. J. and Hsiao, S. (2008). Multidigit
movement synergies of the human hand in an unconstrained
haptic exploration task. Journal of Neuroscience, 28(6):
1271-1281.

Todorov, E. and Ghahramani, Z. (2004). Analysis of the syn-
ergies underlying complex hand manipulation. 26th Annual
International Conference of the IEEE Engineering in Medi-
cine and Biology Society, pp. 4637-4640.

Tsoli, A. and Jenkins, O. C. (2007). 2D subspaces for user-
driven robot grasping. Robotics, Science and Systems Con-
ference: Workshop on Robot Manipulation.

Turk, M. and Pentland, A. (1991). Eigenfaces for recognition.
Journal of Cognitive Neuroscience, 3(1): 71-86.

Vande Weghe, M., Rogers, M., Weissert, M. and Matsuoka,
Y. (2004). The ACT hand: design of the skeletal structure.
IEEE International Conference on Robotics and Automa-
tion, pp. 3375-3379.

Zecca, M., Micera, S., Carrozza, M. C. and Dario, P. (2002).
Control of multifunctional prosthetic hands by processing
the electromyographic signal. Critical Reviews in Biomed-
ical Engineering, 30: 459-485.

Downloaded from http://ijr.sagepub.com at CARNEGIE MELLON UNIV LIBRARY on January 14, 2010


http://ijr.sagepub.com

