Quality and Uncertainty

Nancy Pollard April 8, 2024

Carnegie Mellon University
Robotics InstituteFoam Robotics Lab

The Basics — Force and Form Closure

Form Closure (Geometric): If you could freeze / lock the hand in this configuration, the object would be restrained. There is no reliance on friction.

Force Closure (Relies on Friction): For any external wrench, there exists a set of contact forces that can oppose that wrench such that friction constraints are satisfied.

> Carnegie Mellon University Foam Robotics Lab **Robotics** Institute

The Standard Numerical Measure – Wrench Space Ball

Ferrari, Carlo, and John F. Canny. "Planning optimal grasps." ICRA 1992.

- + Easy to implement
- + Relatively fast
- + Widely used standard

- Does not capture task
- Does not capture hardware
 - **Search is exponential in #contacts**

Carnegie Mellon University Foam Robotics Lab Robotics Institute

We can combat the curse of dimensionality

K. Hang, J. A. Stork, N. S. Pollard, and D. Kragic, 2017. A Framework For Optimal Grasp Contact Planning, IEEE RA-L 2017.

Jonathan King, Michael Zhang, and Nancy Pollard, "N-D Delaunay Triangulation for Fast, Iterative Computation of Globally Optimal Independent Contact Regions," work in progress.

> Carnegie Mellon University Foam Robotics Lab Robotics Institute

Three things we can do to create more focused metrics

Safety margin compared to a demonstration (X% as good)

• Safety margin for the task

Safety margin that includes actuator capabilities

Carnegie Mellon University Foam Robotics Lab **Robotics** Institute

Three things we can do to create more focused metrics

Safety margin compared to a demonstration (X% as good)

Similar contact forces

Force magnitudes < 2X example

Example forces do not need to be measured

Pollard, Nancy S. "Closure and quality equivalence for efficient synthesis of grasps from examples." IJRR 2004

potics Lab

Three things we can do to create more focused metrics

Safety margin for the task

Li, Ying, Jiaxin L. Fu, and Nancy S. Pollard. "Data-driven grasp synthesis using shape matching and task-based pruning." IEEE Transactions on visualization and computer graphics 2007.

maximal wrench that can be applied in the task direction

$$= 1, ..., t$$

task wrench i

Carnegie Mellon University **Robotics** Institute

Foam Robotics Lab

Three things we can do to create more focused metrics

Safety margin that includes actuator capabilities

actuator torque = torque explained by contact

Li, Ying, Jiaxin L. Fu, and Nancy S. Pollard. "Data-driven grasp synthesis using shape matching and task-based pruning." IEEE Transactions on visualization and computer graphics 2007.

Carnegie Mellon University **Robotics** Institute

Foam Robotics Lab

Three things we can do to create more focused metrics

Safety margin that includes actuator capabilities

$$\begin{aligned} \alpha_i &= \|w_{i,max}\| \\ s_i &= \frac{t_i}{\|t_i\|} \end{aligned} \qquad \begin{pmatrix} -s_i & G \\ 0 & J^T \end{pmatrix}$$

Li, Ying, Jiaxin L. Fu, and Nancy S. Pollard. "Data-driven grasp synthesis using shape matching and task-based pruning." IEEE Transactions on visualization and computer graphics 2007.

maximize (α_i)

 $\begin{pmatrix} 0 \\ -MP \end{pmatrix} \begin{pmatrix} \alpha_i \\ f \\ a \end{pmatrix} = 0$

Carnegie Mellon University **Robotics** Institute

Foam Robotics Lab

Three things we can do to create more focused metrics

- Safety margin compared to a demonstration (X% as good)
 - no need to know task / robot
- Safety margin for the task
 - need a set of task wrenches
- Safety margin that includes actuator capabilities
 - need task / robot specifications

$$Q = \min_{i} \frac{\|w_{i,max}\|}{\|t_i\|}, i = 1, ..., t$$

Uncertainty

The real world is dynamic and uncertain

Carnegie Mellon University
Robotics InstituteFoam Robotics Lab

Uncertainty

Including Dynamics + Uncertainty with simulation rollouts dramatically improves realism

Existing method (kinematic grasping + force-closure) Existing method + uncertainty

Existing method (kinematic grasping + force-closure)

Existing method + uncertainty

Kim, Junggon, Kunihiro Iwamoto, James J. Kuffner, Yasuhiro Ota, and Nancy S. Pollard. "Physically based grasp quality evaluation under pose uncertainty." IEEE Transactions on Robotics 2013.

tainty Dynamics + uncertainty

rtainty Dynamics + uncertainty

Carnegie Mellon University Robotics Institute Foam Robotics Lab

Uncertainty

We can further use rollouts to plan actions that actively seek sensor information to shrink a belief state

Robotics Research 2015

