Bringing Dexterity to Robot Hands

Nancy Pollard December 13, 2023

Carnegie Mellon University Robotics Institute

versity Foam Robotics Lab

What is Dexterity?

IEEE-RAS HUMANOIDS 2023

What is **Dexterity**? **Bernstein's definition**

Dexterity is the ability to find a motor solution for any external situation, that is, to adequately solve any emerging motor problem - correctly (i.e., adequately and accurately)

- quickly (with respect to both decision making and achieving a correct result) - rationally (i.e., expediently and economically), and - resourcefully (i.e., quick-wittedly and initiatively)

Robotics Institute

N. Bernstein, On Dexterity and Its Development, p. 228.

Carnegie Mellon University Foam Robotics Lab

What is Dexterity? Emerging Motor Problem

IEEE-RAS HUMANOIDS 2023

What is **Dexterity**? Some interesting things about these motions

- Contain many collisions,
- Appear tolerant of mistakes,
- Show ability to adapt to the unexpected, and are
- Ultimately successful!

Carnegie Mellon University Foam Robotics Lab Robotics Institute

What is **Dexterity**? These motions..

- Contain many collisions,
- Appear tolerant of mistakes,
- Show ability to adapt to the unexpected, and are
- Ultimately successful!

How do we design for these capabilities?

This talk

- Measuring Dexterity
- Contacts Everywhere
- Design for Dexterous Manipulation

Measuring Dexterity Benchmarks for people

Benchmark	
Purdue Pegboard (1948)	F
Box and Blocks Test (1957)	Сс
Jebsen Taylor Hand Function (1969)	
Kapandji Test (1986)	Thu
Sollerman Hand Function Test (1995)	Daily livin
SHAP Test (2002)	Originally d

Target

Fine dexterity

oarse dexterity

Daily living

umb opposition

ng, including bimanual

leveloped for prosthesis

Measuring Dexterity Benchmarks for robots

Benchmark	
NIST In-Hand Manipulation (2018)	Workspa
NIST Assembly Taskboard (2020)	Insertions
Modular Dexterity Test (2020)	Simple, r n
Bimanual Manipulation of Semi- Deformable Objects (2020)	Manipulate s
Box and Blocks (2020)	Co
In-Hand Benchmark (2020)	Workspac

Carnegie Mellon University Robotics Institute

Target

ace of grasped object

s, meshing, threading

reorient, fine, and tool manipulations

semi-deformable objects with tools

oarse dexterity

ce of a grasped object

Measuring Dexterity Grasp Taxonomies

Cutkosky (1989)

Feix (2016)

Carnegie Mellon University Robotics Institute

IEEE-RAS HUMANOIDS 2023

IEEE-RAS HUMANOIDS 2023

Carnegie Mellon University Robotics Institute

Power Palm

Pad Opposition

Measuring Dexterity Expressing grasp function

Example			Example	CHRISTINIAS			
Force Type	Pull	Pull	Force Type	Hold	Rub/Stroke		
Motion Dir	-x (hand)	xz plane (hand)	Motion Dir	xy plane (hand)	xy plane (hand)		
Force Dir		-	Force Dir	-	inwards (hand)		
Flow	Bound Motion/ Bound	Half Bound Motion/	Flow	Free Motion/ Half Bound	Half Bound Motion/		
	Force	Bound Force		Force	Bound Force		
Annotation	Put on gloves(along the	Drag toilet paper	Annotation	Give card to someone	Wipe classes		
			Example				
Example			Force Type	Hold	Hold		
Force Type	Twist	Twist	Motion Dir	z (global)/ -z (global)/	around x axis (hand)		
Motion Dir	around y axis (hand)	around x axis (hand)		around x axis (hand)			
Force Dir	-	-	Force Dir	-	-		
Flow	Bound Motion	Bound Motion	Flow	Free Motion/ Bound	Half Bound Motion/		
Annotation	Twist the key to start up	Twist the knob in car		Force	Bound Force		
	the car		Annotation	Eat with scoop	Pour washing powder		

Jia Liu, Fengxiaoyu Feng, Yuzi Nakamura, and Nancy S. Pollard, 2014. A Taxonomy of Everyday Grasps in Action, Humanoids 2014.

http://www.cs.cmu.edu/~jialiu1/database.html

IEEE-RAS HUMANOIDS 2023

Robotics Institute

Carnegie Mellon University Foam Robotics Lab

179 grasps

20 different action verbs

Pick up the object Transition to functional (e.g., power) grasp Use the object as a tool Transition grasp again (e.g., to precision grasp) Place object

Pick up the object Transition to functional (e.g., power) grasp Use the object as a tool Transition grasp again (e.g., to precision grasp)

Place object

Pick up the objeg Transition to fu Use the object Transition grasp again le.

Place object

Measuring Dexterity A CLASSIFICATION OF MANIPULATIVE HAND MOVEMENTS

IEEE-RAS HUMANOIDS 2023

Carnegie Mellon University Robotics Institute

Fig. 4. Pinch: (a) thumb and index extended, (b) thumb and index flexed. These represent terminal positions for digits when executing this pattern of movement.

Measuring Dexterity Elliott and Connolly Primitives Capture Grasp Transitions

6. Prismatic 4finger

Fig. 9. Rock: illustrated with pencil held transversely, in radio-ulnar axis. Movements of thumb and digit 3 are much reduced compared with movements of other digits. (a) Ulnar digits relatively extended, (b) ulnar digits relatively flexed.

IEEE-RAS HUMANOIDS 2023

Foam Robotics Lab

32. Ventral

Measuring Dexterity Elliott and Connolly Primitives Capture Grasp Transitions

Robotics Institute

Measuring Dexterity Elliott and Connolly Primitives Capture Grasp Transitions

23. Adduction Grip

Digital Step

20. Writing Tripod

Fig. 13. Interdigital Step: from (a) to (b) the object is rotated by extension of ulnar digits, especially digit 3.

Flexed thumb passes under rotating object to assume its position at (b). From (b) to (c), thumb and ulnar digits flex to grasp object and index extends and may lose contact with it. From (c) to (a), index flexes to preserve position of object against thumb, while ulnar digits flex to reposition below object in readiness for next cycle.

IEEE-RAS HUMANOIDS 2023

32. Ventral

6. Prismatic 4finger

							Manipulation P	attern	Object	YCB ID
							Pinch (P)		Bolt & Nut	46, 47
							Dynamic Tripod	(DT)	Small Marker	41
				-			Squeeze (S)		Syringe	N/A
	Nogeriring						Twiddle (T)]	Bolt & Nut	46, 47
			CA		ΙΙΙΥ		Rock (R)		Cup (yellow)	64
			— — —				Rock II (RII)		Small Marker	41
						-	Radial Roll (RR))]	Marble (green)	62
E	lliott and Conr		V В6	enc	nmark		Index Roll (IR)]	Marble (green)	62
						_	Full Roll (FR)		Wood Block	69
	[~ -	1		I		Rotary Step (RS))	Cup (yellow)	64
Pattern	Criteria	Sub- Class	Category	Success/ Failure		Sequence	Interdigital Step	(IS)	Small Marker	41
		Class		Fanure			Linear Step (LS))]	Large Marker	40
	Object is held between two fingers. Both fingers are						Palmar Slide (PS	S)]	Large Marker	40
Pinch (P)	along the ventro-dorsal axis, towards the palm.	N/A	$\Delta_z(NA)$	Success		AND AND				
	Fingers are then simultaneously extended to bring the							40		
	object back to its starting position.							13		29
					Section 1			mo	ninulat	ion
Dynamic	are simultaneously flexed and extended, in repetitive	27/4			al.			IIId	IIIpulat	
Tripod (DT)	motions, in order to translate the object along the	N/A	$\Delta_Z(NA)$	Success				not	torno	
	ventro-dorsal axis. Application: writing.				THE P			μαι	len 15	
	Object is held between the distal phalanx of one finger							-		
	(stabilizing finger) and along the side of the proximal									
Radial Roll	phalanx of another finger (manipulating finger). The	Rolling	$\Delta_z(A)$	Success				mo	acura	
(KK)	roll the object along the length of the stabilizing		$\theta_X(\mathbf{A})$		CARL AN	China China and			asure	ABR
	finger.				1 22-2	· Server		rota	ntion	S T S
	Object is held between the distal phalanxes of two				P	le de la company		ΙΟΙΟ		
Index Roll	fingers. One finger is then repetitively flexed and	Rolling	$\Delta_Z(A)$	Success				000	ula trav	
(IR)	extended in order to roll the object along the length of the other finger	ling	$\theta_X(A)$					ang	jie, liav	/ 1 / 2
	the other iniger.							414		
	Object is held between distal phalanxes of two fingers.							UISI	lance	2
Full Roll	One finger is then repetitively flexed and extended in	N/A	$\theta_{\rm v}({\rm NA})$	Success						1 Alexandre
(FR)	order to pivot object about a stationary point on the other finger									
	other inger.									

Ryan Coulson, Chao Li, Carmel Majidi, and Nancy S. Pollard, The Elliott and Connolly Benchmark: A Test for Evaluating the In-Hand Dexterity of Robot Hands, Humanoids 2021

Robotics Institute

Carnegie Mellon University Robotics Institute Foam Robotics Lab

Measuring Dexterity What does a hand designed for Elliott & Connolly look like?

Radial Roll

Carnegie Mellon University Robotics Institute Ryan Coulson, Chao Li, Carmel Majidi, and Nancy S. Pollard, The Elliott and Connolly Benchmark: A Test for Evaluating the In-Hand Dexterity of Robot Hands, Humanoids 2021

This talk

- Measuring Dexterity
 - dexterity involves creating change with intention / in-hand in grasp transitions
- Contacts Everywhere
- Design for Dexterous Manipulation

manipulation patterns (rock, roll, twiddle, step...) can be observed

Contacts Everywhere

a. Power grip - Standard type (PoS)

b. Power grip - Hook type (PoH)

c. Power grip - Index Finger Extension type (PoI)

d. Power grip - Extension type (PoE)

e. Power grip - Distal type (PoD) Fig.1 Power Grip Category

a. Lateral Grip (Lat)

b. Tripod Grip (Tpd)

c. Tripod Variation 1 (TV1)

d. Tripod Variation 2 (TV2)

Fig.2 Intermediate Grip Category

IEEE-RAS HUMANOIDS 2023

a. Parallel Mild Flexion Grip (PMF)

Kamakura Taxonomy

b. Surrounding Mild Flexion Grip (SMF)

c. Tip Prehension (Tip)

d. Parallel Extension Grip (PE) Fig.3 Precision Grip Category

Kamakura N, Matsuo M, Ishii H, Mitsuboshi F, Miura Y. Patterns of static prehension in normal hands. American Journal of Occupational Therapy. 1980

Contacts Every

a. Power grip - Standard type (PoS)

b. Power grip - Hook type (PoH)

c. Power grip - Index Finger Extension type (PoI)

d. Power grip - Extension type (PoE)

e. Power grip - Distal type (PoD) Fig.1 Power Grip Category

A Framework for **Understanding Hand Activity** for Clinicians and Engineers

Carnegie Mellon University FOarrest

IEEE-RAS HUMANOIDS 2023

POSTURES AND MOVEMENT PATTERNS OF THE Human Hand

amakura ixonomy

(amakura N, Matsuo M, shii H, Mitsuboshi F, Miura Patterns of static prehension in normal hands. American Journal of Occupational Therapy. 1980

Contacts Everywhere Contact databases

ContactDB

[Brahmbhatt et. al, 2019]

[Fan et. al, 2023]

Carnegie Mellon University Robotics Institute

[Taheri et. al, 2020]

ARCTIC

Contacts Everywhere Measuring contact on the object

IEEE-RAS HUMANOIDS 2023

Arjun Lakshmipathy, Dominik Bauer, and Nancy Pollard. Contact Tracing: A Low Cost Reconstruction Framework for Surface Contact Interpolation, IROS 2021.

> Carnegie Mellon University Robotics Institute

Thermochromatic pigment

Contacts Everywhere Measuring contact on the object

INPUTS x2 1. Scanning 2. Segmentation 3. ICP Registration

4. Color Map Optimization¹

IEEE-RAS HUMANOIDS 2023

Carnegie Mellon University Robotics Institute

Standard image processing

OUTPUTS

Arjun Lakshmipathy, Dominik Bauer, and Nancy Pollard. Contact Tracing: A Low Cost Reconstruction Framework for Surface Contact Interpolation, IROS 2021.

Contacts Everywhere Measuring contact on the object

Reconstruction Framework for Surface Contact Interpolation, IROS 2021.

IEEE-RAS HUMANOIDS 2023

Contacts Everywhere How should we transfer contact between surfaces?

IEEE-RAS HUMANOIDS 2023

Carnegie Mellon University Robotics Institute

Contacts Everywhere Our Solution: A local intrinsic geometric representation

(1) Initial patch

(a)

(2) User draws axis

(1) User picks initial point and direction on M' for axis to follow

(2) Axis is traced on M' using lengths and angles on M

Arjun Lakshmipathy, Nicole Feng, Yu Xi Lee, Moshe Mahler, and Nancy S. Pollard. Contact Edit: Artist Tools for Intuitive Modeling of Hand-Object Interactions, SIGGRAPH 2023.

(3) Closest points on axis computed

(4) Log map at each closest axis point computed

(3) Patch is reconstructed on M' by tracing geodesics from axis

Contacts Everywhere Creating with contact

input

Contact Edit

Arjun Lakshmipathy, Nicole Feng, Yu Xi Lee, Moshe Mahler, and Nancy S. Pollard. Contact Edit: Artist Tools for Intuitive Modeling of Hand-Object Interactions, SIGGRAPH 2023.

final pose

Contact Area Rotation

Contact Area Deformation

Contact Area Translation

An Important Caveat with Translation

Actual Contact Area Translation

Contact Area Transfer

Arjun Lakshmipathy, Nicole Feng, Yu Xi Lee, Moshe Mahler, and Nancy S. Pollard. Contact Edit: Artist Tools for Intuitive Modeling of Hand-Object Interactions, SIGGRAPH 2023.

Contacts Everywhere Creations of various artists

Carnegie Mellon University Robotics Institute

iversity Foam Robotics Lab

Contacts Everywhere Observations

- Contacts can
 - form large areas
 - reach much of the hand surface
 - persist and change over time (sliding, rolling)
- Artists enjoyed direct control of contacts for specifying hand poses
- We may consider contact areas as potential first class elements for design, planning, and control

This talk

- Measuring Dexterity
 - dexterity involves creating change with intention / in-hand in grasp transitions
- Contacts Everywhere
 - everyday activities involve contact all over the hand / we can mind
- **Design for Dexterous Manipulation**

manipulation patterns (rock, roll, twiddle, step...) can be observed

measure contact areas and plan grasps with large area contacts in

Design for Dexterous Manipulation

Design for Dexterous Manipulation (1) The Advantage of Soft

IEEE-RAS HUMANOIDS 2023

Carnegie Mellon University Robotics Institute

Compliant Landings

Thiversity te The Foam Robotics Lab

Design for Dexterous Manipulation (1) The Advantage of Soft

M. Kazemi, J.-S. Valois, J. A. Bagnell, and N. Pollard, 2014. Human-Inspired Force Compliant Grasping Primitives, Autonomous Robots, 37(2), 209--225, 2014.

IEEE-RAS HUMANOIDS 2023

Carnegie Mellon University Robotics Institute

Design for Dexterous Manipulation (2) The Need for Two Flexors

Design for Dexterous Manipulation (2) The Need for Two Flexors

Design for Dexterous Manipulation (3) The Simplicity of Additive Manufacturing

Manipulation Showcase

Anthropomorphic Hand Posing

D. Bauer, C. Bauer, J. P. King, D. Moro, K.-H. Chang, S. Coros, and N. Pollard, 2020. <u>Design and Control of Foam Hands for Dexterous Manipulation</u>, International Journal of Humanoid Robotics, Volume 17, Issue 01, February 2020.

IEEE-RAS HUMANOIDS 2023

Carnegie Mellon University Robotics Institute

Design for Dexterous Manipulation (3) The Simplicity of Additive Manufacturing

D. Bauer, C. Bauer, A. Lakshmipathy, R. Shu, and N. S. Pollard. Towards Very Low-Cost Iterative Prototyping for Fully Printable Dexterous Soft Robotic Hands, ROBOSOFT 2022.

D. Bauer, C. Bauer, and N. Pollard. Soft Robotic End-Effectors in the Wild: A Case Study of a Soft Manipulator for Green Bell Pepper Harvesting, In AI for Agriculture and Food Systems (AAIAFS) Workshop, AAAI 2023.

IEEE-RAS HUMANOIDS 2023

Carnegie Mellon University Foam Robotics Lab

Design for Dexterous Manipulation (4) Field Reliability

D. Bauer, C. Bauer, and N. Pollard. Soft Robotic End-Effectors in the Wild: A Case Study of a Soft Manipulator for Green Bell Pepper Harvesting, In AI for Agriculture and Food Systems (AAIAFS) Workshop, AAAI Conference on Artificial Intelligence. Washington, DC, February 2023.

IEEE-RAS HUMANOIDS 2023

Carnegie Mellon University Robotics Institute

Design for Dexterous Manipulation (5) Teleoperation as a Design Tool

Y. P. Toh, S. Huang, J. Lin, M. Bajzek, G. Zeglin, and N. S. Pollard,. Dexterous TeleManipulation with a Multi-Touch Interface, Humanoids 2012

Carnegie Mellon University Robotics Institute

Pragna Mannam, Kenneth Shaw, Dominik Bauer, Jean Oh, Deepak Pathak, and Nancy Pollard. Designing Anthropomorphic Soft Hands through Interaction, Humanoids 2023

Design for Dexterous Manipulation Summary

- 1. Passive **Compliance** Aids Dexterity
- 2. Two Flexors Are Needed for Fine Manipulation
- 3. Customization w/ Additive Manufacturing has Hardly Been Explored
- 4. Soft Hands Can Be Reliable in the Field
- 5. Teleoperation is a Great Tool for Design Iteration

This talk

- Measuring Dexterity
- Contacts Everywhere
 - everyday activities involve contact all over the hand / we can measure contact areas and plan grasps with large area contacts in mind
- **Design for Dexterous Manipulation**
 - soft hands can be robust, reliable, highly customizable, quick to prototype, ... and dexterous

dexterity involves creating change with intention / in-hand manipulation patterns (rock, roll, twiddle, step...) can be observed in grasp transitions

- General purpose benchmarks for dexterity
- Contact sensing
- Design from demonstration

Task Demonstrations

18 joints, 54 DoF

kinematic parameter optimization: match marker trajectories

Carnegie Mellon University
Robotics InstituteFoam Robotics Lab

motion capture marker trajectories

spherical joints model 18 joints, 54 DoF

kinematic parameter optimi match marker trajector

Acknowledgments

amazon 🔿 Meta

Center for Machine Learning and Health

IEEE-RAS HUMANOIDS 2023

Carnegie Mellon University Robotics Institute

USDA National Institute of Food and Agriculture U.S. DEPARTMENT OF AGRICULTURE

- 7DoF
- brushless DC (BLDC) electric motor (IQ) Vertig 220KV) operated at 24V
- built-in minimum jerk trajectory generator
- max pull out force 37N / finger
- NinjaTek Chinchilla (Shore Hardness 75A) – white
- NinjaTek Cheetah (Shore Hardness 95A) - grey
- total weight: 648g, soft hand excluding wrist: 94g
- \$1000

Carnegie Mellon University Foam Robotics Lab

Robotics Institute

23-06 220Kv Module

1 Features

Performance & Control

- Low power position control
- Multi-turn position control with tunable PID/FF
- Precise to 0.022°
- Field Estimated Control: Best-in-class efficiency
- Vibration minimization via anticogging software
- Closed-loop positioning, never skips or gets lost
- Built-in minimum jerk trajectories
- Built-in linear motion conversion
- Industry-leading response times
- Voltage, PWM, Coast, Brake modes
- No minimum speed
- Silent motion
- Backdrivable

Description 3

The 23-06 220Kv Module is an ultra-compact.

Motor Specifications $\mathbf{4}$

Description	Symbol	Value	Unit	Notes
Speed Constant	K_v	220	RPM/V	
Torque/EMF Constant	K_t	0.053	$ m NmA^{-1}$	
Resistance	R	4.7	Ω	$25^{\circ}\mathrm{C}$
Mass	m	37.4	g	Without wires/accessories
Continuous Torque	$ au_c$	65	Nmm	$25^{\circ}C$ ambient
Continuous Torque	$ au_c$	130	Nmm	In airflow, 25°C ambient
Continuous Current	I_S	1.3	A	Motor current, 25°C ambies
Continuous Current	I_S	2.5	A	Motor current, in airflow, 2
Pulsed Current	I_{SP}	5.3	A	Maximum supply voltage li
No Load Speed	ω_0	199	$ m rads^{-1}$	$@V_{CC} = 10 \mathrm{V}$
No Load Current	I_0	0.02	A	$@V_{CC} = 10 \mathrm{V}$

 ent

25°C ambient

imited

- 12DoF
- DYNAMIXEL XC330-M288-T operated at 5V
- max pull out force 27N 52N (6 different hands)
- NinjaTek Edge (Shore Hardness 83A)
- total weight 727g (v1)
- \$1500

Robotics Institute

Carnegie Mellon University Foam Robotics Lab

Specification

Model Name		XC330-M288-T		
MCU	Cortex-M0+ (64 [MHz], 32bit)			
Input Voltage	Min. [V]	3.7		
	Recommended [V]	5.0		
	Max. [V]	6.0		
Performance Characteristics	Voltage [V]	5.0		
	Stall Torque [N·m]	0.93		
	Stall Current [A]	1.8		
	No Load Speed [rpm]	81.0		
	No Load Current [A]	0.08 DYNAMIXEL X-Series		
Continuous Operation	Voltage [V]	-		
	Torque [N·m]	-		
	Speed [rpm]	-		
	Current [A]	-		
Resolution	Resolution [deg/pulse]	0.0879		
	Step [pulse/rev]	4		
	Angle [degree]	360		
Position Sensor	Contactless absolute encoder (12Bit, 360 [deg]) Maker : ams(www.ams.com), Part No : AS5601			
Operating Temperature	Min. [°C]	-5		
	Max. [°C]	60		
Motor	Coreless			

DYNAMIXEL XC330-M288-T

DYNAMIXEL-X

\$89.90

 \star \star \star \star

(No reviews yet) <u>Write a Review</u>

SKU: 902-0173-000 Weight: 0.10 LBS Shipping: Calculated at Checkout

Ninjatek TPU Thermoplastic Polyurethane Materials Chinchilla 75A Edge 83A Ninjaflex 85A Cheetah 95A

CMU Foam Hand III Details

R. Coulson, C. Li, C. Majidi, and N. S. Pollard, The Elliott and Connolly Benchmark: A Test for Evaluating the In-Hand Dexterity of Robot Hands, Humanoids 2021

Carnegie Mellon University Robotics Institute

3D printed soft fingertip with cavity

