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DetGraspSim: Physics-based simulation of grasp
outcomes for 3D deformable objects

Isabella Huang!'?, Yashraj Narang?, Clemens Eppner?, Balakumar Sundaralingam?, Miles Macklin?,
Ruzena Bajcsy', Tucker Hermans?®®, Dieter Fox*

Abstract—Robotic grasping of 3D deformable objects (e.g.,
fruits/vegetables, internal organs, bottles/boxes) is critical for
real-world applications such as food processing, robotic surgery,
and household automation. However, developing grasp strategies
for such objects is uniquely challenging. Unlike rigid objects,
deformable objects have infinite degrees of freedom and require
field quantities (e.g., deformation, stress) to fully define their
state. As these quantities are not easily accessible in the real
world, we propose studying interaction with deformable objects
through physics-based simulation. As such, we simulate grasps
on a wide range of 3D deformable objects using a GPU-based im-
plementation of the corotational finite element method (FEM). To
facilitate future research, we open-source our simulated dataset
(34 objects, 1e5 Pa elasticity range, 6800 grasp evaluations,
1.1IM grasp measurements), as well as a code repository that
allows researchers to run our full FEM-based grasp evaluation
pipeline on arbitrary 3D object models of their choice. Finally,
we demonstrate good correspondence between grasp outcomes
on simulated objects and their real counterparts.
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Fig. 1: (A) For a broad set of candidate grasps on a deformable object,
(B) we simulate the object’s response with FEM, (C) measure perfor-
mance metrics (e.g., stress, deformation, controllability, instability),
and (D) identify pre-pickup grasp features that are correlated with
the metrics. Our simulated dataset contains 34 objects, 6800 grasp
experiments, and 1.1 M unique measurements.
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| am a Research Scientist in the Seattle Robotics Lab at NVIDIA Research led by Dieter Fox. | am interested in the
problem space of grasping and manipulation, including aspects of planning, control, and perception. Although this
domain may seem specific, | believe that the hybrid systems nature of grasping and manipulation is echoed in a
wide range of important decision-making problems. Furthermore, | consider robotics to be a fundamentally
empirical enterprise. Building systems that alter our physical world is, therefore, an integral part of my work.

Before joining NVIDIA, | received my Ph.D. at the Robotics and Biology Lab at TU Berlin under the supervision of
Oliver Brock. While studying at the University of Freiburg, | wrote my Master's thesis at the Autonomous Intelligent
Systems lab headed by Wolfram Burgard and worked at Sven Behnke's Humanoid Robots Group. | also enjoyed a

research stay at Pieter Abbeel's Robot Learning Lab at UC Berkeley.
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I am a Research Scientist in the Seattle Robotics Lab at
NVIDIA Research. I received my Ph.D. in Computing
(Robotics) from the University of Utah under the
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This week at #GTC we released NVIDIA Warp as an open
source library and extension for Omniverse. Warp aims to
make it easy to write differentiable simulation and graphics
code from Python. Check out the blog or the code here:
https://Inkd.in/gD3XW2XE.
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About

I am a Principal Engineer at NVIDIA working on physics simulation for robotics, animation, and
interactive applications. I received my Ph.D. in Computer Science from the University of
Copenhagen where I studied numerical methods for contact, under the supervision of Prof. Kenny

Erleben. I like numerical optimization and try to design parallel methods that can leverage GPU
hardware effectively. Much of my work has been integrated into products at NVIDIA including

PhysX, Flex, and Isaac Gym. Before joining NVIDIA I worked in the games industry on real-time
visual effects and rendering at Sony, Rocksteady, and LucasArts.

Twitter: http://twitter.com/milesmacklin
LinkedIn: http://linkedin.com/in/mmacklin a Miles Macklin @milesmacklin - Mar 22

. ) . . Very happy to announce the public source release of NVIDIA Warp at
Github: http://github.com/mmacklin #GTC22. Warp is a Python framework that makes it easy to write

Google Scholar: https://scholar.google.com differentiable GPU simulation and graphics code. Code is here:
github.com/NVIDIA /warp.
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I'm an associate professor in the School of Computing at the University of Utah, where | am affiliated
with the University of Utah Robotics Center and direct the Utah Learning Lab for Manipulation
Autonomy.

My research focuses on autonomous learning, planning, and perception for robot manipulation. | am
particularly interested in enabling robots to autonomously discover and manipulate objects with which
they have no previous knowledge or experience.

Since joining Utah | have received several awards including the NSF CAREER Award in 2019, the 3M
Non-Tenured Faculty Award in 2019, and a Sloan Fellowship in 2021. With my students and
collaborators we have won the CoRL 2019 Best Systems Paper Award, the ICRA 2017 Best Medical
Robotics Paper Award, and was finalist for the ICRA 2019 Best Manipulation Paper Award and a
finalist for the Best Paper and Best Student Paper awards at ISMR 2021.

Previously | was a postdoctoral researcher in the Intelligent Autonomous Systems lab at TU Darmstadt
in Darmstadt, Germany. There | worked with Jan Peters on tactile manipulation and robot learning,
while serving as the team leader at TUDa for the European Commission project TACMAN.

| was at Georgia Tech from 2009 to 2014 in the School of Interactive Computing. There | earned my
PhD in Robotics under the supervision of Aaron Bobick and Jim Rehg in the Computational
Perception Laboratory. My dissertation research dealt with robots learning to discover and manipulate
previously unknown objects. The learning was performed on a Willow Garage PR2 robot, which
performed pushing tasks using visual feedback control. At Georgia Tech | also earned an MSc in
Computer Science with specialization in Computational Perception and Robotics.



About me

| am a Professor in the Department of Computer Science & Engineering at the University of Washington. |
grew up in Bonn, Germany, and received my Ph.D. in 1998 from the Computer Science Department at the
University of Bonn. | joined the UW faculty in the fall of 2000.

| am currently sharing my time between UW and Nvidia, where I'm leading the Robotics Research Lab in
Seattle. Here's some info on the opening of that lab, which is located at 4545 Roosevelt Way NE.

The Seattle landscape is getting another feature with the opening of our

My research interests are in robotics, artificial intelligence, and state estimation. | am the head of the UW Al Robotics Research Lab. NVIDIA CEQ Jensen Huang was there to
Robotics and State Estimation Lab RSE-Lab and recently served as the academic Pl of the Intel Science and [ IEIEERIESEES

Technology Center for Pervasive Computing ISTC-PC. I'm a Fellow of the AAAl and |EEE, recipient of the |IEEE Ittt A R I R e U
NVIDIA and professor at the University of Washington Paul G. Allen

RAS Pioneer Award, and served as an editor of the |IEEE Transactions on Robotics. School of Computer Science and Engineering.
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Invite students from the

information from raw sensor data. Application areas of my work include human UW robotics community
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activity recognition, 3D mapping and tracking, and robot manipulation and control. |,

external speakers.”
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November with 14
researchers and expects
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Motivation

* Robotic grasping of 3D deformable is underexplored relative to rope
and cloth

* Yet, it is critical for applications such as:
* food handling
e surgery
 domestic tasks



Challenge #1 of 4
Performance Metrics for Deformable Object Grasping

Classical analytical metrics for grasping rigid objects do not typically
consider deformation.

Grasp success is affected by compliance
* e.g., grasping a stuffed toy haphazardly is ok
* e.g., grasping a rigid container haphazardly can lead to crushing

Proposed solution —> introduce 7 performance metrics suitable for
deformable objects



Challenge #2 of 4
Observable Features for Deformable Object Grasping

Many obvious performance metrics such as volumetric stress and strain
may be unobservable.

Real world grasping requires estimators that can operate on observable
quantities.

Proposed solution —> introduce 7 grasp features which may be able to
predict performance metrics for deformable objects



Challenge #3 of 4
Lack of Evaluation Framework, Dataset, or Codebase

There is no existing benchmark, dataset, or codebase for the task of
evaluating grasps of 3D deformable objects.

Proposed solution —> release DefGraspSim for FEM-based grasp
evaluations on arbitrary 3D objects

Proposed solution —> release dataset of results from testing with this
system

* 34 objects

6800 grasp evaluations
* 1.1M measurements



Challenge #4 of 4
Sim2Real

Simulations do not always match reality.

Proposed solution —> perform pilot sim2real study showing promising
correspondence.



Summary of Contributions

Performance metrics

Observable grasp features

Codebase and dataset from many example grasps of deformable objects

Sim2real tests



Related Work 1 of 2

Rigid object grasp planning
Model-based approaches
Data-driven approaches

Rigid body grasp simulators (e.g., Grasplt! and OpenGRASP)

Deformable object simulators
Kelvin-Voigt elements
mass-spring models
2D FEM models
3D FEM (gold standard)

Many existing 3D FEM simulators do not offer good support for robotic
control (e.g., built-in joint control



TABLE I: Comparisons between Isaac Gym and other robotics simulators that support both 3D deformable bodies and actuator interactions.

Simulator Interactions 3D geometries Materials Underlying model Observable states Processor
MuJoCo [4] soft-rigid, Boxes, cylinders,  Homogeneous Mass-spring with sur-  Nodal positions CPU
rigid-rigid ellipsoids 1sotropic elastic face nodes
PyBullet 3 [5] soft-rigid, Arbitrary geome-  Homogeneous Mass-spring or Neo- Nodal positions, contact points & CPU
soft-soft, tries isotropic  elas- Hookean volumetric forces
rigid-rigid tic/hyperelastic FEM
IPC-GraspSim [6] soft-soft Arbitrary geome-  Homogeneous Incremental potential  Nodal positions, velocities, and ac- CPU
tries 1sotropic elastic contact model celerations
Isaac Gym [7] soft-rigid, Arbitrary geome- Homogeneous Co-rotational linear Nodal positions & velocities, con- GPU
rigid-rigid tries 1sotropic elastic volumetric FEM tact points & forces, element stress
tensors

Choice: GPU-accelerated Isaac Gym simulator
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Some definitions.....

Neo-Hookean

A neo-Hookean solid[1] [2] is a hyperelastic material model, similar

to Hooke's law, that can be used for predicting the nonlinear stress-strain
behavior of materials undergoing large deformations. In contrast to linear
elastic materials, the stress-strain curve of a neo-Hookean material is

not linear. Instead, the relationship between applied stress and strain is
Initially linear, but at a certain point the stress-strain curve will plateau. The
neo-Hookean model does not account for the dissipative release of energy
as heat while straining the material and perfect elasticity is assumed at all
stages of deformation.

The neo-Hookean model is based on the statistical thermodynamics of
cross-linked polymer chains and is usable for plastics and rubber-like
substances ... and is typically accurate only for strains less than 20%
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Figure 3: The relationship between the first Piola-Kirchhoff
stress P and the deformation gradient F for various consti-
tutive models.

Figure 2: A torus with zero strength collapses into a puddle.
When the strength is increased, the torus recovers.



Stable Neo-Hookean Flesh Simulation

BREANNAN SMITH, FERNANDO DE GOES, and THEODORE KIM, Pixar Animation Studios
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Fig. 1. Left: Thirteen skeletal bones drive a hexahedral lattice with 45,809 elements and 156,078 degrees of freedom. Center: A quasi-static simulation with
our new Neo-Hookean model and a Poisson’s ratio of v = 0.488. Wrinkles and bulges emerge from our model’s excellent volume-preserving properties. An
average time step with our model took 13.7 Newton iterations, 5,860 Conjugate Gradient (CG) iterations, and 25.6 seconds. Right: The same simulation
with corotational elasticity and v = 0.488. The model fails to preserve volume and instead collapses the trapezius and forms a spurious fold around the

shoulder blade. The artifacts persist across all values of v. An average time step with this model took 17.9 Newton iterations, 16,183 CG iterations, and 46.6
seconds. ©Disney/Pixar.

SIGGRAPH 2018



Some definitions.....

CoRotational FEM

The corotational method solves nonlinear structural problems by splitting the
deformation of beam elements into rigid body motions and local
deformations. In contrast to linear FE that assumes small rotations, large
rotations are captured, in the corotational approach, by rigid body rotation

matrices. Linear beam elements can, therefore, be used as long as strains
remain small within each element



High fidelity simulation of corotational linear FEM for
incompressible materials

Mihai Francu
University of Copenhagen

Arni Asgeirsson
University of Copenhagen

Kenny Erleben
University of Copenhagen

Figure 1: Soft robot made out of silicone rubber. Left: real life soft robot. Middle: the soft robot hanging under gravity simulated
using corotational FEM. Right: the same simulation using our method. The corotational method suffers from locking, while
our method has a wider range of motion using the same linear mesh. Elastic parameters: E=262 kPa, v=0.49.

ABSTRACT

We present a novel method of simulating incompressible materials
undergoing large deformation without locking artifacts. We apply
it for simulating silicone soft robots with a Poisson ratio close to
0.5. The new approach is based on the mixed finite element method
(FEM) using a pressure-displacement formulation; the deviatoric
deformation is still handled in a traditional fashion. We support
large deformations without volume increase using the corotational
formulation of linear elasticity. Stability is ensured by an implicit
integration scheme which always reduces to a sparse linear sys-
tem. For even more deformation accuracy we support higher order
simulation through the use of Bernstein-Bézier polynomials.

1 INTRODUCTION

Incompressible materials form an important class of materials that
has been seeing increased interest in the simulation community. In
computer graphics the focus is on simulating realistic skin deforma-
tion. Other applications include biomedical ones and soft robotics.
We are particularly interested in simulating and actuating such soft
robots made out of silicone rubber.

Training deep neural networks for data-driven control policies
in robotics requires simulations to be used a great number of times
[Chebotar et al. 2018]. Therefore, the simulation has to be fast
while still being as highly accurate as possible so the gap between

simulation and reality is not too wide. We call these constraints the
high fidelity requirement.



TABLE I: Comparisons between Isaac Gym and other robotics simulators that support both 3D deformable bodies and actuator interactions.

Simulator Interactions 3D geometries Materials Underlying model Observable states Processor
MuJoCo [4] soft-rigid, Boxes, cylinders,  Homogeneous Mass-spring with sur-  Nodal positions CPU
rigid-rigid ellipsoids 1sotropic elastic face nodes
PyBullet 3 [5] soft-rigid, Arbitrary geome-  Homogeneous Mass-spring or Neo- Nodal positions, contact points & CPU
soft-soft, tries isotropic  elas- Hookean volumetric forces
rigid-rigid tic/hyperelastic FEM
IPC-GraspSim [6] soft-soft Arbitrary geome-  Homogeneous Incremental potential  Nodal positions, velocities, and ac- CPU
tries 1sotropic elastic contact model celerations
Isaac Gym [7] soft-rigid, Arbitrary geome- Homogeneous Co-rotational linear Nodal positions & velocities, con- GPU
rigid-rigid tries 1sotropic elastic volumetric FEM tact points & forces, element stress
tensors

Choice: GPU-accelerated Isaac Gym simulator



Related Work 2 of 2

Performance metrics on deformable objects
e pickup success
e strain energy (e.g., Ken Goldberg’s deform closure metric for 2D
grasps gquantifies the work required to extract a grasped object)
o deformation
e stress

Grasp features on rigid objects
* force and form closure
e grasp polygon area

Grasp features on deformable objects
 Ken Goldberg and colleagues study the work performed on
containers during grasping to predict whether liquid contents would
be displaced



Overview

Fig. 1: (A) For a broad set of candidate grasps on a deformable object,
(B) we simulate the object’s response with FEM, (C) measure perfor-
mance metrics (e.g., stress, deformation, controllability, instability),
and (D) identify pre-pickup grasp features that are correlated with
the metrics. Our simulated dataset contains 34 objects, 6800 grasp
experiments, and 1.1M unique measurements.
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Fig. 2: The 34 evaluated objects grouped by geometry and dimension
(shown to scale). Objects 1n blue are self-designed primitives; those
in gray are scaled models from open datasets [39], [40], [41], [42].




Range of Stiffnesses

Brain Vulcanized Poly- ™ gPLA
Fat tlssue Marshmallow¢Tomato J Styrofoam“ rubber ethylene ¢ plastic / Aluminum  Steel
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Fig. 3: Young’s modulus E for various materials (adapted from [43]). (Top): real-world objects and their typical E. (Bottom): Stress
distributions of an ellipsoid under 1 IV of grasp force. Soft ellipsoids undergo large deformations; rigid ones have high-stress regions.



Flow of
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Fig. 4: Example frames from the execution of four different ex-
periments per grasp on a banana: pickup, reorient, twist (angular
acceleration), and shake (linear acceleration).

Pickup: success = maintain
contact for 5 seconds

Reorientation: Increase grasp
force to minimum required to resist
slip. 64 reorientation states.
Record stress and deformation

flelds.

Linear/angular acceleration: 16
directions. Record acceleration at
which one finger loses contact and
average over all directions.



Some Details

Simulate at a frequency of 1500Hz
Simulator executes at 5-10 fps
Each grasp experiment takes 2-7 minute to run

For all experiments our objects have density p = 1000-%,
Poisson’s ratio v = 0.3, coefficient of friction px = 0.7, and
Young’s modulus F € £ = {2e4, 2e5, 2e6, 2e9} Pa. £ covers
a wide range of real materials, from human skin (~10*Pa)
to ABS plastic (~10” Pa) (Fig. 3). The target squeezing force
on an object 1S Fp = 1.3 X M (where m 1s mass and g 1s
gravity), which 1s the force requ1red to support the object’s
weight with a factor of safety. For a fixed E, increasing u
decreases F),, as well as the induced detormation. This etfect
1s essentially the same as 1f u 1s fixed while £ 1s increased,
since an elastically stiffer object will also detorm less for the

same I, applied. Thus, we fix 1 and vary E.



7 Grasp Performance Metrics

Pickup success.
Binary
Stress.
Element-wise stress field. Collect max over all elements / compare to yield
threshold.
Deformation
Subtract out optimal rigid body transform and collect max displacement over all
elements.
Strain energy
Elastic potential energy stored in the object
Linear instability
Minimum acceleration at which the object loses contact
Angular instability
Minimum acceleration at which the object loses contact
Deformation controllability
Max deformation when the object is reoriented under gravity
Minimize to obtain more rigid behavior on pickup / maximize to achieve
deformation goal (e.g., insertion of endoscope)



o

Fig. 6: Illustration of deformation controllability. A soft banana-
shaped object under pickup (left); the union of all shape configura-
tions achieved under reorientation, superimposed in light blue (right).



7 Grasp Features

perp_dist

(a)

Fig. 7: Four grasp features illustrated on a Franka gripper.
TABLE II: Grasp features, their descriptic

Feature Abbreviation Definition and Relevance Usage in Literature
Contact patch distance to centroid  pure_dist Distance from the center of each finger’s contact patch to the object’s center  [37], [51]
of mass (COM) (Fig. a}, averaged over the two fingers.
Contact patch perpendicular dis- perp_dist Perpendicular distance from the center of each finger’s contact patch to the  [52]
tance to centroid object’s COM (Fig. 7a), averaged over the two fingers; quantifies distance
from lines of action of squeezing force.
Number of contact points num_contacts Number of contact points on each finger, averaged over the fingers; [37], [S1]
quantifies amount of contact made.
Contact patch distance to finger edge_dist Distance from each finger’s distal edge to the center of its contact patch  [S53]
edge (Fig. 7b), averaged over the two fingers.
Gripper squeezing distance squeeze_dist ~ Change 1n finger separation from initial contact to the point at which F;,  [34]
1s achieved; quantifies local deformation applied to the object.
Gripper separation gripper_sep Finger separation upon achieving F); quantifies the thickness of material [37]
between the fingers at grasp.
Alignment with gravity grav_align Angle between the finger normal and the global vertical; grounds the grasp  [54]

pose to a fixed frame (Fig. 7b).




Simulation tests on 5 real objects
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Fig. 3: Young’s modulus E for various materials (adapted from [43]). (Top): real-world objects and their typical E. (Bottom): Stress
distributions of an ellipsoid under 1 IV of grasp force. Soft ellipsoids undergo large deformations; rigid ones have high-stress regions.



Simulation Results
Stress, deformation, and linear stability
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(@) Simulated stress fields after pickup (b) Simulated deformation fields after (c¢) Linear stability of grasps on a banana at 4 N of grasp
for various grasps on a (top) heart and pickup for various grasps on a (top) mus- force under (top) the same grasp but variable friction p, and
(bottom) wine glass. Objects are colored tard bottle and (bottom) plastic cup. Ob- (bottom) the same p but variable grasps. Arrows are colored by

by the von Mises stress field. jects are colored by the [2-norm of the the maximum acceleration in that direction before loss of contact.
deformation field. Number indicates the average acceleration at failure over all 16
directions.

Fig. 8: Examples of simulated grasp outcomes on 5 objects, with visualizations of (a) stress, (b) deformation, and (c) linear stability.



Sim2Real Tofu

2N (real)

2N (sim)

Damage
from 2N
(real)

Fig. 9: Three grasps tested on blocks of tofu (1 and 2 NV of squeezing
force) show similar outcomes in simulation and the real world. Real
areas of fracture correspond to simulated stress greater than 3 k£ Pa,
the estimated breaking stress (denoted on color bar by black arrow).



Sim2Real
Latex Tubes
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Fig. 10: Three grasps tested on 2 real and simulated latex tubes under
15 N of gripper force. The vertical distance between the highest and
lowest points of the tube 1s annotated. Localized deformation due to
compression at the grippers is replicated in simulation.
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Fig. 11: A middle grasp (grasp D) and end grasp (grasp F) under a
counterclockwise 90° rotation of the gripper in the real world and in

simulation. The angles swept out by the tube tip are marked in red.



Sim2Real Bleach Bottle

Grasp G Grasp H Graspl Grasp J Grasp K

Fig. 12: Five tested grasps on a real bleach bottle. Grasps are also
repeated 1n simulation.
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Fig. 12: Five tested grasps on a rea
repeated 1n simulation.
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Fig. 13: Percent volume change pre- and post-grasp for the real and
simulated bleach bottles under grasps G to K.



Sim2Real Plastic Cup
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Fig. 14: Under four grasps on a plastic cup, the maximum weight
withstood before loss of contact 1s annotated for both the real world
(black) and 1n simulation (blue).



Suggested Applications

Learning representations of new high-dimensional features and metrics (e.g., for object
and contact geometry, field quantities, etc.) for memory-efficient grasp planning

Customizing grasping experiments to create task-oriented planners (e.g., to minimize
food deformation)

Performing rigorous, direct comparisons between simulation and reality on custom
deformables of interest (e.g., on organs for robotic surgery)

Generating training data for real-world system identification (e.g., tactile probing on
unknown materials)

Generating data for neural network-based grasp simulation for real-time grasp planning

Improving grasp planning robustness to uncertainty in object material properties (e.g.,
via domain randomization)



1. 2:27
2. 12:26



https://www.youtube.com/watch?v=Caj0AtsKKVI

DefGraspSim: Simulation-based grasping of
3D deformable objects

Isabella Huang, Yashraj Narang, Clemens Eppner, Balakumar Sundaralingam, Miles
Macklin, Tucker Hermans, Dieter Fox

Overview

This website contains the following supplementary information for our submission:

1. Additional videos of simulated and real experiments
2. The codebase developed for our simulations, which can be used to simulate and evaluate grasps on arbitrary 3D deformable objects

3. The datasets containing measured grasp features and performance metrics on object primitives and complex objects

4. Interactive visualizations of grasp results on object primitives

https://sites.google.com/nvidia.com/defgraspsim



IPC-GraspSim: Reducing the Sim2Real Gap for Parallel-Jaw Grasping
with the Incremental Potential Contact Model

Chung Min Kim!, Michael Danielczuk!, Isabella Huang?, Ken Goldberg!

Abstract— Accurately simulating whether an object will be
lifted securely or dropped during grasping is a longstanding
Sim2Real challenge. Soft compliant jaw tips are almost univer-
sally used with parallel-jaw robot grippers due to their ability
to increase contact area and friction between the jaws and the
object to be manipulated. However, interactions between the
compliant surfaces and rigid objects are notoriously difficult to
model. We introduce IPC-GraspSim, a novel grasp simulator
that extends Incremental Potential Contact (IPC) — a highly
accurate collision + deformation model developed in 2020 for
computer graphics. IPC-GraspSim models both the dynamics
and the deformation of compliant jaw tips to reduce Sim2Real
gap for robot grasping. We evaluate IPC-GraspSim using a
set of 2,000 physical grasps across 16 adversarial objects where
analytic models perform poorly. In comparison to both analytic
quasistatic contact models (soft point contact, REACH, 6DFC)
and dynamic grasp simulators (Isaac Gym with FleX), results
suggest IPC-GraspSim can predict robustness with higher pre-
cision and recall (F1 = 0.85). IPC-GraspSim increases F1 score
by 0.03 to 0.20 over analytic baselines and (.09 over Isaac Gym,
at a cost of 8000x and 1.5x more compute time, respectively. All
data, code, videos, and supplementary material are available at
https://sites.google.com/berkeley.edu/ipcgraspsim.

IPC-GraspSim Physical

. Positive: 3
: //
xdicts success ’
‘asp succeeds

True Negative:
Sim predicts failure
Real grasp fails

False Positive:
Sim predicts success
Real grasp fails

False Negative:
Sim predicts failure
Real grasp succeeds

Fig. 1: Simulated (left) and physical (right) grasp outcomes:
in the first two rows, IPC-GraspSim correctly predicts grasp
success and grasp failure. In the last two rows, predictions
are incorrect due to unmodeled cantilever bending + rotations
due to pushing.



Simulation of Parallel-Jaw Grasping

using Incremental Potential Contact Models
Chung Min Kim, Michael Danielczuk, Isabella Huang, Ken Goldberg
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https://sites.google.com/berkeley.edu/ipcgraspsim
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Bimanual Handling of Detormable Objects With
Hybrid Adhesion

, and Mark R. Cutkosky

Amy Kyungwon Han ¥, Amar Hajj-Ahmad

Abstract—We present hybrid adhesive end-effectors for biman-
ual handling of deformable objects. The gripping system is driven
by the need to achieve alignment on deformable and irregular
surfaces while maintaining a large area of contact for efficient
use of the adhesive. The objective of the gripping system is to
reduce the internal grasping force needed to securely lift and
manipulate objects with two arms, for example, in warehousing
and retail environments. The end-effectors are designed with fea-
tures meant to accommodate surface irregularities in macroscale
form, mesoscale waviness, and microscale roughness, achieving
good shear adhesion on surfaces with little gripping force. The
new gripping system combines passive mechanical compliance with
a hybrid electrostatic-adhesive pad so that humanoid robots can
grasp a wide range of materials including paperboard and textured
plastics with internal grasping forces of 1 N and 0.5 N, respectively.
These grasping forces are more than 10 times smaller than without
the hybrid pad. As an application, we demonstrate a humanoid
robot handling delicate deformable objects ranging from flowers
in a plastic sleeve to a 2.4 kg sack of rice with less than 1.5 N of
normal gripping force.

Index Terms—Bimanual manipulation, biomimetics, grippers
and other end-effectors, mechanism design.
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Fig. 1. A bimanual mobile robot lifting a delicate flower bouquet with hybrid
adhesive gripper.
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Virtual Reality Based Tactile Sensing Enhancements for Bilateral
Teleoperation System with In-Hand Manipulation

Yi Liu*, Ya-Yen Tsai**, Bidan Huang>' and Jing Guo!

Abstract—Tactile sensing is important for contact-rich tasks
especially in where an in-hand manipulation is involved. In
teleoperation, such feedback can provide information of when
and where the contacts happen, and is essential for a human
operator to make appropriate actions. To improve the experi-
ence in human-robot interaction in teleoperation without vision
feedback, in this paper, a model-based sensing enhancement
system is proposed. This system allows a human operator to
remotely control a dexterous robotics hand with a contact
feedback in the form of haptics. Under this framework, we
introduce a calibration method to map the hand joint movements
of the master and the slave. Given noisy robot sensory data,
a learning based approach is adopted to estimate the object
pose online. The estimated pose is sent to Unity, of which is
leveraged to calculate the hand-object contact force. Finally, this
force is rendered to the master, a wearable haptic device, worn
by the operator. Our experiments have shown that with this
contact information, the performance surpassed those conducted
on a bilateral teleoperation system without sense of contact.
Additionally, the user can safely manipulate the object with the
robot’s hand.

Index Terms—Humanoid robot systems, haptics and haptic
interfaces, virtual reality and interfaces.
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Fig. 1: The system setup consists of the iCub robot on the
slave side and the human operator wearing a haptic device
and a head mounted display (HMD) on the master side. During
training, visual markers are attached to the object and the hand
for pose tracking. At test time, the vision tracking is replaced
by a tactile based tracking method and the simulated force in
Unity 1s rendered on the haptic device.
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Fig. 2: Overview of the bilateral teleoperation system. Above mapping, (a) and (b) show the hand postures for calibrating as
detailed in Section II-Cl1.



Fig. 3: The anthropomorphic haptic device and the iCub’s
hand. Left: Dexmo. D1 — D5 are the joints for controlling iCub.
Right: iCub. J1-J11: the controlled joints. J4,J7,J19 are coupled
with J3,Jg,J9 respectively. Each fingertip 1s equipped with 12
tactile sensors (77 — 773) arranged as shown.



TABLE II: This table shows the pose estimation errors for
different objects 1n hand.
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Fig. 6: Histograms of the errors of the pose estimation model. The first row shows the translation and the second row shows
the orientation.

30
20
10

0
30
20
1 0

__Thumb

0O 1000 2000 3000 4000 5000 6000 7000

O 1000 2000 3000 4000 5000 6000 7000

10 ' ' __Index

5 Macpmaerca D

O 1 1 1 1 1 1 1
1091000 2000 3000 4000 5000 6000 7000

0 1000 2000 3000 4000 5000 6000 7000

0

30

0
30

201
10
O

_Middle

’\..,

0 1000 2000 3000 4000 5000 6000 7000

s/M—-L-éf »\-95-\/'

1000 2000 3000 4000 5000 6000 7000

Fig. 7: Tactile sensing comparisons between the proposed (upper) and the standard (lower) teleoperation approaches. Different
colors represent different operators. Y-axis represents the sum of tactile signal, X-axis represents the number of steps, based
on the frequency of S0Hz.



In the setting of the proposed approach, the tactile and
iCub’s joints information were taken for the pose estimation
of the object. This pose was sent to Unity to update the pose
of the modeled object in simulation. The force between the
fingers and the object was then calculated in simulation and
sent to Dexmo for haptic rendering.

In the settings of the standard bilateral teleoperation system,
the tactile sensors of iCub were directly mapped and rendered
to Dexmo. Since the tactile signal ranges from 0 to 100, and
the torque 1ntensity of the motors in Dexmo only ranges from
0 to 1, a linear mapping was done to relate the tactile signal
to the motor torque intensity. For each finger, the maximum
tactile sensor singal was taken as the intensity for the finger.



TABLE III: The mean (i) and variance () of haptic feedback
values of different methods, and comparison of efficiency
between different methods, which represents the ratio of the
number of average steps (AS) for the standard vs. proposed
methods.

method thumb | index | middle | AS | efficiency
u | 1285 | 5.31 11.95
proposed s 179080 | 764 | 3220 2756 | 146.4%
uw | 15.27 | 8.06 13.94
standard 5505 | 854 | 103.06 | 00 | 190%




Artificial Intelligence Enables Real-Time and
Intuitive Control of Prostheses via Nerve Interface

Diu Khue Luu®, Anh Tuan Nguyen®, Ming Jiang, Markus W. Drealan, Jian Xu, Tong Wu, Wing-kin Tam,
Wenfeng Zhao, Brian Z. H. Lim, Cynthia K. Overstreet, Q1 Zhao, Jonathan Cheng, Edward W. Keefer, Zhi
Yang™™

Abstract—Objective: The next generation prosthetic hand that
moves and feels like a real hand requires a robust neural inter-
connection between the human minds and machines. Methods:
Here we present a neuroprosthetic system to demonstrate that
principle by employing an artificial intelligence (AI) agent to
translate the amputee’s movement intent through a peripheral

_ nerve interface. The Al agent is designed based on the recurrent
IEEE Transactions on neural network (RNN) and could simultaneously decode six
Biomedical Engineering (2022). degree-of-freedom (DOF) from multichannel nerve data in real-
time. The decoder’s performance is characterized in motor
decoding experiments with three human amputees. Results: First,
we show the AI agent enables amputees to intuitively control
a prosthetic hand with individual finger and wrist movements
up to 97-98% accuracy. Second, we demonstrate the AI agent’s
real-time performance by measuring the reaction time and
information throughput in a hand gesture matching task. Third,
we investigate the AI agent’s long-term uses and show the
decoder’s robust predictive performance over a 16-month implant
duration. Conclusion & significance: Our study demonstrates
the potential of Al-enabled nerve technology, underling the next
generation of dexterous and intuitive prosthetic hands.
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Fig. 1. (A) Overview of the AI neural decoder and signal processing paradigm. Nerve data are acquired from the subject’s amputated arm by Neuronix
neural interface chips, followed by feature extraction. The deep learning AI then uses feature data to predict the subject’s intent of moving several DOF
simultaneously. The predictions are mapped to movements of a virtual hand or a prosthetic hand in real-time. (B) Design of the deep learning Al based on
the recurrent neural network (RNN) architecture.



A Prosthetic hand :_: : Motor decoding — _ . : Sensory feedback

DC ; _ I _> Prosthesis |, | = s e me e e e
) : controller

Touch
—
sensors -

n
]

Yy

(Injured hand)

FAST-LIFE
microelectrode - ~ ~
i V_V._ N SAS:
. euronix . Neuroni
Q) V .' p o : i )
Y- "‘Z’ recerder . stimalator - *‘" "
g o y } o o )
- ‘*
g — \_ »
3 = e
< D C—
Al neural decoder
Flex (Able hand) .1
sensors Data glove

- g T—

.\ .
Layor

1 Layer-2

Data glove
controller

ﬁ

&

Subject SF

Fig. 2. (A) Overview of the experiment setup with both neural recording and stimulation capabilities. (Blue path) The motor decoding dataset is obtained via
a mirrored bilateral paradigm. Nerve data and ground-truth movements are simultaneously acquired from the injured and able hand, respectively. All signal
processing, neural decoding, and real-time displaying are done on a desktop PC. Movement predictions can be mapped to a prosthetic hand or a virtual hand.
(Orange path) The setup also includes components like touch sensors and neurostimulators for somatosensory restoration as detailed in [40], [41]. (C) Photos
of three subjects in an experiment session.
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Fig. 3. (A) Schematic of the hand gesture matching task to measure the end-to-end reaction time (mental chronometry) and the information throughput of the
entire nerve interface and motor decoding. In each trial, the subject is shown a random hand gesture, which he attempts to match with the Al neural decoder
running in real-time. (B) Photo of Subject SF performing the task. Real-time nerve data and current AI’s prediction can be seen on the monitor.



TABLE II
SUMMARY OF MOTOR DECODING DATASETS

Subject No. of Training | Testing | No. of No. of
channels | samples | samples DOF gestures®
NB 8 174,782 19,419 9 10
CS 16 112,667 17,525 6 8
SF 16 241,511 20,087 6 11

*Gestures include resting.




TABLE IV

SUMMARY OF PERFORMANCE METRICS OF THE MATCHING TASK

Gesture Number of | Success rate | Median reaction | Mean reaction | Info. throughput
trials @3 sec (%) time (sec) Time (sec) (bps [bpm])
Thumb flex 38 100.0 0.75 0.77 6.67 [400.2
Index flex 91 100.0 0.77 0.80 6.48 [388.8
Middle flex 45 100.0 0.76 0.84 6.61 [396.6
Ring flex 47 100.0 0.92 1.14 5.41 [324.6]
Little flex 42 92.9 0.79 1.00 5.88 [352.8
Index pinch 37 100.0 1.04 1.05 4.80 [288.0
Fist/grip 49 100.0 0.83 0.92 6.03 [361.8
Wrist pronation 48 98.1 0.74 0.84 6.71 [402.6
All gestures 357 99.2 0.81 0.92 6.09 [365.4]







