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Generalization in Dexterous Manipulation via
Geometry-Aware Multi-Task Learning

Wenlong Huang!, Igor Mordatch?, Pieter Abbeel', Deepak Pathak®
1UC Berkeley, “Google Brain, *Carnegie Mellon University

Abstract— Dexterous manipulation of arbitrary objects, a
fundamental daily task for humans, has been a grand chal-
lenge for autonomous robotic systems. Although data-driven
approaches using reinforcement learning can develop specialist
policies that discover behaviors to control a single object,
they often exhibit poor generalization to unseen ones. In this
work, we show that policies learned by existing reinforcement
learning algorithms can in fact be generalist when combined
with multi-task learning and a well-chosen object represen-
tation. We show that a single generalist policy can perform
in-hand manipulation of over 100 geometrically-diverse real-
world objects and generalize to new objects with unseen shape
or size. Interestingly, we find that multi-task learning with
object point cloud representations not only generalizes better
but even outperforms the single-object specialist policies on
both training as well as held-out test objects. Video results
at https://huangwll8.github.io/geometry-dex.

I. INTRODUCTION

Hand dexterity is fundamental to daily human activities,
requiring complex and precise control of finger movements.
While most animals exhibit fine-grained motor controls for
movement and many show elementary skills for manipula-

Fig. 1: Our goal in this work is to train a single policy that can
perform in-hand manipulation on a large number of objects. We
show surprising results that simple multi-task learning combined
with appropriate representation not only achieves the aforemen-
tioned goal but also outperforms the single-task oracles, on both
training and unseen objects.
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Abstract

Assembly of multi-part physical structures is both a valuable end product for autonomous robotics, as well as
a valuable diagnostic task for open-ended training of embodied intelligent agents. We introduce a naturalistic
physics-based environment with a set of connectable magnet blocks inspired by children’s toy kits. The objective is
to assemble blocks into a succession of target blueprints. Despite the simplicity of this objective, the compositional
nature of building diverse blueprints from a set of blocks leads to an explosion of complexity in structures
that agents encounter. Furthermore, assembly stresses agents’ multi-step planning, physical reasoning, and
bimanual coordination. We find that the combination of large-scale reinforcement learning and graph-based
policies — surprisingly without any additional complexity — is an effective recipe for training agents that not
only generalize to complex unseen blueprints in a zero-shot manner, but even operate in a reset-free setting
without being trained to do so. Through extensive experiments, we highlight the importance of large-scale
training, structured representations, contributions of multi-task vs. single-task learning, as well as the effects of
curriculums, and discuss qualitative behaviors of trained agents. Our accompanying project webpage can be found
at: sites.google.com/view/learning-direct-assembly

= ,, »
1 15 Q 57 T

Igor Mordatch Retweeted
sim2real @sim2realAlorg - Mar 30

Bi-Manual Manipulation and Attachment via Sim-to-Real Reinforcement

Learning

arxiv.org/abs/2203.08277




Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2012)
P. Kry and J. Lee (Editors)

Contact-Invariant Optimization for Hand Manipulation

Igor Mordatch Zoran Popovi¢ Emanuel Todorov

University of Washington

Figure 1: A selection of grasps and motions synthesized by our method.
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https://www.youtube.com/watch?v=Gzt2UoxYfAQ
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Fig. 1: Our goal in this work is to train a single policy that can
perform in-hand manipulation on a large number of objects. We
show surprising results that simple multi-task learning combined
with appropriate representation not only achieves the aforemen-
tioned goal but also outperforms the single-task oracles, on both
training and unseen objects.

“However, generalization to
completely unseen and
geometrically-diverse objects for
dexterous manipulation policies
has been under-explored in
the community, mostly due to
the specious belief that such
generalization is out of reach for
current RL algorithms.”

“In fact, we show that in the
context of dexterous
manipulation, a multi-task policy
can be a generalist that can
match the performance of those
single- task specialist policies.”



Multi-task Learning
Objective for the Vanilla Multi-Task Policy
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Optimize the above objective function
using the DDPG (Deep Deterministic Policy Gradient) algorithm
with HER (Hindsight Experience Replay)



Multi-task Learning
with Geometric Information

“Io explicitly model the object geometries, we

propose to learn an object representation b

encoder based on object point clouds.” and) g @ =L
Current } g Y
5 !
“However, in the presence of many different _‘ - .
obi - - & » = |
jects, we lack a canonical coordinate frame for al 3 2) |1
them, making rotation matrix prediction based on a - : /u rot
single point cloud an ill-defined problem. We N
resolve this by making the encoder module take as Representation Encoder
input two copies of the same object point cloud. Pre-Training

The first describes the current orientation at time t
and the second describes the desired orientation.
The encoder is tasked with predicting the correct
class of the object and the relative rotation matrix
between the two point clouds.”



Multi-task Learning
for the Geometry Aware Multi-Task Policy
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Fig. 2: We show that simple extensions to existing RL algorithms can produce geometry-aware dexterous manipulation policies that
are robust to over 100 diverse objects. We first train an object representation encoder using object point clouds (left). Then we perform
multi-task RL training on a large number of objects leveraging the encoded object representation (right).



Implementation Details

o Start with OpenAl Gym

» Extend it with YCB and ContactDB datasets

* Proportionally scale each object so it can fit into the palm and be
touched by fingers

 Filter out similar objects — resulting set has 114 hand-sized objects

* Train a policy for each object individually using single-task RL
* Split objects into 85-object training set / 29-object testing set such

that training and test sets have similar success rates on average Iin the
single-task policy



OpenAl Gym Robot Environments

Episode 1 Episodo‘:]__:ﬂ_m

FetchSlide-v1 HandManipulateBlock-vO HandManipulateEgg-vO
Slide a puck to a goal Orient a block using a robot Orient an egg using a robot
position. hand. hand.

Episodo'r_]__zz__ﬂ

HandManipulatePen-vO HandReach-vO




-
4

<

~ :‘.
‘1«- =

Computer

-
-

—

Table witg¥
3D printed

objects

| ContactDB ]”

Turnt:
R

\<E :>_
T

7, P
ﬁ// } \‘/r' R
i

n

able Camera

T
- N
4\ g//)), ; \\LH
:

)

S—

-

v L
' ~

-

J [
~4~ . N \;\

Vi




More Implementation Detalils

* State: * Action:
* Jointangles » joint angle positions for 20 actuated
* Joint velocities joints of the Shadow Hand (the other

* object position
* object orientation
e object desired orientation
* object velocity
* object angular velocity
e positions and surface normals of
128 randomly sampled points
(geometry-aware policy only ..
points are resampled at each * |nitialization and goal selection:
tilmestep) * The initial and goal orientation are
sampled independently and randomly
about the z-axis for each episode.

4 joints are coupled DoF)

e Reward:
e 1if the orientation is within 0.1

radians of the desired orientation
e 0 otherwise



Research Questions

* Can vanilla multi-task policy attain competitive performance
on a large number of objects?

* | everaging object representation, can a single geometry-
aware policy interpolate its experience and outperform
single-task oracles”

 What are the generalization properties of a geometry- aware
policy?



» Can vanilla multi-
task policy attain
competitive
performance on a
large number of
objects?

Average Training Success Rate (85 objects)
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Fig. 4: Average success rate across 85 training objects and across
29 held-out objects. The plot shows that multi-task joint training can
lead to a surprisingly robust policy on both training and testing, with
similar performance compared to the average of individual single-
task oracle trained for each object. Furthermore, when combined
with object representation, a joint policy can even outperform the
oracles on held-out objects, in a completely zero-shot manner. The
success rate reported are averaged across 425 and 145 episodes,
respectively for all training objects and all held-out objects.



Leveraging object representation, can a single

geometry-aware policy interpolate its experience

and outperform single-task oracles?
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™

across 100 episodes.

‘erence between geometry-aware multi-task
policy and individual oracles on the 85 training objects, calculated
as AS = (Sours — Soracte). It shows that a single geometry-aware
multi-task policy can attain even better performance than individual
single-task oracles on most training objects. It demonstrates that
the policy can leverage skills learned from many tasks, leading to
an overall stronger policy. The success rate reported are averaged
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Fig. 5: Visualization of held-out objects ranked by the performance
gains of geometry-aware policy, calculated as AS = (Sours —
Svanilla)- INotice that the gains are the highest for objects with irreg-
ular shapes and the lowest for medium-sized and spherical objects,
showing the policy can effectively leverage object representation to
adopt specific strategies even for challenging unseen objects.
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* What are the
generalization properties
of a geometry- aware
policy?

Number of Training Objects vs. Generalization
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Fig. 7: Comparisons of the effect of the number of training objects
on zero-shot generalization. More training objects would lead to a
more robust policy that can even surpass single-task oracles on
held-out objects.



w/ Object Rep. | w/o Object Rep.
large_clamp | 97.00% 46.00%
door_knob 84.00% 65.00%
large_clamp | 92.00% 74.00%

TABLE I: Effect of object representation used for single-task
training. The objects are randomly selected from the held-out set.
Even though the frozen encoder has not seen the objects in the
pre-training phase, the encoded representation is still shown to
be beneficial for single-task RL training, suggesting geometry-
awareness 1s important for dexterous manipulation policies.
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Fig. 2: We show that simple extensions to existing RL algorithms can produce geometry-aware dexterous manipulation policies that
are robust to over 100 diverse objects. We first train an object representation encoder using object point clouds (left). Then we perform
multi-task RL training on a large number of objects leveraging the encoded object representation (right).



Frozen Encoder | Fine-tuned Encoder

Training Success Rate | 71.88% 61.62%
Held-Out Success Rate | 68.80% 59.84%

TABLE II: Comparisons of frozen encoder vs. fine-tuned encoder.
Frozen encoder has much better performance than fine-tuned vari-
ant, whose performance 1s similar to that of vanilla multi-task policy
without an encoder. The success rate reported are averaged across
425 and 1435 episodes, respectively for 85 training objects and 29
held-out objects.
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Fig. 2: We show that simple extensions to existing RL algorithms can produce geometry-aware dexterous manipulation policies that
are robust to over 100 diverse objects. We first train an object representation encoder using object point clouds (left). Then we perform
multi-task RL training on a large number of objects leveraging the encoded object representation (right).



Results Videos

https://wenlong.page/geometry-dex/



Comparison to Monday’s paper

“A parallel work also studies
dexterous manipulation on
a variety of objects [40].
However, their approach
does not condition the
multi-task learning on the
object geometric
representation. Hence, it
forces the policy to
discover a common ”
generally” good strategy
that works across many
distinct objects of simpler
shapes but may suffer to
generalize to objects of
more challenging
geometries.”



https://www.youtube.com/watch?v=HgDgIHTmokE

Differences

e Start and goal: SO(3) vs. rotations around z-axis
* Objects: YCB+EGAD vs. YCB+ContactDB

* Environments: Isaac Gym vs. OpenAl Gym

* Learning algorithms: PPO vs. DDPG

Table 1: Success rates (%) of policies tested on different dynamics distribution. & = 0.1rad. DR: domain
randomization and observation/action noise. X— Y: distill policy X into policy Y. The full table 1s in Table D.5.

1 2 3
: Train without DR Train with DR
Exp. ID Dataset State Policy  —restwithout DR Test with DR Test with DR
B EGAD Full state RNN 9595 + 0.8 84.27 + 1.0 88.04 £+ 0.6
E Reduced state RNN-—RNN 91.96 £ 1.5 78.30 £ 1.2 80.29 +£ 0.9
G YCB Full state RNN 80.40 £ 1.6 65.16 = 1.0 72.34 + 0.9
J Reduced state  RNN-—RNN 81.04 = 0.5 64.93 + 0.2 65.86 = 0.7

Which do you like better?



Dexterous Imitation Made Easy: A Learning-Based
Framework for Efficient Dexterous Manipulation

Sridhar Pandian Arunachalam’, Sneha Silwal', Ben Evans, and Lerrel Pinto
New York University

(a) Teleoperation through a sihgle RGB camera. ' (b) Learned policies for dexterous maﬁipulation.

Fig. 1: The framework for dexterous manipulation consists of two phases. (a) Demonstrations are collected using a real-time hand tracker
on a single visual stream of a human operator’s hand. The estimated fingertip 2D pixel coordinates are retargeted to 3D coordinates in
the robot frame. (b) Given these demonstrations, dexterous manipulation policies are learned on both a real Allegro Hand, using nearest
neighbor-based imitation, and on a simulated Allegro Hand using RL augmented with demonstrations.
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| completed my undergraduate degree in Computer Science at the University of
Washington, working at first in the Robotics and State Estiation Lab with Arunkumar
Byravan on video prediction, then in the Movement Control Lab with Kendall Lowrey and
Aravind Rajeswaran on off-policy reinforcement learning and nonlinear model predictive

control.
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Welcome!

| am an Assistant Professor of Computer Science at NYU Courant working on problems in Robotics and
Machine Learning. | am also affiliated with the Center for Data Science. Together with several wonderful
colleagues | am part of the CILVR (Computational Intelligence, Learning, Vision and Robotics) group.

My lab’s goal is to get robots to generalize and adapt in the diverse world we live in. To this end, my

research touches the areas of Robot Learning, Representation Learning, Reinforcement Learning, and
Affordable Robotics.

Learning to Grasp Learning in Homes

Manipulating Deformable Objects Visual Imitation Learning Dexterous Manipulation



Cube rotation policy using image-based NN. (8x speed up)


https://www.youtube.com/watch?v=aruVx-Gxc1U

Simulation

* 3tasks: Flipping, Spinning,
Rotating

e Collect 30 human
demonstrations of each task

Flipping

* flipping — 30s on
average to
teleoperate

Spinning

* spinning — 120
seconds on average..

* rotating — 1350
seconds on average..

Rotating

Fig. 3: The demonstration collection process for the three tasks. For each task, the operator’s hand in the upper row is depicted followed by
the corresponding state of the robot’s hand in the lower row. The rightmost column visualizes the operator’s actions during demonstration
collection along with the simulated MuJoCo environments for each task.



Setup

e Simulation experiments
* Behavior cloning alone (BC)
 PPO alone (no use of demonstrations)
 BCRL (behavior cloning fine tuned with RL)
 DAPG (essentially PPO initialized with BC)

* Real robot experiments
* Behavior cloning alone (BC)
* Nearest neighbor
o state based (INN)
* vision-based (VINN)



Results -
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The policies trained with BCRL and DAPG produced similar results to one another, whereas PPO methods had more
erratic movements.

The policies that used demonstrations were also qualitatively better than the teleoperated demonstrations, which
would often take longer to record and have more abrupt starts and stops.

Upon visualizing the policies, we noticed that the PPO policies were successful because extreme, random movements
of the middle and last finger were enough to spin the handle. Whereas the policies learned with demonstrations were

more ‘human-like’ and smoother.

Pure behavior cloning (BC) fails on all tasks. Since the number of demonstrations used is relatively small, BC policies
are unable to remain in the support of demonstration data and fail.



Results - Real Robot

TABLE I: Success rates on our real Allegro hand using DIME.

Method Used Flipping  Turning Rotation
90° 180°
INN (State Based) 80% 60% 100%  80%
Behavior Cloning (State Based) 0% 0% 0% 0%
VINN (Image Based) 90% 0% 70% 50%
Behavior Cloning (Image Based) 0% 0% 0% 0%

We notice that non-parametric nearest neighbors (INN) outperforms
parametric behavior cloning approaches across all tasks



Results -
Real Robot

Spinning

Z

Rotating
BC

Fig. 5: Robot runs for both state-based (INN) and image-based (VINN) non-parametric nearest neighbors along with state-based parametric
behavior cloning (BC) are visualized across the three tasks. INN performs the best across all three tasks, while VINN is able to solve the
flipping and rotating tasks. BC is unable to solve any task and suffers from distributional mismatch [40].



Conclusion

first step towards training dexterous robots from
Inexpensive demonstrations

(b) Imitation learning for dexterous manipulation.
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| am interested in motion. What does motion tell us about the structure of the world and how can we compute this from video? How do humans

and animals move? What goals drive behavior? My work combines computer vision, graphics and machine learning to develop new models and

algorithms to capture, analyze, and synthesize the motion of humans, animals and the world.

My Computer Vision research addresses:

e articulated human motion pose estimation and tracking;

 the estimation of human body shape from images and video;

» the estimation of scene structure and physical properties from video;

 the estimation of optical flow;
e vision as inverse graphics.

My Graphics research addresses:

virtual humans;

next-generation motion capture;
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human and animal shape and motion capture;

human animation, AR/VR, and Metaverse applications;

capture and animation of clothing.
My Machine Learning reserarch addresses

 |learning representations of 3D shape

implicit functions

neural rendering

regressing 3D models from images

temporal models of human motion

learning 3D models from 2D data
| also work on industrial applications in Fashion Science:

» Body scanning and measurement;
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 cloth capture and modeling;

e virtual try-on.

My previous work on Computational Neuroscience research addressed:

e modeling the neural control of reaching and grasping;

e novel neural decoding algorithms;

» neural prostheses and cortical brain-machine interfaces;
e markless animal motion capture.

What ties this all together is my ultimate goal of understanding humans and their behavior by creating vritual humans. If we can can simulate a
virtual human that behaves like a real human, then we have a working model of ourselves.
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Starting Frame


https://www.youtube.com/watch?v=RPUcKszjqkQ




