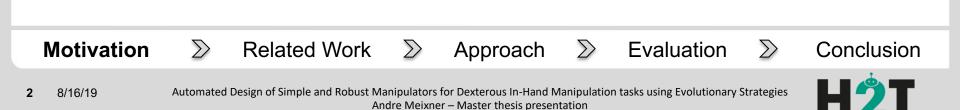


Automated Design of Simple and Robust Manipulators for Dexterous In-Hand Manipulation Tasks using Evolutionary Strategies

Andre Meixner supervised by Nancy Pollard and Tamim Asfour

Institute for Anthropomatics and Robotics (IAR), High Performance Humanoid Technologies (H²T)

"Dexterity means the capability of **changing** the **position and orientation** of the **manipulated object** from a given reference configuration to a different one, arbitrarily chosen **within the hand workspace**" *(Bicchi, 2000)* [1]

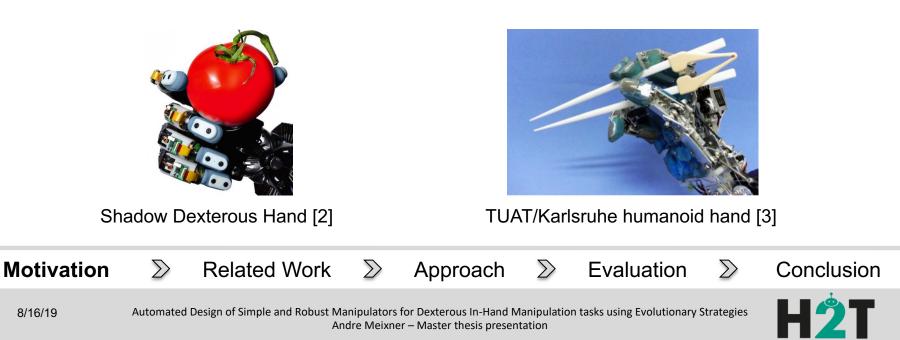


Advantage

- Cope with limited workspace
- Precise and efficient
- **Reduce power** required to accomplish a task
- Allow tool handling
- Important for general purpose robots, health care and manufacturing, e.g.
 - Adjusting postures in-hand saves time
 - Execute complex manipulations such as humans

Andre Meixner – Master thesis presentation

- Imitating human hands
 - Versatility/Dexterity to execute a wide range of tasks in different environments
- Accurate sensory feedback required to cope with uncertainties
- **Expensive** and **difficult** to build, control and maintain



- Hands with less degrees of freedom offer similar capabilities when specifically designed for a set of task
 - Fewer actuators, sensors
 - Simpler control strategy

Design adapts to uncertainties

RBO Hand 2 [4]

Barrett hand [5]

5 8/16/19

Automated Design of Simple and Robust Manipulators for Dexterous In-Hand Manipulation Tasks using Evolutionary Strategies

- **High effort** of manual design for simple manipulators
- Automatically generate specific manipulators based on task description

>



 \sum

Approach

 \sum

Evaluation

>

Related Work

Automated Design of Simple and Robust Manipulators for Dexterous In-Hand Manipulation Tasks using Evolutionary Strategies

- Robotic hands often inspired by biological structures
- "Evolutionary robotics applies the selection, variation and heredity principles of natural evolution to the design of robots with embodied intelligence."

(Doncieux et al., 2015) [7]

Goal

Automatically designing simple and robust robotic hands for desired object manipulation tasks due to a high-level description

Further goal

Creation of simple manipulators which already incorporate robustness in their design and do not rely on complex controllers

>

Related Work

Conclusion

>

Evaluation

Approach

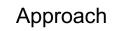
>

>

RELATED WORK

Motivation

 \sum

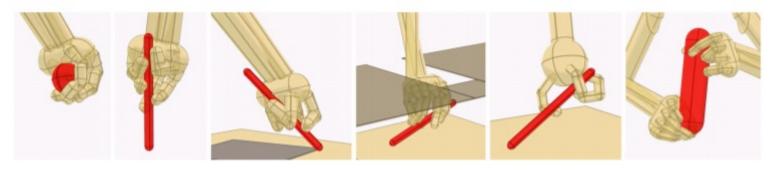


 \ge Evaluation

9 8/16/19

Contact-invariant optimization for hand manipulation [8]

- Generate a wide variety of dexterous hand manipulations from few high-level goals
 - E.g. grasping, picking-up objects, drawing

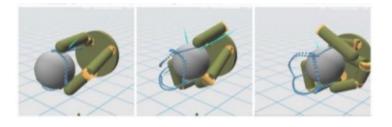


Generalizes to different hand morphologies besides human hands such as three-fingered manipulators

Paper	Manipulator creation	Manipulator	Robustness	Environment	Task
Mordatch et al. (2012)	х	any	x	-	general
Motivation 2	Related W	ork ∑ Ap	proach 📎	Evaluation \sum	Conclusion

Automated design of manipulators for in-hand tasks [6]

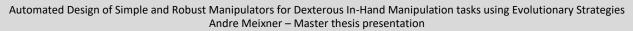
- Generate low-DOF hand designs able execute provided manipulation task from few high-level goals
 - Optimize contact points and forces to move object to desired pose
 - Design manipulator and trajectory that provides desired forces



Limitations

- No planning under uncertainty
- Required forces are interpolated and trajectory approximated
- Fixed set of finger contacts

Paper		Manipulator creation	Ма	nipula	tor	Robus	stness	Environme	nt	Task
Hazard et al. (2018))	\checkmark		any		2	x	-		general
Mordatch et al. (201	2)	х		any		2	x	-		general
Motivation	Σ	Related W	ork	\sum	App	oroach	\sum	Evaluation	\geq	Conclusion



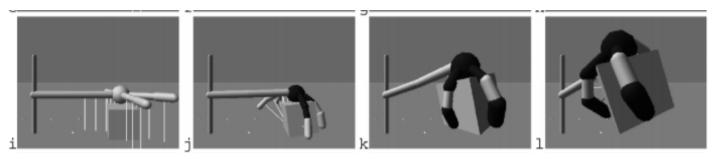
Learning dexterous in-hand manipulation [9]

- Applies reinforcement learning to learn robust dexterous in-hand manipulation policy in simulated environment
- Application of large-scaled distributed domain randomization to generate simulation that transfer to physical robot
 - Physical parameters (e.g. object size, mass) randomizing visual appearence of the scene perturbing forces

Paper	Manipulator creation	Manipulator	Robustness	Environment	Task
OpenAl et al. (2018)	x	ShadowHand	\checkmark	Real-world	specific
Hazard et al. (2018)	\checkmark	any	х	-	general
Mordatch et al. (2012)	x	any	x	-	general
Motivation 2	Related W	ork 📎 App	oroach 📎	Evaluation $>$	Conclusion

The utility of evolving simulated robot morphology increase with task complexity for object manipulation [10]

Evolutionary strategy to evolve hand design and control policy for specific object manipulation task (grasp, lift, perception)



- Optimization on six different domains
 - Objects vary in shape and size

Paper	Manipulator creation	Manipulator	Robustness	Environment	Task
Bongard (2010)	\checkmark	specific	\checkmark	Phys. Simulation	specific
OpenAl et al. (2018)	Х	ShadowHand	\checkmark	Real-world	specific
Hazard et al. (2018)	\checkmark	any	Х	-	general
Mordatch et al. (2012)	x	any	х	-	general
Motivation 2	Related W	ork 🔊 App	oroach 📎	Evaluation \ge	Conclusion

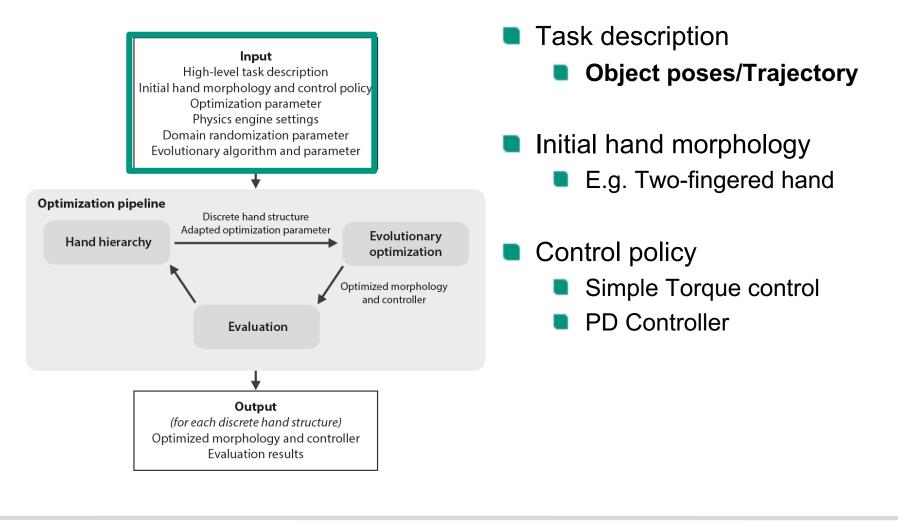
My Approach

Co-evolve hand morphology and controller

- Standard evolutionary algorithms (CMA-ES, MO-CMA)
- In physics simulation
- Simulatenously on different world states using **Domain Randomization**

Paper	Manipulator creation	Manipulator	Robustness	Environment	Task
My approach	\checkmark	any low-DOF	\checkmark	Phys. Simulation	general
Bongard (2010)	\checkmark	specific	\checkmark	Phys. Simulation	specific
OpenAl et al. (2018)	X	ShadowHand	\checkmark	✓ Real-world	
Hazard et al. (2018)	\checkmark	any low-DOF	х	-	general
Mordatch et al. (2012)	x	any	x	-	general
Motivation Σ	Related W	ork 🔊 App	oroach 📎	Evaluation $>$	Conclusio

Optimization pipeline - Input



>

Approach

 \sum

Evaluation

 \sum

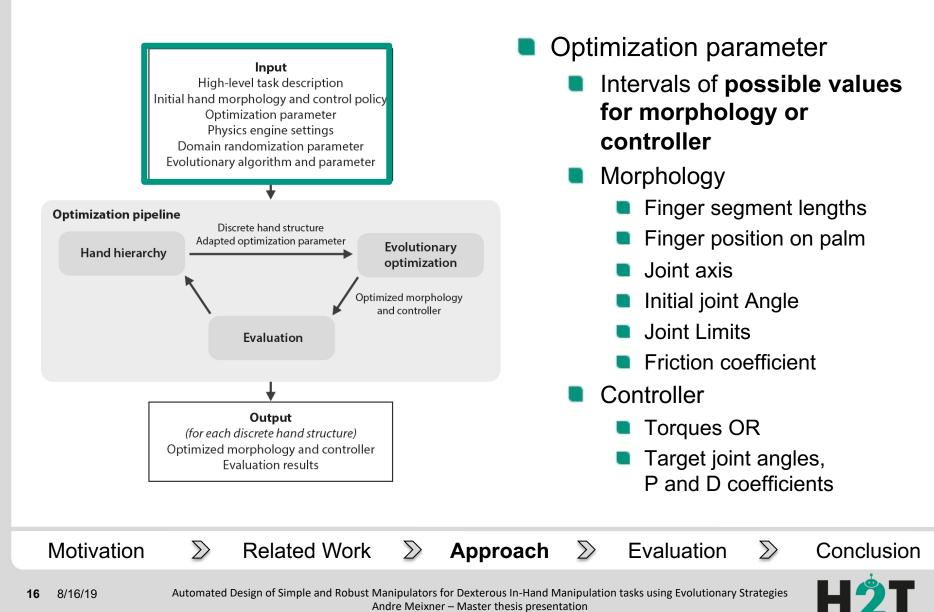
Conclusion

>

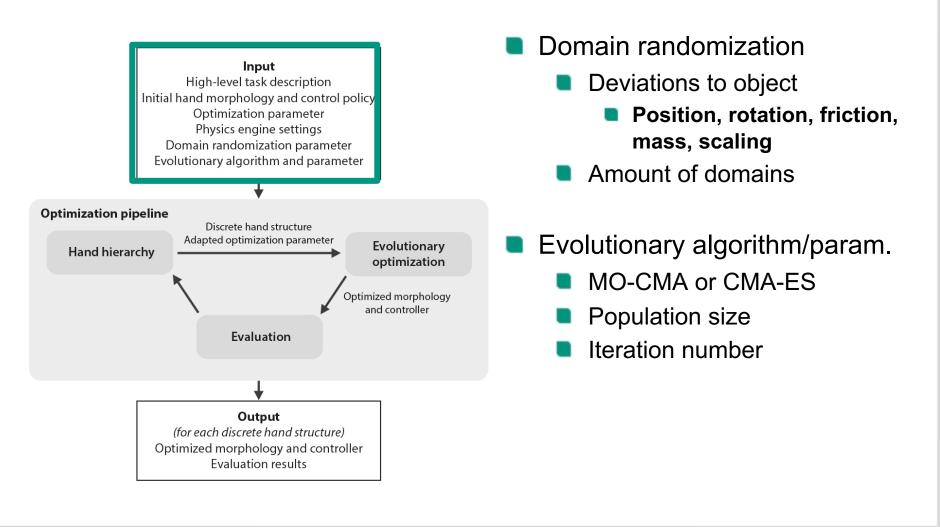
Related Work

15 8/16/19

Optimization pipeline - Input



Optimization pipeline - Input



Motivation

8/16/19

17

>

Approach

>

Evaluation

>

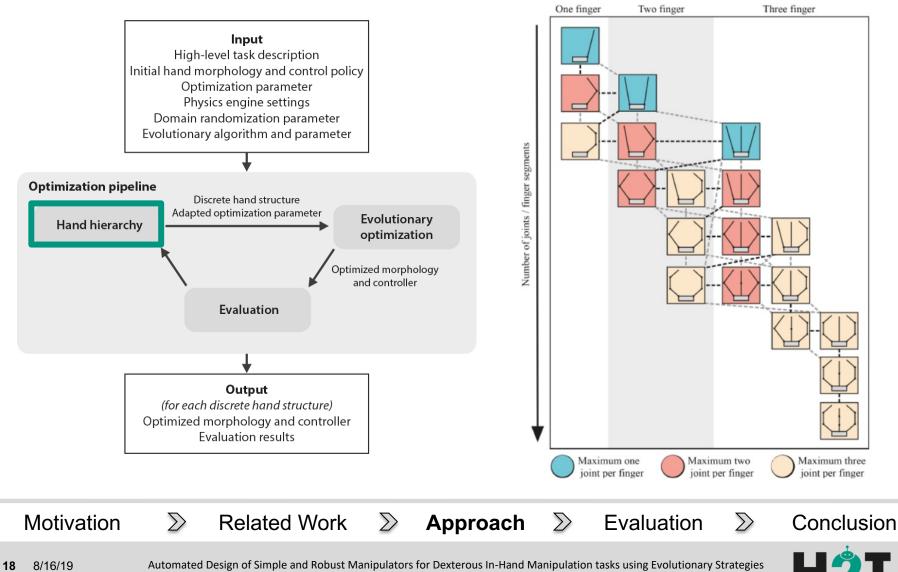
Conclusion

and Data to a

Related Work

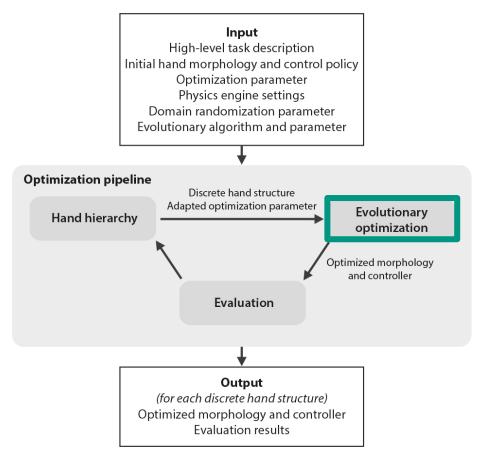
>

Optimization pipeline – Hand hierarchy



Andre Meixner – Master thesis presentation

Optimization pipeline – Evo. Optimization



Related Work

- Minimize distance between desired and actual position
- Minimize angle between desired and actual orientation

Averaged on all simulated domain randomizations

Evaluation

>

Conclusion

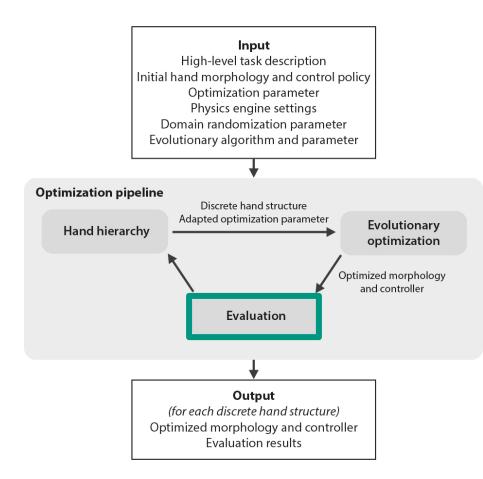
>

Approach

>

>

Optimization pipeline – Evo. Optimization



Evaluation based on X samples of domain randomization

>



Approach

 \sum

Evaluation

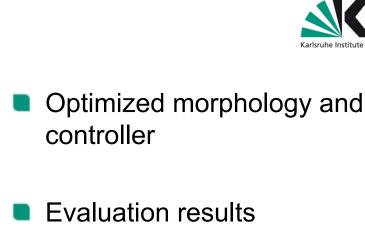
 \sum

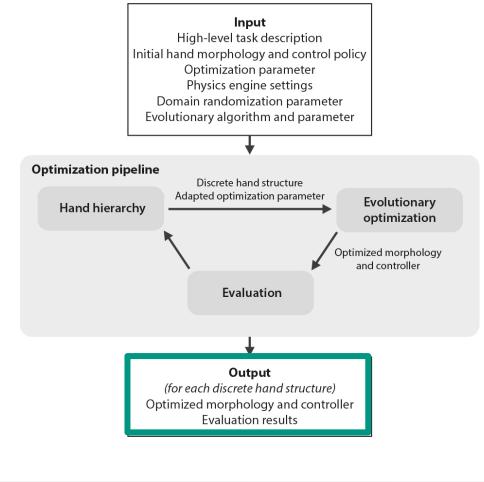
Related Work

Conclusion

 \sum

Optimization pipeline – Output





Related Work

>

Motivation

Automated Design of Simple and Robust Manipulators for Dexterous In-Hand Manipulation tasks using Evolutionary Strategies Andre Meixner – Master thesis presentation

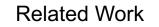
Approach

 \sum

Evaluation

 \sum

 \sum

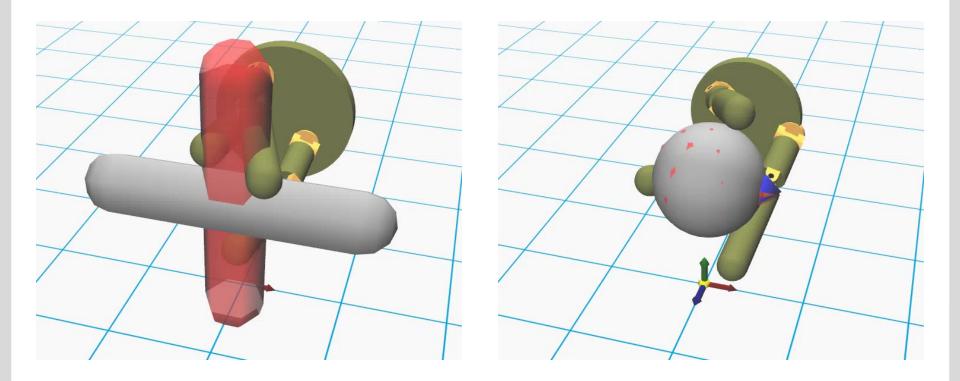


 \geq

 \sum

22 8/16/19

- Obtained results [6] transfered to physics simulation with PD Controller
- Manipulator fail to perform manipulation



>

Related Work

Automated Design of Simple and Robust Manipulators for Dexterous In-Hand Manipulation tasks using Evolutionary Strategies Andre Meixner – Master thesis presentation

Approach

>

Evaluation

 \geq

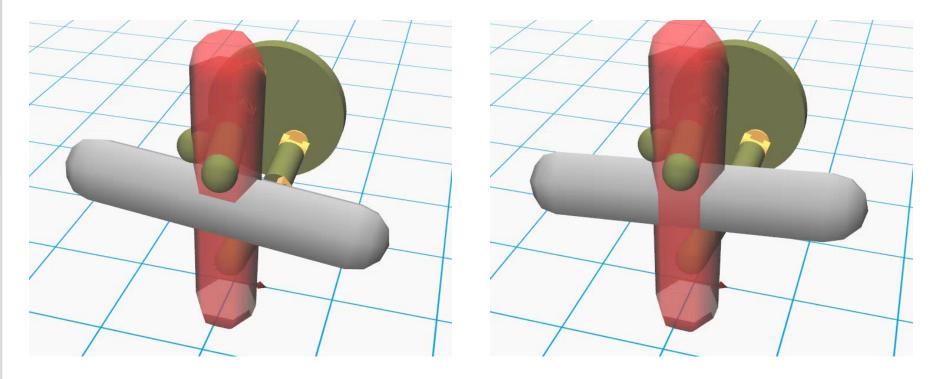
 \sum

Conclusion

- **Further optimized** with results with evo. opt. and domain randomization
- Task: Rotate capsule 90° clockwise in midair

Related Work

Simulation on different world states



8/16/19

24

>

Automated Design of Simple and Robust Manipulators for Dexterous In-Hand Manipulation tasks using Evolutionary Strategies Andre Meixner – Master thesis presentation

Approach

>

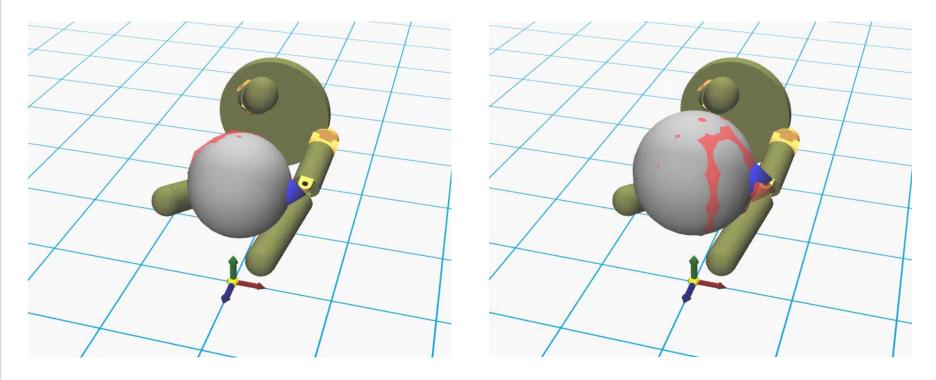
Evaluation

 \geq

Conclusion

>

- **Further optimized** with results with evo. opt. and domain randomization
- Task: Rotate sphere ~180° clock- and counterlockwise in midair
- Simulation on different world states



Motivation

8/16/19

25

 \gg

Automated Design of Simple and Robust Manipulators for Dexterous In-Hand Manipulation tasks using Evolutionary Strategies Andre Meixner – Master thesis presentation

Approach

 Σ

Evaluation

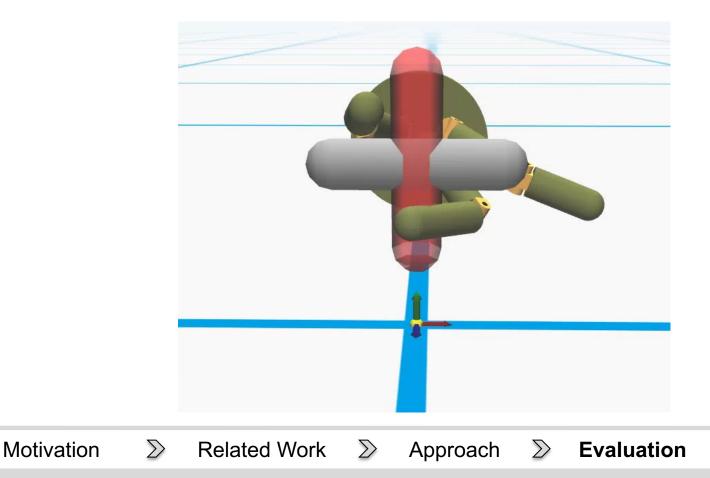
>

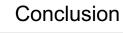
Conclusion

>

Related Work

- Evolutionary optimization from scratch
- Task: Rotate capsule 90° clockwise in midair





 \sum

Optimization Pipeline **EVALUATION**

 \sum

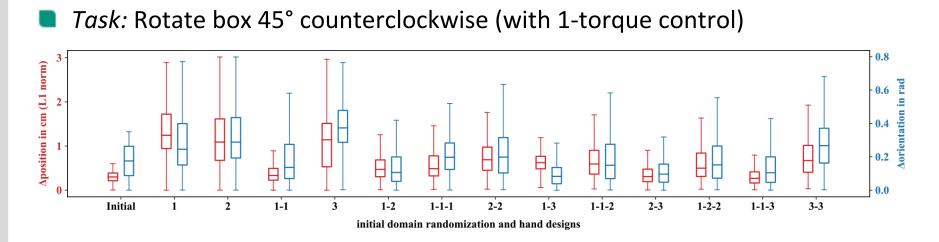
 \geq

 \sum

27 8/16/19

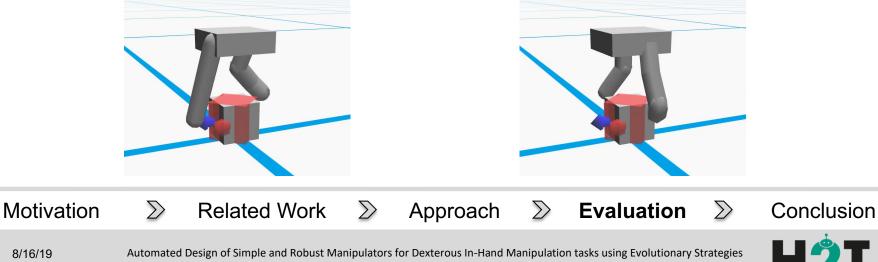
Optimization Pipeline

28



Simulation of 1-3 hand

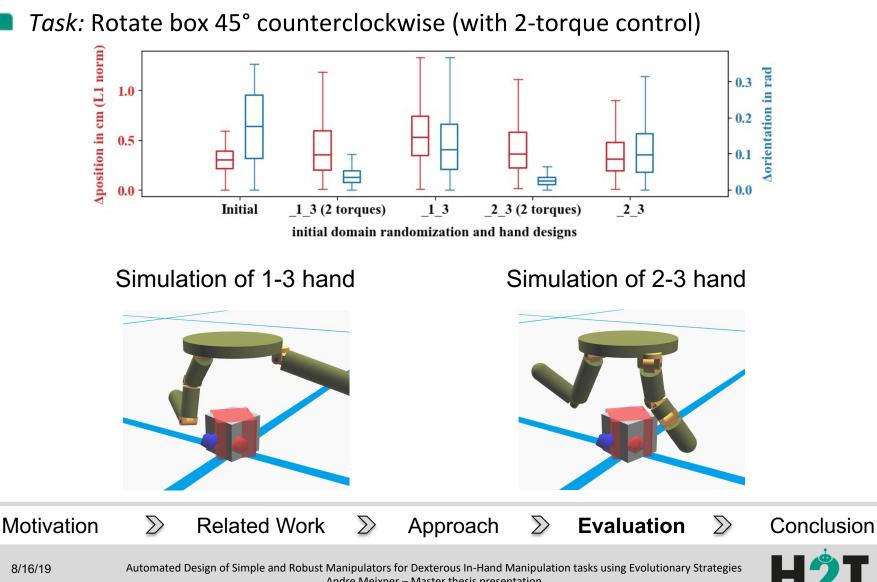
Simulation of 2-3 hand



Andre Meixner – Master thesis presentation

Optimization Pipeline

29



Andre Meixner - Master thesis presentation

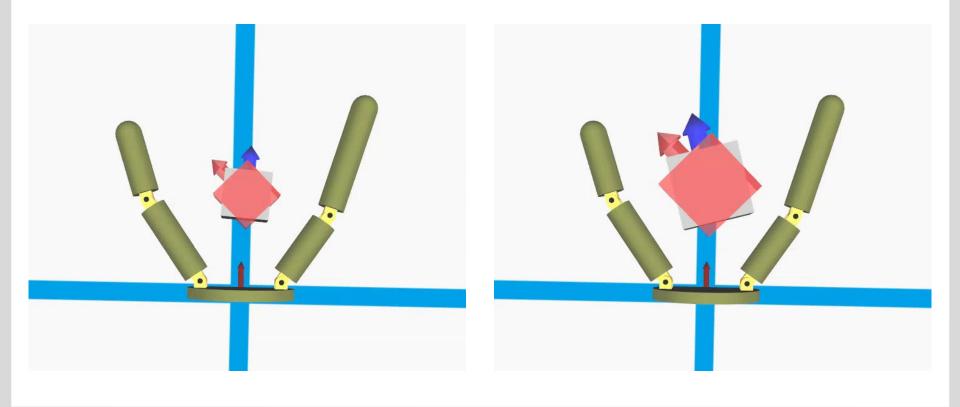
Optimizing Joint Limits **EVALUATION**

 \sum

30 8/16/19

Optimizing joint limits

- Task: Rotate box 45° counterclockwise
- Optimized manipulator simulated on different world states



8/16/19

31

 \sum

Related Work

Automated Design of Simple and Robust Manipulators for Dexterous In-Hand Manipulation tasks using Evolutionary Strategies Andre Meixner – Master thesis presentation

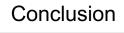
Approach

 \sum

Evaluation

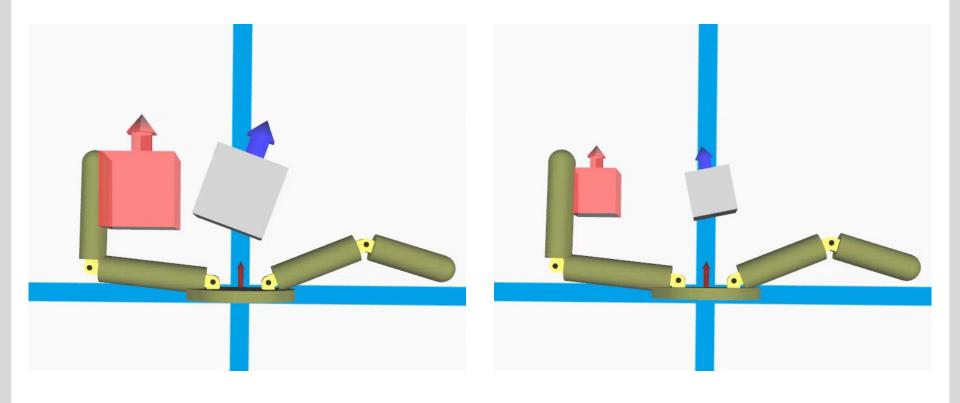
 \sum

 \sum



Optimizing joint limits

- Task: Align box at specific line in space
- Optimized manipulator simulated on different world states



Approach

>

Related Work

>

Evaluation

 \geq

Conclusion

>

CONCLUSION & OUTLOOK

 \sum

 \sum



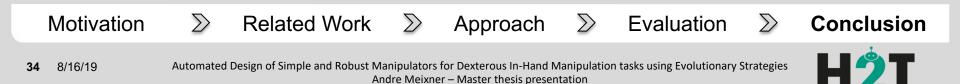
 \sum

Evaluation

8/16/19 33

Conclusion

- Introduced an optimization pipeline to automatically generate simple and robust manipulators for desired manipulation tasks
 - Robust results on simple manipulation tasks
 - Limitations
 - Performance
 - Complexity of tasks
- Demonstrated the significance of optimizing **joint limits for robustness**
- Evolutionary approach **complementary** to trajectory optimization [6]
 - Improve robustness of results
 - Limitations of trajectory optimization apply



Outlook

- Evolve manipulators for complex motions
 - Evolutionary strategies potentially converge to local minima
 - Generate higher diversity in population
 - Literature provides
 - Adaptions of basic evolutionary algorithms
 - Non-performance based objectives to guide the simulation
 - Dimension reduction
- Evaluate robustness of results on real manipulators



>

Thank you for your attention!

Any questions left?

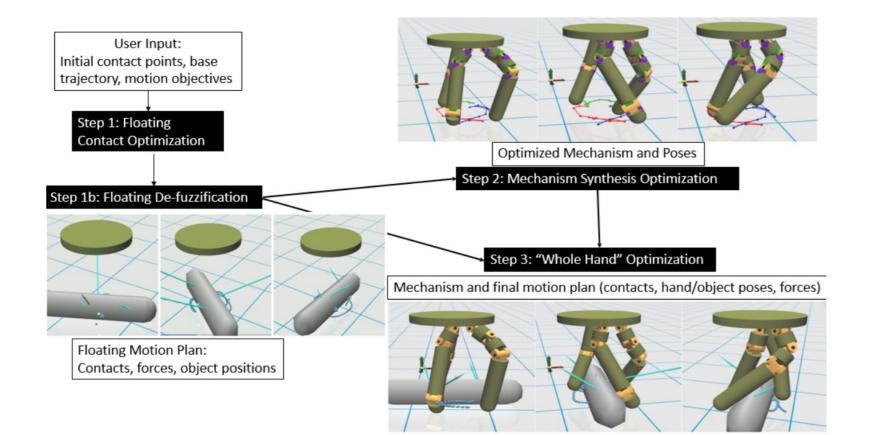
References

- [1] A. Bicchi. Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Trans. Robotics and Automation, 16:652–662, 2000.
- [2] ShadowRobot. Shadow dexterous hand. URL https://www.shadowrobot.com/products/dexterous-hand/. Accessed on 2019-08-27.
- [3] N. Fukaya, T. Asfour, R. Dillmann, and S. Toyama. Development of a five-finger dexterous hand without feedback control: The tuat/karlsruhe humanoid hand. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4533–4540, Nov 2013. doi: 10.1109/IROS.2013.6697008.
- [4] R. Deimel and O. Brock. A novel type of compliant and underactuated robotic hand for dexterous grasping. The International Journal of Robotics Research, 35(1-3):161–185, 2016. doi: 10.1177/0278364915592961. URL https://doi.org/10.1177/0278364915592961.
- [5] M. T. Mason, S. S. Srinivasa, and A. S. Vazquez. Generality and simple hands. In C. Pradalier, R. Siegwart, and G. Hirzinger, editors, Robotics Research, pages 345–361, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-19457-3.
- [6] C. Hazard, N. Pollard, and S. Coros. Automated design of manipulators for in-hand tasks. pages 1–8, 11 2018. doi: 10.1109/HUMANOIDS.2018.8624932.
- [7] S. Doncieux, N. Bredèche, J.-B. Mouret, and A. E. Eiben. Evolutionary robotics: What, why, and where to. Front. Robotics and AI, 2015, 2015.
- [8] I. Mordatch, Z. Popovi´c, and E. Todorov. Contact-invariant optimization for hand manipulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '12, pages 137–144, Goslar Germany, Germany, 2012. Eurographics Association. ISBN 978-3-905674-37-8. URL http://dl.acm.org/citation.cfm?id=2422356.2422377.
- [9] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew, J. W. Pachocki, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng, and W. Zaremba. Learning dexterous in-hand manipulation. CoRR, abs/1808.00177, 2018. URL <u>http://arxiv.org/abs/1808.00177</u>.
- [10] J. Bongard. The utility of evolving simulated robot morphology increases with task complexity for object manipulation. Artificial Life, 16(3):201–223, 2010. doi: 10.1162/artl.2010.Bongard.024.

APPENDIX

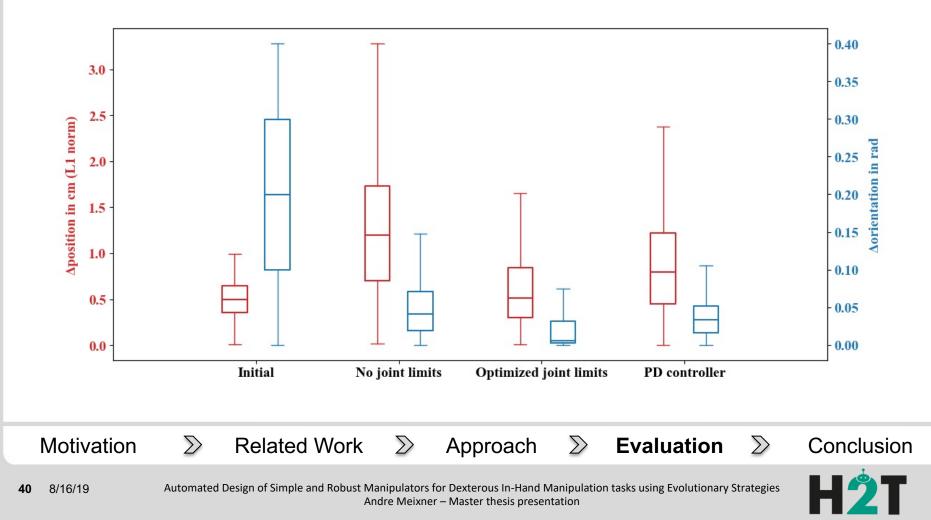
38 8/16/19

Trajectory Optimization Pipeline

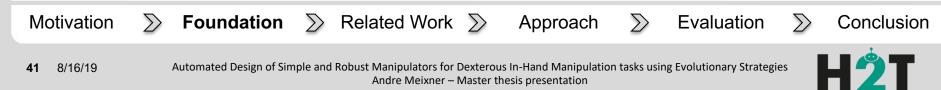


Optimizing joint limits

Comparison of different evolved hand designs with PD controller or with torque policy



FOUNDATION



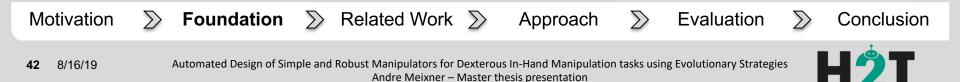
PD Controller with feed forward term

Follow provided joint angle trajectory

$$\tau = \underbrace{M(\theta)\ddot{\theta}_d + C(\theta,\dot{\theta})\dot{\theta}_d + N(\theta,\dot{\theta})}_{\tau_{ff}} \underbrace{-K_p e - K_v \dot{e}}_{\tau_{fb}}$$

Feedback control τ_{fb}

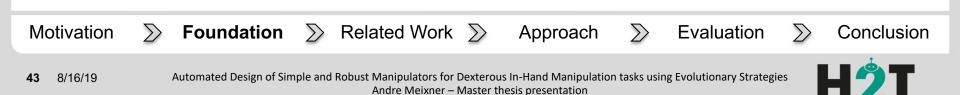
- Reduce control error between setpoint and measurement
- K_p, K_v gain matrices chosen to be diagonal
 - Diagonal entries P and D coefficients
- Feedforward control τ_{ff}
 - Adjust control signal according to a function of disturbances
 - Inertia matrix, Coriolis and centrifugal forces, gravity compensation



Evolutionary Robotics (ER)

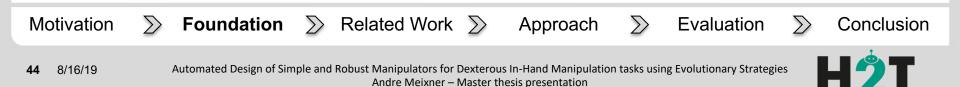
- Robotic hands often inspired by biological structures
- "Evolutionary robotics applies the selection, variation and heredity principles of natural evolution to the design of robots with embodied intelligence."

(Doncieux et al., 2015) [7]



[ER] Genotype-to-Phenotype-Mapping

- Genotype encodes a solution as sequence of bits or numbers
- Phenotype corresponds to the robotic system
- Direct mapping
 - Mapping each parameter directly
- Indirect mapping
 - Encode robotic system as neuronal network



[ER] Evolutionary algorithm

Init

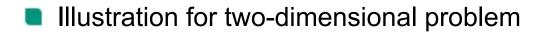
Randomly generated genotypes form parent population at generation 0

Iteration

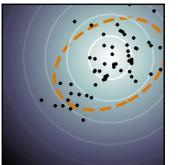
- **Generate** new offspring from parent based on mutation/recombination
- Map genotype to phenotype
- **Select individuals** from offspring and parent based on **fitness function**
 - Form new parent population for next iteration

Andre Meixner – Master thesis presentation

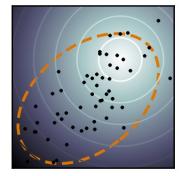
[ER] Covariance Matrix Adaption ES



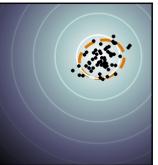
Generation 4



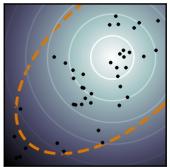
Generation 2



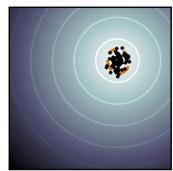
Generation 5



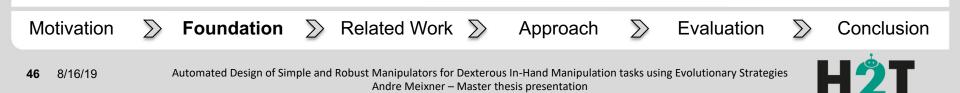
Generation 3



Generation 6

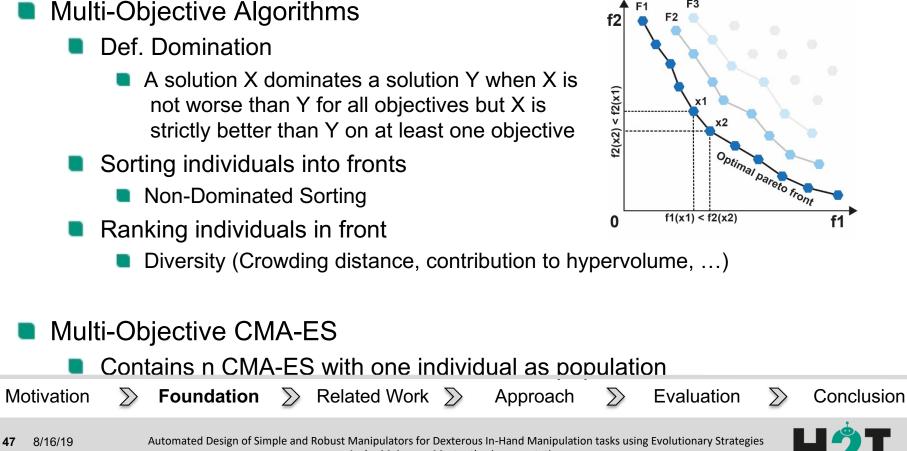


Source: https://en.wikipedia.org/wiki/CMA-ES



[ER] Multiple objectives / fitness functions

Fitness function for CMA-ES as weighted mean of fitness functions



Andre Meixner – Master thesis presentation