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Abstract—We preseot in-hand masipulation skills on & dex-
terows, compliant, anthropomorphic hand. Even though these
shills were derived in & simplistic manner, they exhibil surprising
robustmess 10 variations in shape, size, weight, and placement of
the manipulsted object. They are alwo very lnsensitive to yariation
of execution speeds, ranging from highly dynamic to quasi-static.
The robustness of the shills leads 1o compositional properties
that emable extended and robust manipulation programs. To
explain the surprising robustoess of the in-hand ssasipelation
skills, we performed a detailed, empicical analysis of the skills'
performance. From this analysis, we identily three principles
for skill design: 1) Exploiting the hardware's nmate ability
to drive hard-to-model contact dymamics. I) Tauking actions o
comstrain these imteractions, fenncling the system into a narrow
sel of possibilities. J3) Composing such action sequences inlo

complex manipulation programs. We belleve that these principles
comsiMute an important foundation For robust robotic in-hand

manipulation, and pessibly for mamipulation in gemeral




Surprisingly
Robust ln-Ha
Manipulation



https://www.youtube.com/watch?v=Z6ECG3KHibI

Oliver Brock
Robotics and Biology Laboratory, TU Berlin

Versions of the RBO Hand
Soft Hands

Over time we have created quite a few different versions of the RBO Hand, Here are a

Soft Hands represent a departure from classical robot hand design, which often relies few:
on exact models and precise planning of contact points. Instead, we aim to increase

robustness and safety through the use of soft materiais and flexible mechanics. This Hand prototypes for the SOMA project
softness allows us to exploil contact with the environment and use It in robust grasping _

and manipulation strategies.

In our lab we develop the RBO Hand 2, research necessary Soft Robotic aspects, and
formulate the concept of Morphological Computation.

RBO Hand 2 |

The RBO Hand 2 is a hand made from
PneuFlex actuators mounted on a flexible,
printed scaffold, The hand was developed
to investigate the capabilities and limits of
hands when relying only on soft,
deformable structures. The unigue
deformability provides several
advantageous benefits to robots trying to A"
interact with the environment: '

The RBO Hand 2 ho

Aditya Bhatt Adrian Sieler  Steffen Puhimann

* very robust against blunt collisions

* very low impact energies & RBO -~

* passively compliant fingers and palm
decouple contact from the robot arm, L RBO
stabilizing force control

§ e

* mechanical adaptability to object shapes simplifies finger control

* the pneumatic actuation makes it easy to create complex hand and actuator
geometnes

The result of our research are several hand prototypes, which we refer to collectively as
Soft Hands. RBO Hand 2 Is the latest model and used In our lab for research Into
grasping strategles.

The RBO Hand 2 is controfied using a PneumaticBox and Is relatively cheap to produce,

modify and repair. £ RBO

2] CAD models for the PneuFlex actuators. versions of the RBO Hand, based on

Contact: Raphae!l Deimel, Vincent Wall feedback from all partners in the consortium. These hand versions change the

geometry of the fingers, paims, and wrist, Because the RBO Hand Is assembled from
modular parts, we can quickly switch out parts and try different ideas.

https://www.robotics.tu-berlin.de/menue/research/soft_hands



RBO Hand 1 https://www.voutube.com/watch?v=ziY-



https://www.youtube.com/watch?v=ziY-pHSpH5Q
https://www.youtube.com/watch?v=ziY-pHSpH5Q

How they’re made: https://www.youtube.com/watch?v=Ss-9iXRUeGc&t=814s



https://www.youtube.com/watch?v=Ss-9iXRUeGc
https://www.youtube.com/watch?v=Ss-9iXRUeGc&t=814s
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RBO Hand 3 (earlier version) https://www.youtube.com/watch?v=ENbrUOmDsS|



https://www.youtube.com/watch?v=ENbrUOmDsSI
https://www.youtube.com/watch?v=ENbrUOmDsSI

Context

“The state of the art, at this time, is the groundbreaking work presented
by OpenAl [1], who used Deep Reinforcement Learning to produce
remarkably dexterous behavior on a five- fingered robotic hand, first
manipulating a cube and later even an articulated Rubik’s cube [2].

Their learned skills feature contact-rich movements like finger-gaiting,
pivoting, and the exploitation of gravity.”



https://journals.sagepub.com/doi/pdf/10.1177/0278364919887447
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Learning dexterous in-hand manipulation
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Szymon Sidor, Josh Tobin, Peter Welinder, Lilian Weng and Wojciech Zaremba

Abstract

We use reinforcement learning (RL) to learn dexterous in-hand manipwlation policies that can perform vision-based object
reorientation on a physical Shadow Dexterous Hand. The training is performed in a simulated environment in which we
randomize many of the physical properties of the system such as friction coefficients and an object 5 appearance. Owr pol-
icies transfer to the physical robot despite being trained entirely in simulation. Our method does not rely on any human
demonstrations, but many behaviors found in human manipulation emerge natrally, including finger gaiting, multi-finger
coordination, and the controlled use of gravity. Owr results were obtained using the same distributed RL system that was

used to train OpenAl Five. We also include a video of our results: https:/youtu, be/jwSbzNHGSIM.



OpenAl conducts fundamental, long-term + Founded in 2015, by Elon Musk, Sam Altman, ...
research toward the creation of safe AGI. * Pertorms research on a wide variety of Al problems
 Known in our community for OpenAl gym
* Reinforcement learning environments
* https://gym.openai.com/

Milestones

https://openai.com/research/



OpenAl Manipulation Demo: https.//www.youtube.com/watch?v=wSbzNHGfIM


https://www.youtube.com/watch?v=jwSbzNHGflM

Shadow Dexterous Hand




ht_tps://\./vww.shadowrobot.Com/wp-content/upIoads/shadow_dexterous_hand_e_technical_specification.pdf

FINGERS
we RE_ U
FF G
" - ] l ) l.' -
'l' ) " "’ - '.ul .‘.‘ . --‘ :
> N ) :’;-}’ 2 \':') ”;.f
N RSN RN
N R e N
b\ S PO e
O .y
THUMB _._ ‘ oo
— A\ D
I :r Io.- " i -
(:/‘ . =y - : N /
| J /"f T EANINED :
T 8y N~ wRisT
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* Electric, tendon driven
e First commercialized in 2005
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Reinforcement Learning (PPO)

» State (60-dimensional): angles and velocities of all robot joints as well as
the position, rotation, and velocities of the object. Initial states are sampled by
placing the object on the robot’s palm in a random orientation and applying
random actions for 100 steps

 Goal: desired orientation of the object

* Action (20-dimensional): desired angles of the hand joints. Each action
dimension is discretized into 11 bins of equal size.

 Reward: improvement in (angular) distance to the goal orientation. An
additional reward of 5 whenever a goal is achieved with some tolerance. A
reward of -20 (penalty) whenever the object is dropped.



Randomizations

Table 1. Standard deviation of applied Gaussian observation

noise.

Observation Correlated Uncorrelated
Fingertips positions +1 mm +2 mm
Object position +5 mm +1 mm
Object orientation *+0.1 rad *+(0.1 rad
Fingertip marker positions +3 mm

Hand base marker position +1 mm

Table 2. Ranges of physics parameter randomizations.

Parameter

Scaling factor range

Object dimensions
Object and robot link masses
Surface friction coefficients

Robot joint damping coefficients

Actuator force gains (P term)

uniform (
uniform (
uniform(

0.95,1.05))
0.5,1.5))

0.7,1.3])

loguniform ([0.3, 3.0))
loguniform ([0.75, 1.5])

Parameter

Additive term range

Joint limits
Gravity vector (per coordinate)

N(0,0.15) rad

N(0,0.4)

m/s>

Table 3. Standard deviation of action noise.

Noise type Percentage of range
Uncorrelated additive 5%

Correlated additive 1.5%

Uncorrelated multiplicative 1.5%

Table 4. Ranges of vision randomizations.

Randomization type Range

Number of cameras 3

Camera position * 1.5 mm

Camera rotation

Camera field of view

Robot material colors

Robot material metallic level
Robot material glossiness level
Object material hue

Object material saturation
Object material value

Object metallic level

Object glossiness level
Number of lights

Light position

Light relative intensity
Total light intensity
Image contrast adjustment

Additive per-pixel Gaussian noise

0-3° around a random axis
=+ 1°

uniform over RGB values
5-25%"

0-100%*

+ 1%

+ 15%

+ 15%

5-15%"*

5-15%*

4-6

uniform over

upper half-sphere

1-5

0-152

50-150%

+ 10%

“In units used by Unity. See https://unity3d.com/learn/tutorials/s/

graphics.



Consecutive Goals Achieved
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Table 10. The number of successful consecutive rotations on the physical robot of five policies trmined separately in environments
with different mndomizations held out, The first five rows use PhaseSpace for object pose estimation and were run on the same robot
at the same time. Tnals for cach row were interlcaved in case the state of the robot changed during the tnals. The last two rows were
measured at a different time from the first five and used the visson model to estimate the object pose.

Training covironment Mecan Medsan Individual tnals (sorted)

All randomizations (statc) 188+17.1 13 50 41 29 27 14 12 6 “ 4 |
No randomuzations (state) 1.I1=19 0 6 2 2 1 0 0 0 0 0 0
No observation noise (state) 15.1%14.5 8.5 45 35 23 11 9 8 7 6 6 l
No physics randomizations (state) 3.5225 2 7 7 7 3 2 2 2 2 2 |
No unmodeled effects (stase) 35=48% 2 16 7 3 3 2 2 | | 0 0
All randomizations (vision) 15.2+14.3 11.5 46 28 26 15 13 10 ] 3 2 l
No observation noise (vision) 5.9%6.6 35 20 12 1l 6 5 2 2 ] 0 0

Table 11. The number of successful consecutive rotations on the physical robot of three policies with different network architectures
trained on an environment with all randomizations. Results for each row were collected at different times on the physical robot.

Network architecture Mean Median  Individual trials (sorted)

LSTM policy/LSTM value (state)  18.8+17.1 13 SO 4 29 27 14 12 6 4 4 |
FF policy/LSTM value (state) 47+4.] 3.5 15 7 & 5 4 3 %5 3 2 b
FF policy/FF value (state) 4.6+4.3 3 15 8 6 S5 3 3 2 2 2 0



Cconsecutive Goals Achieved
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In our implementation, a pool of 384
worker machines, each with 16 CPU cores,
generate experience by rolling out the
current version of the policy in a sample
from the previously described distribution
of randomized simula- tions. ... This setup
allows us to generate about 2 years of
simulated experience per hour.

The optimization 1s performed on a single
machine with eight GPUs. The optimizer
threads pull down generated experience .
and then stage it to their respective GPU’
memory for processing. After computing
gradients locally, they are averaged across
all threads using MPI, which we then use
to update the network parameters.




https://www.youtube.com/watch?v=DKe8FumoD4E&t=198s

Results

GOAL 50



https://www.youtube.com/watch?v=DKe8FumoD4E
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Skills are keyframed
(remember the mixer?)

Fig. 5. Air-mass actuation signal for the spin + shift skill. Each vertical
line corresponds to an intermediate keyframe. Appendix A contains a detailed
description of each of these keyframes.



RBO 3 Skills

5 skills were keyframed

* Spin uses the thumb to rotate the cube ounter-clockwise by 90©
around the ring-finger, and places it to rest on the index and middle
finger. It does so with 7 keyframes.

e Shift, also called Ring—Little (RL) Finger Gait, gaits the cube
from the ring-finger to the little finger, and places it to rest on the
ring and middle finger (5 keyframes).

o Twist uses the thumb, middle, and ring fingers to lift the cube into
a precision grip, in the process rotating the cube counter-clockwise

by 90© (9 keyframes).

e Pivot maintains this posture, contacting the cube with the index

finger to rotate it by 90© around the grip axis
(6 keyframes).

e Middle—Ring (MR) Finger Gait, a variant of shift, gaits the cube
from this posture to a grasp between the thumb and middle finger,
and places 1t to rest on the index and ring fingers (6 keyframes).




Robustness to Object Placement

Placement
Variations

Spin - Shift \H


https://www.youtube.com/watch?v=-gzeFdHbvIM

Robustness to Object Placement



https://www.youtube.com/watch?v=gzvRXcdolpc

Generalizing to New Objects

Different
Objects

Spin - Shift


https://www.youtube.com/watch?v=TejM-kfllVE

Generallzmg to New Objects

Medium Cube arge Cube Rubik's Cube
L L - 78g, 5.5Ccm

( 1 £ B T ROse "u o Pose Cuboid Pose 35
3,6 X 45 x45cm 33,6 X 45 % 4. Cr m 839, 6 x 4.5 x45cm


https://www.youtube.com/watch?v=NNf5UBgQQZk

Changing Speed

Variations

Spin - Shift


https://www.youtube.com/watch?v=JU6BlpaqjVA

Repeatabili



https://www.youtube.com/watch?v=6OAWxvhpfdQ

Faillures

Failures

Spin - Shift



https://www.youtube.com/watch?v=roLVk5pKQX8

Three Principles for Robust Manipulation

1. Morphological Computation

“Exploiting the intrinsic properties
of mechanical hardware can also
provide a simple, effective and
reliable way of dealing with
mechanical interaction.”

—Neville Hogan

Hogan, N. "Impedance control-An approach to
manipulation. Part I-Theory." ASME Journal of
Dynamic Systems and Measurement Control (1985)



https://www.youtube.com/watch?v=6yiSLq59yFA

Three Principles for Robust Manipulation

2. Constraining Object Motion

Fg &  Robost manipulstion s & series of uncertainty-restricting comstraint exploitations: The plots depict 3 keyframe-by-keyframe breakdown of
cube poses (2, v, 0) gathered over 33 independent tnals of spie « shiff. The underiasd photographs are sourced from caly the most salieat keyframes of oae
lustrative execution. A white dot marks the cebe position from a sisgle execution, and the associated arrow indicates the planar rotation @, The Nue region
coancly indicales the set of observad cube positions over all nals. The groen bany repeesent physical walls implemented By the fingers, and the green armows
represent active pushing Imeractons.



Three Principles for Robust Manipulation

2. Constralnlng Object Motion

Erdmann, Michael A., and Matthew T. Mason. "An
exploration of sensorless manipulation." IEEE
Journal on Robotics and Automation 4, no. 4
(1988): 369-379.

L
N

I

Fig. 2. Beginning at the upper left and moving from left to right, we can
trace an automatically generated program that orients the wrench. Each
frame shows the set of possible wrench contacts, and the operation to be
applied. Each operation is represented by an interval of azimuths. The
azimuth arrows indicate the tray's direction of steepest ascent; gravity acts
in the opposite direction.



Three Principles for Robust Manipulation

3. Compositing Manipulation Funnels

, | st
' 41-«!-‘1 X Pivot

KF1-+KF2

“Using a funnel, the goal to
position an object can be
accomplished despite variation in

the initial locations and shapes of N7 | kezkrs 74

the objects.” S—7 | vesoxe \ /
—Matt Mason T

Mason, Matthew. "The mechanics of manipulation.” w—

In Proceedings. 1985 |IEEE International

Conference on Robotics and Automation, 1985.

Fig. 10. Robust manipulation through funnel composition: Like spin,
each skill is composed of funnel-like robust primitive manipulations, so it is
a robust funnel in itself. Each funnel reliably transforms a set of hand-object
configurations (its entrance) into another set (its exit). We designed our skills

to funnel into each other, letting us compose longer manipulation plans like
FABCDE.



Three Principles for Robust Manipulation

3. Compositing Manipulation Funnels

o

2
Cans
“Using a funnel, the goal to RBO™
position an object can be |
accomplished despite variation in

the initial locations and shapes of
the objects.”

— Matt Mason

Mason, Matthew. "The mechanics of manipulation.”
In Proceedings. 1985 |IEEE International
Conference on Robotics and Automation, 1985.


https://www.youtube.com/watch?v=tnq0xXMUbhc

Other Insights

 Hand morphology and control strategies should be designed together
* (Good results rely on compliance and large contact surface areas

 OpenAl may have attempted something much harder than what was required
* rigid hand
* physical constraints not explicitly exploited
 compositionality using funnels not explicitly considered

* Could more effective learning techniques incorporate these ideas”






