FLUID SIMULATION

Robert Bridson, UBC

Matthias Müller-Fischer, AGEIA Inc.

Adapted from SIGGRAPH 2007 course notes. The original presentation is here: https://www.cs.ubc.ca/~rbridson/fluidsimulation/

The Basic Equations

Symbols

" \vec{u} : velocity with components (u, v, w)

- ρ : fluid density
" p: pressure
" \vec{g} : acceleration due to gravity or animator
" μ : dynamic viscosity

The Equations

- Incompressible Navier-Stokes:
-"Momentum Equation"

$$
\frac{\partial \stackrel{\rightharpoonup}{u}}{\partial t}+\stackrel{\rightharpoonup}{u} \cdot \nabla \stackrel{\rightharpoonup}{u}+\frac{1}{\rho} \nabla p=\vec{g}+\frac{\mu}{\rho} \nabla \cdot \nabla \stackrel{\rightharpoonup}{u}
$$

-"Incompressibility condition"

$$
\nabla \cdot \stackrel{\rightharpoonup}{u}=0
$$

The Momentum Equation

The Momentum Equation

- Just a specialized version of $F=m a$
- Let's build it up intuitively
- Imagine modeling a fluid with a bunch of particles (e.g. blobs of water)
- A blob has a mass m, a volume V, velocity u
- We' Il write the acceleration as Du/Dt ("material derivative")

$$
m \frac{D \vec{u}}{D t}=\stackrel{\rightharpoonup}{F}
$$

- What forces act on the blob?

Forces on Fluids

- Gravity: mg
- or other "body forces" designed by animator

$$
m \frac{D \vec{u}}{D t}=m \vec{g}+\ldots
$$

- And a blob of fluid also exerts contact forces on its neighbouring blobs...

Pressure

- The "normal" contact force is pressure (force/area)
- How blobs push against each other, and how they stick together
- If pressure is equal in every direction, net force is zero... Important quantity is pressure gradient:

$$
m \frac{D \stackrel{\rightharpoonup}{u}}{D t}=m \stackrel{\rightharpoonup}{g}-V \nabla p+\ldots
$$

- What is the pressure? Coming soon...

Viscosity

- Think of it as frictional part of contact force: a sticky (viscous) fluid blob resists other blobs moving past it
- For now, simple model is that we want velocity to be blurred/diffused/...
- Blurring in PDE form comes from the Laplacian:

$$
m \frac{D \vec{u}}{D t}=m \vec{g}-V \nabla p+V \mu \nabla \cdot \nabla \vec{u}
$$

The Continuum Limit (1)

- Model the world as a continuum:
- \# particles $\rightarrow \infty$

Mass and volume $\rightarrow 0$

- We want $\mathrm{F}=\mathrm{ma}$ to be more than $0=0$:
- Divide by mass

$$
\frac{D \vec{u}}{D t}=\vec{g}-\frac{V}{m} \nabla p+\frac{V}{m} \mu \nabla \cdot \nabla \vec{u}
$$

The Continuum Limit (2)

- The fluid density is $\rho=m / \mathrm{V}$:

$$
\frac{D \vec{u}}{D t}+\frac{1}{\rho} \nabla p=\vec{g}+\frac{\mu}{\rho} \nabla \cdot \nabla \vec{u}
$$

- This is almost the same as the stanford eq' n (in fact, the form we mostly use!)
- The only weird thing is Du/Dt...

Lagrangian vs. Eulerian

- Lagrangian viewpoint:
- Treat the world like a particle system
- Label each speck of matter, track where it goes (how fast, acceleration, etc.)
- Eulerian viewpoint:
- Fix your point in space
- Measure stuff as it flows past
- Think of measuring the temperature:
- Lagrangian: in a balloon, floating with the wind
- Eulerian: on the ground, wind blows past

The Material Derivative (1)

- We have fluid moving in a velocity field u
- It possesses some quality q
- At an instant in time t and a position in space x, the fluid at x has $q(x, t)$
- $q(x, t)$ is an Eulerian field
- How fast is that blob of fluid's q changing?
- A Lagrangian question
- Answer: the material derivative Dq/Dt

The Material Derivative (2)

- It all boils down to the chain rule:

$$
\begin{aligned}
\frac{D}{D t} q(x, t) & =\frac{\partial q}{\partial t}+\frac{\partial q}{\partial x} \cdot \frac{d x}{d t} \\
& =\frac{\partial q}{\partial t}+\nabla q \cdot \vec{u}
\end{aligned}
$$

- We usually rearrange it:

$$
\frac{D q}{D t}=\frac{\partial q}{\partial t}+\vec{u} \cdot \nabla q
$$

Turning Dq/Dt Around

For a thought experiment, turn it around:

$$
\frac{\partial q}{\partial t}=\frac{D q}{D t}-\vec{u} \cdot \nabla q
$$

- That is, how fast q is changing at a fixed point in space $(\partial \mathrm{q} / \partial \mathrm{t})$ comes from two things:
- How fast q is changing for the blob of fluid at x
- How fast fluid with different values of q is flowing past

Writing D/Dt Out

- We can explicitly write it out from components:

$$
\begin{aligned}
\frac{D q}{D t} & =\frac{\partial q}{\partial t}+\vec{u} \cdot \nabla q \\
& =\frac{\partial q}{\partial t}+u \frac{\partial q}{\partial x}+v \frac{\partial q}{\partial y}+w \frac{\partial q}{\partial z}
\end{aligned}
$$

D/Dt For Vector Fields

- Say our fluid has a colour variable (RGB vector) C
- We still write

$$
\frac{D \stackrel{\rightharpoonup}{C}}{D t}=\frac{\partial \stackrel{\rightharpoonup}{C}}{\partial t}+\vec{u} \cdot \nabla \stackrel{\rightharpoonup}{C}
$$

- The dot-product and gradient confusing?
- Just do it component-by-component:

$$
\frac{D \vec{C}}{D t}=\left[\begin{array}{c}
D R / D t \\
D G / D t \\
D B / D t
\end{array}\right]=\left[\begin{array}{c}
\partial R / \partial t+\vec{u} \bullet \nabla R \\
\partial G / \partial t+\vec{u} \bullet \nabla G \\
\partial B / \partial t+\vec{u} \bullet \nabla B
\end{array}\right]
$$

Du/Dt

- This holds even if the vector field is velocity itself:

$$
\begin{gathered}
\frac{D \vec{u}}{D t}=\frac{\partial \vec{u}}{\partial t}+\vec{u} \cdot \nabla \vec{u} \\
{\left[\begin{array}{c}
D u / D t \\
D v / D t \\
D w / D t
\end{array}\right]=\left[\begin{array}{c}
\partial u / \partial t+\vec{u} \cdot \nabla u \\
\partial v / \partial t+\vec{u} \cdot \nabla v \\
\partial w / \partial t+\vec{u} \cdot \nabla w
\end{array}\right]}
\end{gathered}
$$

- Nothing different about this, just that the fluid blobs are moving at the velocity they' re carrying.

The Incompressibility Condition

Compressibility

- Real fluids are compressible
- Shock waves, acoustic waves, pistons...
- Note: liquids change their volume as well as gases, otherwise there would be no sound underwater
- But this is nearly irrelevant for animation
- Shocks move too fast to normally be seen (easier/better to hack in their effects)
- Acoustic waves usually have little effect on visible fluid motion
- Pistons are boring

Incompressibility

- Rather than having to simulate acoustic and shock waves, eliminate them from our model: assume fluid is incompressible
- Turn stiff system into a constraint, just like rigid bodies!
- If you fix your eyes on any volume of space, volume of fluid in = volume of fluid out:

$$
\iint_{\partial \Omega} \vec{u} \bullet \hat{n}=0
$$

Divergence

- Let's use the divergence theorem:

$$
\iint_{\partial \Omega} \vec{u} \bullet \hat{n}=\iiint_{\Omega} \nabla \cdot \vec{u}
$$

- So for any region, the integral of $\nabla \cdot \vec{u}$ is zero
- Thus it's zero everywhere:

$$
\nabla \cdot \bar{u}=0
$$

Pressure

- Pressure p:
whatever it takes to make the velocity field divergence free
- If you know constrained dynamics, $\nabla \cdot \vec{u}=0$ is a constraint, and pressure is the matching Lagrange multiplier
- Our simulator will follow this approach:
- solve for a pressure that makes our fluid incompressible at each time step.

Aside: A Few Figures

- Dynamic viscosity of air: $\mu_{\text {air }} \approx 1.8 \times 10^{-5} \mathrm{Ns} / \mathrm{m}^{2}$
- Density of air: $\rho_{\text {air }} \approx 1.3 \mathrm{~kg} / \mathrm{m}^{3}$
- Dynamic viscosity of water: $\mu_{\text {water }} \approx 1.1 \times 10^{-3} \mathrm{Ns} / \mathrm{m}^{2}$
- Density of water: $\quad \rho_{\text {water }} \approx 1000 \mathrm{~kg} / \mathrm{m}^{3}$
- The ratio, $\mu_{\text {air }} / \mu_{\text {water }}$ ("kinematic viscosity") is what's important for the motion of the fluid... ... air is 10 times more viscous than water!

Boundary Conditions

Boundary Conditions

- We know what's going on inside the fluid: what about at the surface?
- Three types of surface
- Solid wall: fluid is adjacent to a solid body
- Free surface: fluid is adjacent to nothing (e.g. water is so much denser than air, might as well forget about the air)
- Other fluid: possibly discontinuous jump in quantities (density, ...)

Solid Wall Boundaries

- No fluid can enter or come out of a solid wall:

$$
\vec{u} \bullet \hat{n}=\vec{u}_{\text {solid }} \bullet \hat{n}
$$

- For common case of $u_{\text {solid }}=0$:

$$
\vec{u} \bullet \hat{n}=0
$$

- Sometimes called the "no-stick" condition, since we let fluid slip past tangentially
- For viscous fluids, can additionally impose "no-slip" condition:

$$
\vec{u}=\vec{u}_{\text {solid }}
$$

Free Surface

- Neglecting the other fluid, we model it simply as pressure=constant
- Since only pressure gradient is important, we can choose the constant to be zero:

$$
p=0
$$

- If surface tension is important (not covered today), pressure is instead related to mean curvature of surface

Multiple Fluids

- At fluid-fluid boundaries, the trick is to determine "jump conditions"
- For a fluid quantity $q,[q]=q_{1}-q_{2}$
- Density jump [p] is known
- Normal velocity jump must be zero: $[\vec{u} \bullet \hat{n}]=0$
- For inviscid flow, tangential velocities may be unrelated (jump is unknown)
- With no surface tension, pressure jump [p]=0

Numerical Simulation Overview

Splitting

- We have lots of terms in the momentum equation: a pain to handle them all simultaneously
- Instead we split up the equation into its terms, and integrate them one after the other
- Makes for easier software design too:
a separate solution module for each term
- First order accurate in time
- Can be made more accurate, not covered today.

A Splitting Example

- Say we have a differential equation

$$
\frac{d q}{d t}=f(q)+g(q)
$$

- And we can solve the component parts:
- SolveF $(\mathrm{q}, \Delta \mathrm{t})$ solves $\mathrm{dq} / \mathrm{dt}=\mathrm{f}(\mathrm{q})$ for time $\Delta \mathrm{t}$
- SolveG(q, $\Delta t)$ solves $d q / d t=g(q)$ for time Δt
- Put them together to solve the full thing:
- $q^{*}=\operatorname{SolveF}\left(q^{n}, \Delta t\right)$
- $q^{n+1}=\operatorname{SolveG}\left(q^{*}, \Delta t\right)$

Does it Work?

- Up to $O(\Delta t)$:

$$
\begin{aligned}
\frac{d q}{d t} & \approx \frac{q^{n+1}-q^{n}}{\Delta t} \\
& =\frac{q^{n+1}-q^{*}}{\Delta t}+\frac{q^{*}-q^{n}}{\Delta t} \\
& \approx g(q)+f(q)
\end{aligned}
$$

Splitting Momentum

- We have three terms: $\frac{\partial \vec{u}}{\partial t}=-\vec{u} \bullet \nabla \vec{u}+\vec{g}-\frac{1}{\rho} \nabla p$
- First term: advection $\frac{\partial \vec{u}}{\partial t}=-\vec{u} \cdot \nabla \vec{u}$
- Move the fluid through its velocity field (Du/Dt=0)
- Second term: gravity $\frac{\partial \vec{u}}{\partial t}=\vec{g}$
- Final term: pressure update $\frac{\partial \vec{u}}{\partial t}=-\frac{1}{\rho} \nabla p$
- How we' Il make the fluid incompressible: $\nabla \bullet \vec{u}=0$

Space

- That' s our general strategy in time; what about space?
- We' ll begin with a fixed Eulerian grid
- Trivial to set up
- Easy to approximate spatial derivatives
- Particularly good for the effect of pressure
- Disadvantage: advection doesn' t work so well
- Later: particle methods that fix this

A Simple Grid

- We could put all our fluid variables at the nodes of a regular grid
- But this causes some major problems
- In 1D: incompressibility means $\frac{\partial u}{\partial x}=0$
- Approximate at a grid point: $\frac{u_{i+1}-u_{i-1}}{2 \Delta x}=0$
- Note the velocity at the grid point isn' t involved!

A Simple Grid Disaster

- The only solutions to $\frac{\partial u}{\partial x}=0$ are $\mathrm{u}=$ constant
- But our numerical version has other solutions:

Staggered Grids

- Problem is solved if we don't skip over grid points
- To make it unbiased, we stagger the grid: put velocities halfway between grid points
- In 1D, we estimate divergence at a grid point as:

$$
\frac{\partial u}{\partial x}\left(x_{i}\right) \approx \frac{u_{i+1 / 2}-u_{i-1 / 2}}{\Delta x}
$$

- Problem solved!

The MAC Grid

- From the Marker-and-Cell (MAC) method [Harlow\&Welch' 65]
- A particular staggering of variables in 2D/3D that works well for incompressible fluids:
- Grid cell ($\mathrm{i}, \mathrm{j}, \mathrm{k}$) has pressure $\mathbf{p}_{\mathrm{i}, \mathrm{j}, \mathrm{k}}$ at its center
- x-part of velocity $\mathbf{u}_{\mathbf{i + 1 / 2 , j k}}$ in middle of x-face between grid cells ($\mathrm{i}, \mathrm{j}, \mathrm{k}$) and ($\mathrm{i}+1, \mathrm{j}, \mathrm{k}$)
- y-part of velocity $\mathbf{v}_{\mathbf{i}, \mathrm{j}+1 / 2, \mathbf{k}}$ in middle of y -face
- z-part of velocity $\mathbf{w}_{\mathbf{i}, \mathrm{j}, \mathrm{k}+1 / 2}$ in middle of \mathbf{z}-face

MAC Grid in 2D

Array storage

- Then for a nx X ny X nz grid, we store them as 3D arrays:
" $\mathrm{p}[\mathrm{nx}, \mathrm{ny}, \mathrm{nz}$]
- u[nx+1, ny, nz]
- v[nx, ny+1, nz]
- w[nx, ny, nz+1]
- And translate indices in code, e.g.

$$
u_{i+1 / 2, j, k} \equiv u[i+1, j, k]
$$

The downside

- Not having all quantities at the same spot makes some algorithms a pain
- Even interpolation of velocities for pushing particles is annoying
- One strategy: switch back and forth (colocated/staggered) by averaging
- My philosophy: avoid averaging as much as possible!

Advection Algorithms

Advecting Quantities

- The goal is to solve

$$
\frac{D q}{D t}=0
$$

"the advection equation" for any grid quantity q

- in particular, the components of velocity
- Rather than directly approximate spatial term, we'll use the Lagrangian notion of advection directly
- We're on an Eulerian grid, though, so the result will be called "semi-Lagrangian"
- Introduced to graphics by [Stam' 99]

Semi-Lagrangian Advection

- Dq/Dt=0 says q doesn't change as you follow the fluid.
- So $q\left(x^{\text {new }}, t^{\text {new }}\right)=q\left(x^{\text {old }}, t^{\text {old }}\right)$
- We want to know q at each grid point at $t^{\text {new }}$ (that is, we' re interested in $x^{\text {new }}=x_{i j k}$)
- So we just need to figure out $x^{\text {old }} \quad$ (where fluid at $\mathrm{x}_{\mathrm{ijk}}$ came from) and $\mathrm{q}\left(\mathrm{x}^{\text {old }}\right)$ (what value of q was there before)

Finding $x^{\text {old }}$

- We need to trace backwards through the velocity field.
- Up to $O(\Delta t)$ we can assume velocity field constant over the time step
- The simplest estimate is then

$$
x^{o l d} \approx x_{i j k}-\Delta t \vec{u}\left(x_{i j k}\right)
$$

- I.e. tracing through the time-reversed flow with one step of Forward Euler
- Other ODE methods can (and should) be used

Which u to Use?

- Note that we only want to advect quantities in an incompressible velocity field
- Otherwise the quantity gets compressed (often an obvious unphysical artifact)
- For example, when we advect u, v, and w themselves, we use the old incompressible values stored in the grid
- Do not update as you go!

Finding $\mathbf{q}\left(\mathbf{x}^{\text {old }}\right)$

- Odds are when we trace back from a grid point to $x^{\text {old }}$ we won't land on a grid point
- So we don't have an old value of q there
- Solution: interpolate from nearby grid points
- Simplest method: bi/trilinear interpolation
- Know your grid: be careful to get it right for staggered quantities!

Boundary Conditions

- What if $x^{\text {old }}$ isn' t in the fluid? (or a nearest grid point we' re interpolating from is not in the fluid?)
- Solution: extrapolate from boundary of fluid
- Extrapolate before advection, to all grid points in the domain that aren' t fluid
- ALSO: if fluid can move to a grid point that isn't fluid now, make sure to do semi-Lagrangian advection there
- Use the extrapolated velocity

Body Forces

Integrating Body Forces

- Gravity vector or volumetric animator forces:

$$
\frac{\partial \vec{u}}{\partial t}=\vec{g}
$$

- Simplest scheme: at every grid point just add

$$
\vec{u}^{*}=\vec{u}^{\text {advected }}+\Delta t \vec{g}
$$

Making Fluids Incompressible

The Continuous Version

- We want to find a pressure p so that the updated velocity:

$$
\vec{u}^{n+1}=\bar{u}^{*}-\frac{\Delta t}{\rho} \nabla p
$$

is divergence free:

$$
\nabla \cdot \vec{u}^{n+1}=0
$$

while respecting the boundary conditions:

$$
\begin{aligned}
\vec{u} \bullet \hat{n} & =\vec{u}_{\text {solid }} \bullet \hat{n} & \text { at solid walls } \\
p & =0 & \text { at the free surface }
\end{aligned}
$$

The Poisson Problem

- Plug in the pressure update formula into incompressibility:

$$
\nabla \cdot\left(\vec{u}^{*}-\frac{\Delta t}{\rho} \nabla p\right)=0
$$

" Turns into a "Poisson equation" for pressure:

$$
\left\{\begin{array}{rlrl}
\nabla \cdot\left(\frac{\Delta t}{\rho} \nabla p\right) & =\nabla \cdot \vec{u}^{*} \\
\frac{\Delta t}{\rho} \nabla p \cdot \hat{n} & =\left(\vec{u}-\vec{u}_{\text {solid }}\right) \cdot \hat{n} & & \text { at solid walls } \\
p & =0 & & \text { at the free surface }
\end{array}\right.
$$

Discrete Pressure Update

The discrete pressure update on the MAC grid:

$$
\begin{aligned}
& u_{i+1 / 2 j k}^{n+1}=u_{i+1 / 2 k}^{*}-\frac{\Delta t}{\rho}\left(\frac{p_{i+1 j k}-p_{i j k}}{\Delta x}\right) \\
& v_{i j+1 / 2 k}^{n+1}=v_{i j+1 / 2 k}^{*}-\frac{\Delta t}{\rho}\left(\frac{p_{i j+1 k}-p_{i j k}}{\Delta x}\right) \\
& w_{i j k+1 / 2}^{n+1}=w_{i j k+1 / 2}^{*}-\frac{\Delta t}{\rho}\left(\frac{p_{i j+1}-p_{i j k}}{\Delta x}\right)
\end{aligned}
$$

Discrete Divergence

The discretized incompressibility condition on the new velocity (estimated at $\mathrm{i}, \mathrm{j}, \mathrm{k}$):

$$
\begin{gathered}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \\
\left(\frac{u_{i+1 / 2 j k}^{n+1}-u_{i-1 / 2 j k}^{n+1}}{\Delta x}+\frac{v_{i j+1 / 2 k}^{n+1}-v_{i j-1 / 2 k}^{n+1}}{\Delta x}+\cdots\right)=0
\end{gathered}
$$

Discrete Pressure Equations

- Substitute in pressure update formula to discrete divergence
- In each fluid cell ($\mathrm{i}, \mathrm{j}, \mathrm{k}$) get an equation:

$$
\frac{1}{\Delta x}\left[\begin{array}{l}
\left(u_{i+1 / 2 k}-\frac{\Delta t}{\rho} \frac{p_{i+1, j}-p_{i j k}}{\Delta x}\right)-\left(u_{i-1 / 2 j k}-\frac{\Delta t}{\rho} \frac{p_{i j k}-p_{i-1, k}}{\Delta x}\right) \\
+\left(v_{i j+1 / 2 k}-\frac{\Delta t}{\rho} \frac{p_{i j+1 k}-p_{i j k}}{\Delta x}\right)-\left(v_{i j-1 / 2 k}-\frac{\Delta t}{\rho} \frac{p_{i j k}-p_{i j-1 k}}{\Delta x}\right) \\
+\left(w_{i j k+1 / 2}-\frac{\Delta t}{\rho} \frac{p_{i j k+1}-p_{i j k}}{\Delta x}\right)-\left(w_{i j k-1 / 2}-\frac{\Delta t}{\rho} \frac{p_{i j k}-p_{i j k-1}}{\Delta x}\right)
\end{array}\right]=0
$$

Linear Equations

- End up with a sparse set of linear equations to solve for pressure
- Matrix is symmetric positive (semi-)definite
- In 3D on large grids, direct methods unsatisfactory
- Instead use Preconditioned Conjugate Gradient, with Incomplete Cholesky preconditioner
- See course notes for full details (pseudo-code)
- Residual is how much divergence there is in u^{n+1}
- Iterate until satisfied it's small enough

Voxelization is Suboptimal

- Free surface artifacts:
- Waves less than a grid cell high aren't "seen" by the fluid solver - thus they don't behave right
- Left with strangely textured surface
- Solid wall artifacts:
- If boundary not grid-aligned, O(1) error
- it doesn't even go away as you refine!
- Slopes are turned into stairs, water will pool on artificial steps.
- More on this later...

