
FLUID SIMULATION

Robert Bridson, UBC

Matthias Müller-Fischer, AGEIA Inc.

Adapted from SIGGRAPH 2007 course notes. The original presentation is here:
https://www.cs.ubc.ca/~rbridson/fluidsimulation/

https://www.cs.ubc.ca/~rbridson/fluidsimulation/

The Basic Equations

Symbols

§ : velocity with components (u,v,w)

§ r: fluid density

§ p: pressure

§ : acceleration due to gravity or animator

§ µ: dynamic viscosity

!u

!g

The Equations

§ Incompressible Navier-Stokes:

§ “Momentum Equation”

§ “Incompressibility condition”

∂
!u
∂t

+
!ui∇!u + 1

ρ
∇p = !g + µ

ρ
∇i∇!u

 ∇i!u = 0

The Momentum Equation

The Momentum Equation

§ Just a specialized version of F=ma

§ Let’s build it up intuitively

§ Imagine modeling a fluid with a bunch of particles
(e.g. blobs of water)

§ A blob has a mass m, a volume V, velocity u

§ We’ll write the acceleration as Du/Dt
(“material derivative”)

§ What forces act on the blob?

m D!u
Dt

=
!
F

Forces on Fluids

§ Gravity: mg

§ or other “body forces” designed by
animator

§ And a blob of fluid also exerts contact forces
on its neighbouring blobs…

m D!u
Dt

= m!g +…

Pressure

§ The “normal” contact force is pressure (force/area)

§ How blobs push against each other,
and how they stick together

§ If pressure is equal in every direction, net force is zero…
Important quantity is pressure gradient:

§ What is the pressure? Coming soon…

m D!u
Dt

= m!g −V∇p +…

Viscosity

§ Think of it as frictional part of contact force:
a sticky (viscous) fluid blob resists other
blobs moving past it

§ For now, simple model is that we want
velocity to be blurred/diffused/…

§ Blurring in PDE form comes from the
Laplacian:

m D!u
Dt

= m!g −V∇p +Vµ∇i∇!u

The Continuum Limit (1)

§ Model the world as a continuum:

§ # particles à∞
Mass and volume à 0

§ We want F=ma to be more than 0=0:

§ Divide by mass

D!u
Dt

=
!g − V

m
∇p + V

m
µ∇i∇!u

The Continuum Limit (2)

§ The fluid density is r=m/V:

§ This is almost the same as the stanford eq’n
(in fact, the form we mostly use!)

§ The only weird thing is Du/Dt…

D!u
Dt

+
1
ρ
∇p = !g + µ

ρ
∇i∇!u

Lagrangian vs. Eulerian

§ Lagrangian viewpoint:

§ Treat the world like a particle system

§ Label each speck of matter, track where it goes
(how fast, acceleration, etc.)

§ Eulerian viewpoint:

§ Fix your point in space

§ Measure stuff as it flows past

§ Think of measuring the temperature:

§ Lagrangian: in a balloon, floating with the wind

§ Eulerian: on the ground, wind blows past

The Material Derivative (1)

§ We have fluid moving in a velocity field u

§ It possesses some quality q

§ At an instant in time t and a position in space
x, the fluid at x has q(x,t)

§ q(x,t) is an Eulerian field

§ How fast is that blob of fluid’s q changing?

§ A Lagrangian question

§ Answer: the material derivative Dq/Dt

The Material Derivative (2)

§ It all boils down to the chain rule:

§ We usually rearrange it:

D
Dt

q(x,t) = ∂q
∂t
+
∂q
∂x

i
dx
dt

=
∂q
∂t
+∇qi!u

Dq
Dt

=
∂q
∂t
+
!ui∇q

Turning Dq/Dt Around

§ For a thought experiment, turn it around:

§ That is, how fast q is changing at a fixed
point in space (∂q/∂t) comes from two things:

§ How fast q is changing for the blob of
fluid at x

§ How fast fluid with different values of q is
flowing past

∂q
∂t

=
Dq
Dt

−
!ui∇q

Writing D/Dt Out

§ We can explicitly write it out from
components:

Dq
Dt

=
∂q
∂t
+
!ui∇q

=
∂q
∂t

+ u
∂q
∂x

+ v
∂q
∂y

+ w
∂q
∂z

D/Dt For Vector Fields

§ Say our fluid has a colour variable (RGB vector) C

§ We still write

§ The dot-product and gradient confusing?

§ Just do it component-by-component:

D
!
C
Dt

=
∂
!
C
∂t

+
!ui∇
!
C

D
!
C
Dt

=

DR Dt
DG Dt
DB Dt

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

∂R ∂t + !ui∇R
∂G ∂t + !ui∇G
∂B ∂t + !ui∇B

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Du/Dt

§ This holds even if the vector field is velocity itself:

§ Nothing different about this, just that the fluid blobs
are moving at the velocity they’re carrying.

D!u
Dt

=
∂
!u
∂t

+
!ui∇!u

Du Dt
Dv Dt
Dw Dt

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

∂u ∂t + !ui∇u
∂v ∂t + !ui∇v
∂w ∂t + !ui∇w

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

The Incompressibility Condition

Compressibility

§ Real fluids are compressible

§ Shock waves, acoustic waves, pistons…

§ Note: liquids change their volume as well as
gases, otherwise there would be no sound
underwater

§ But this is nearly irrelevant for animation

§ Shocks move too fast to normally be seen
(easier/better to hack in their effects)

§ Acoustic waves usually have little effect on
visible fluid motion

§ Pistons are boring

Incompressibility

§ Rather than having to simulate acoustic and
shock waves, eliminate them from our model:
assume fluid is incompressible

§ Turn stiff system into a constraint, just
like rigid bodies!

§ If you fix your eyes on any volume of space,
volume of fluid in = volume of fluid out:

!uin̂
∂Ω
∫∫ = 0

Divergence

§ Let’s use the divergence theorem:

§ So for any region, the integral of is zero

§ Thus it’s zero everywhere:

!uin̂
∂Ω
∫∫ = ∇i!u

Ω
∫∫∫

 ∇i!u

 ∇i!u = 0

Pressure

§ Pressure p:
whatever it takes to make the velocity field
divergence free

§ If you know constrained dynamics,
is a constraint, and pressure is the matching
Lagrange multiplier

§ Our simulator will follow this approach:

§ solve for a pressure that makes our fluid
incompressible at each time step.

 ∇i!u = 0

Aside: A Few Figures

§ Dynamic viscosity of air:

§ Density of air:

§ Dynamic viscosity of water:

§ Density of water:

§ The ratio, µair/µwater (“kinematic viscosity”) is
what’s important for the motion of the fluid…
… air is 10 times more viscous than water!

ρair ≈ 1.3 kg m3

ρwater ≈ 1000 kg m3
µwater ≈ 1.1×10

−3 Ns m2

µair ≈ 1.8 ×10
−5 Ns m2

Boundary Conditions

Boundary Conditions

§ We know what’s going on inside the fluid:
what about at the surface?

§ Three types of surface

§ Solid wall: fluid is adjacent to a solid body

§ Free surface: fluid is adjacent to nothing
(e.g. water is so much denser than air,
might as well forget about the air)

§ Other fluid: possibly discontinuous jump
in quantities (density, …)

Solid Wall Boundaries

§ No fluid can enter or come out of a solid wall:

§ For common case of usolid=0:

§ Sometimes called the “no-stick” condition,
since we let fluid slip past tangentially

§ For viscous fluids, can additionally
impose “no-slip” condition:

!uin̂ = !usolid in̂

!uin̂ = 0

!u = !usolid

Free Surface

§ Neglecting the other fluid, we model it simply
as pressure=constant

§ Since only pressure gradient is important,
we can choose the constant to be zero:

§ If surface tension is important (not covered
today), pressure is instead related to mean
curvature of surface

p = 0

Multiple Fluids

§ At fluid-fluid boundaries, the trick is to
determine “jump conditions”

§ For a fluid quantity q, [q]=q1-q2

§ Density jump [r] is known

§ Normal velocity jump must be zero:

§ For inviscid flow, tangential velocities may be
unrelated (jump is unknown)

§ With no surface tension, pressure jump [p]=0

 [
!uin̂] = 0

Numerical Simulation Overview

Splitting

§ We have lots of terms in the momentum
equation: a pain to handle them all
simultaneously

§ Instead we split up the equation into its terms,
and integrate them one after the other

§ Makes for easier software design too:
a separate solution module for each term

§ First order accurate in time

§ Can be made more accurate, not covered today.

A Splitting Example

§ Say we have a differential equation

§ And we can solve the component parts:

§ SolveF(q,∆t) solves dq/dt=f(q) for time ∆t

§ SolveG(q,∆t) solves dq/dt=g(q) for time ∆t

§ Put them together to solve the full thing:

§ q* = SolveF(qn, ∆t)

§ qn+1 = SolveG(q*, ∆t)

dq
dt

= f (q) + g(q)

Does it Work?

§ Up to O(∆t): dq
dt

≈
qn+1 − qn

Δt

=
qn+1 − q∗

Δt
+
q* − qn

Δt
≈ g(q) + f (q)

Splitting Momentum

§ We have three terms:

§ First term: advection

§ Move the fluid through its velocity field (Du/Dt=0)

§ Second term: gravity

§ Final term: pressure update

§ How we’ll make the fluid incompressible:

∂
!u
∂t

= −
!ui∇!u + !g − 1

ρ
∇p

∂
!u
∂t

= −
!ui∇!u

∂
!u
∂t

=
!g

∂
!u
∂t

= −
1
ρ
∇p

 ∇i!u = 0

Space

§ That’s our general strategy in time; what
about space?

§ We’ll begin with a fixed Eulerian grid

§ Trivial to set up

§ Easy to approximate spatial derivatives

§ Particularly good for the effect of
pressure

§ Disadvantage: advection doesn’t work so well

§ Later: particle methods that fix this

A Simple Grid

§ We could put all our fluid variables at the
nodes of a regular grid

§ But this causes some major problems

§ In 1D: incompressibility means

§ Approximate at a grid point:

§ Note the velocity at the grid point isn’t
involved!

∂u
∂x

= 0

ui+1 − ui−1
2Δx

= 0

A Simple Grid Disaster

§ The only solutions to are u=constant

§ But our numerical version has other solutions:

∂u
∂x

= 0

u

x

Staggered Grids

§ Problem is solved if we don’t skip over grid
points

§ To make it unbiased, we stagger the grid:
put velocities halfway between grid points

§ In 1D, we estimate divergence at a grid point as:

§ Problem solved!

∂u
∂x
(xi) ≈

ui+ 12 − ui− 12
Δx

The MAC Grid

§ From the Marker-and-Cell (MAC) method
[Harlow&Welch’65]

§ A particular staggering of variables in 2D/3D that
works well for incompressible fluids:

§ Grid cell (i,j,k) has pressure pi,j,k at its center

§ x-part of velocity ui+1/2,jk in middle of x-face
between grid cells (i,j,k) and (i+1,j,k)

§ y-part of velocity vi,j+1/2,k in middle of y-face

§ z-part of velocity wi,j,k+1/2 in middle of z-face

ui− 12, j ui+ 12, jvi, j− 12

MAC Grid in 2D

pi, j pi+1, j

pi, j−1

pi, j+1

pi−1, j

vi, j+ 12

Array storage

§ Then for a nx X ny X nz grid, we store them
as 3D arrays:

§ p[nx, ny, nz]

§ u[nx+1, ny, nz]

§ v[nx, ny+1, nz]

§ w[nx, ny, nz+1]

§ And translate indices in code, e.g.

ui+ 12, j ,k ≡ u[i +1, j,k]

The downside

§ Not having all quantities at the same spot
makes some algorithms a pain

§ Even interpolation of velocities for
pushing particles is annoying

§ One strategy: switch back and forth
(colocated/staggered) by averaging

§ My philosophy: avoid averaging as much as
possible!

Advection Algorithms

Advecting Quantities

§ The goal is to solve

“the advection equation” for any grid quantity q

§ in particular, the components of velocity

§ Rather than directly approximate spatial term, we’ll
use the Lagrangian notion of advection directly

§ We’re on an Eulerian grid, though, so the result will be
called “semi-Lagrangian”

§ Introduced to graphics by [Stam’99]

Dq
Dt

= 0

Semi-Lagrangian Advection

§ Dq/Dt=0 says q doesn’t change as you follow
the fluid.

§ So

§ We want to know q at each grid point at tnew

(that is, we’re interested in xnew=xijk)

§ So we just need to figure out
xold (where fluid at xijk came from)
and
q(xold) (what value of q was there before)

q(xnew ,t new) = q(xold ,t old)

Finding xold

§ We need to trace backwards through the velocity
field.

§ Up to O(∆t) we can assume velocity field constant
over the time step

§ The simplest estimate is then

§ I.e. tracing through the time-reversed flow with
one step of Forward Euler

§ Other ODE methods can (and should) be used

 x
old ≈ xijk − Δt

!u(xijk)

Which u to Use?

§ Note that we only want to advect quantities in
an incompressible velocity field

§ Otherwise the quantity gets compressed
(often an obvious unphysical artifact)

§ For example, when we advect u, v, and w
themselves, we use the old incompressible
values stored in the grid

§ Do not update as you go!

Finding q(xold)

§ Odds are when we trace back from a grid
point to xold we won’t land on a grid point

§ So we don’t have an old value of q there

§ Solution: interpolate from nearby grid points

§ Simplest method: bi/trilinear
interpolation

§ Know your grid: be careful to get it right
for staggered quantities!

Boundary Conditions

§ What if xold isn’t in the fluid? (or a nearest grid
point we’re interpolating from is not in the fluid?)

§ Solution: extrapolate from boundary of fluid

§ Extrapolate before advection, to all grid points in
the domain that aren’t fluid

§ ALSO: if fluid can move to a grid point that isn’t
fluid now, make sure to do semi-Lagrangian
advection there

§ Use the extrapolated velocity

Body Forces

Integrating Body Forces

§ Gravity vector or volumetric animator forces:

§ Simplest scheme: at every grid point just add

∂
!u
∂t

=
!g

!u* = !uadvected + Δt !g

Making Fluids Incompressible

The Continuous Version

§ We want to find a pressure p so that the
updated velocity:

is divergence free:

while respecting the boundary conditions:

!un+1 =
!u* − Δt

ρ
∇p

 ∇i!un+1 = 0

!uin̂ = !usolid in̂ at solid walls
p = 0 at the free surface

The Poisson Problem

§ Plug in the pressure update formula into
incompressibility:

§ Turns into a “Poisson equation” for pressure:

∇i !u* − Δt

ρ
∇p

⎛

⎝⎜
⎞

⎠⎟
= 0

∇i
Δt
ρ
∇p

⎛

⎝⎜
⎞

⎠⎟
= ∇i!u*

Δt
ρ
∇pin̂ = (!u − !usolid)in̂ at solid walls

p = 0 at the free surface

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

Discrete Pressure Update

§ The discrete pressure update on the MAC
grid:

ui+ 12 jk
n+1 = ui+ 12 jk

* −
Δt
ρ

pi+1 jk − pijk
Δx

⎛

⎝⎜
⎞

⎠⎟

vij+ 12k
n+1 = vij+ 12k

* −
Δt
ρ

pij+1k − pijk
Δx

⎛

⎝⎜
⎞

⎠⎟

wijk+ 12
n+1 = wijk+ 12

* −
Δt
ρ

pijk+1 − pijk
Δx

⎛

⎝⎜
⎞

⎠⎟

Discrete Divergence

§ The discretized incompressibility condition on
the new velocity (estimated at i,j,k):

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0

ui+ 12 jk
n+1 − ui− 12 jk

n+1

Δx
+
vij+ 12k
n+1 − vij− 12k

n+1

Δx
+!

⎛

⎝
⎜

⎞

⎠
⎟ = 0

Discrete Pressure Equations

§ Substitute in pressure update formula to
discrete divergence

§ In each fluid cell (i,j,k) get an equation:

1
Δx

ui+ 12 jk −
Δt
ρ

pi+1 jk − pijk
Δx

⎛

⎝⎜
⎞

⎠⎟
− ui− 12 jk −

Δt
ρ

pijk − pi−1 jk
Δx

⎛

⎝⎜
⎞

⎠⎟

+ vij+ 12k −
Δt
ρ

pij+1k − pijk
Δx

⎛

⎝⎜
⎞

⎠⎟
− vij− 12k −

Δt
ρ

pijk − pij−1k
Δx

⎛

⎝⎜
⎞

⎠⎟

+ wijk+ 12
−
Δt
ρ

pijk+1 − pijk
Δx

⎛

⎝⎜
⎞

⎠⎟
− wijk− 12

−
Δt
ρ

pijk − pijk−1
Δx

⎛

⎝⎜
⎞

⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= 0

Linear Equations

§ End up with a sparse set of linear equations to solve
for pressure

§ Matrix is symmetric positive (semi-)definite

§ In 3D on large grids, direct methods unsatisfactory

§ Instead use Preconditioned Conjugate Gradient, with
Incomplete Cholesky preconditioner

§ See course notes for full details (pseudo-code)

§ Residual is how much divergence there is in un+1

§ Iterate until satisfied it’s small enough

Voxelization is Suboptimal

§ Free surface artifacts:

§ Waves less than a grid cell high aren’t “seen” by
the fluid solver – thus they don’t behave right

§ Left with strangely textured surface

§ Solid wall artifacts:

§ If boundary not grid-aligned, O(1) error
– it doesn’t even go away as you refine!

§ Slopes are turned into stairs,
water will pool on artificial steps.

§ More on this later…

