FLUID SIMULATION

Robert Bridson, UBC Matthias Müller-Fischer, AGEIA Inc.

Adapted from SIGGRAPH 2007 course notes. The original presentation is here: <u>https://www.cs.ubc.ca/~rbridson/fluidsimulation/</u>

The Basic Equations

Symbols

- \vec{u} : velocity with components (u,v,w)
- ρ: fluid density
- p: pressure
- \overline{g} : acceleration due to gravity or animator
- µ: dynamic viscosity

The Equations

- Incompressible Navier-Stokes:
 - "Momentum Equation"

$$\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} + \frac{1}{\rho} \nabla p = \vec{g} + \frac{\mu}{\rho} \nabla \cdot \nabla \vec{u}$$

"Incompressibility condition"

$$\nabla \bullet \bar{u} = 0$$

The Momentum Equation

The Momentum Equation

- Just a specialized version of F=ma
- Let's build it up intuitively
- Imagine modeling a fluid with a bunch of particles (e.g. blobs of water)
 - A blob has a mass m, a volume V, velocity u
 - We'll write the acceleration as Du/Dt ("material derivative")

$$m\frac{D\vec{u}}{Dt} = \vec{F}$$

What forces act on the blob?

Forces on Fluids

- Gravity: mg
 - or other "body forces" designed by animator $m\frac{D\bar{u}}{Dt} = m\bar{g} + \dots$

 And a blob of fluid also exerts contact forces on its neighbouring blobs...

Pressure

- The "normal" contact force is pressure (force/area)
 - How blobs push against each other, and how they stick together
- If pressure is equal in every direction, net force is zero...
 Important quantity is pressure gradient:

$$m\frac{D\vec{u}}{Dt} = m\vec{g} - V\nabla p + \dots$$

• What is the pressure? Coming soon...

Viscosity

- Think of it as frictional part of contact force: a sticky (viscous) fluid blob resists other blobs moving past it
- For now, simple model is that we want velocity to be blurred/diffused/...
- Blurring in PDE form comes from the Laplacian:

$$m\frac{D\vec{u}}{Dt} = m\vec{g} - V\nabla p + V\mu\nabla \cdot \nabla \vec{u}$$

The Continuum Limit (1)

- Model the world as a continuum:
 - # particles → ∞
 Mass and volume → 0
- We want F=ma to be more than 0=0:
 - Divide by mass

$$\frac{D\vec{u}}{Dt} = \vec{g} - \frac{V}{m}\nabla p + \frac{V}{m}\mu\nabla \cdot \nabla \vec{u}$$

The Continuum Limit (2)

• The fluid density is $\rho = m/V$:

$$\frac{D\vec{u}}{Dt} + \frac{1}{\rho}\nabla p = \vec{g} + \frac{\mu}{\rho}\nabla \cdot \nabla \vec{u}$$

- This is almost the same as the stanford eq'n (in fact, the form we mostly use!)
- The only weird thing is Du/Dt...

Lagrangian vs. Eulerian

- Lagrangian viewpoint:
 - Treat the world like a particle system
 - Label each speck of matter, track where it goes (how fast, acceleration, etc.)
- Eulerian viewpoint:
 - Fix your point in space
 - Measure stuff as it flows past
- Think of measuring the temperature:
 - Lagrangian: in a balloon, floating with the wind
 - Eulerian: on the ground, wind blows past

The Material Derivative (1)

- We have fluid moving in a velocity field u
- It possesses some quality q
- At an instant in time t and a position in space
 x, the fluid at x has q(x,t)
 - q(x,t) is an Eulerian field
- How fast is that blob of fluid's q changing?
 - A Lagrangian question
- Answer: the material derivative Dq/Dt

The Material Derivative (2)

It all boils down to the chain rule:

$$\frac{D}{Dt}q(x,t) = \frac{\partial q}{\partial t} + \frac{\partial q}{\partial x} \cdot \frac{dx}{dt}$$
$$= \frac{\partial q}{\partial t} + \nabla q \cdot \vec{u}$$

We usually rearrange it:

$$\frac{Dq}{Dt} = \frac{\partial q}{\partial t} + \vec{u} \cdot \nabla q$$

Turning Dq/Dt Around

For a thought experiment, turn it around:

$$\frac{\partial q}{\partial t} = \frac{Dq}{Dt} - \vec{u} \cdot \nabla q$$

- That is, how fast q is changing at a fixed point in space (∂q/∂t) comes from two things:
 - How fast q is changing for the blob of fluid at x
 - How fast fluid with different values of q is flowing past

Writing D/Dt Out

 We can explicitly write it out from components:

$$\frac{Dq}{Dt} = \frac{\partial q}{\partial t} + \vec{u} \cdot \nabla q$$
$$= \frac{\partial q}{\partial t} + u \frac{\partial q}{\partial x} + v \frac{\partial q}{\partial y} + w \frac{\partial q}{\partial z}$$

D/Dt For Vector Fields

Say our fluid has a colour variable (RGB vector) C

We still write
$$\frac{D\vec{C}}{Dt} = \frac{\partial\vec{C}}{\partial t} + \vec{u} \cdot \nabla\vec{C}$$

- The dot-product and gradient confusing?
- Just do it component-by-component:

$$\frac{D\vec{C}}{Dt} = \begin{bmatrix} DR/Dt \\ DG/Dt \\ DB/Dt \end{bmatrix} = \begin{bmatrix} \partial R/\partial t + \vec{u} \cdot \nabla R \\ \partial G/\partial t + \vec{u} \cdot \nabla G \\ \partial B/\partial t + \vec{u} \cdot \nabla B \end{bmatrix}$$

Du/Dt

This holds even if the vector field is velocity itself:

$$\frac{D\vec{u}}{Dt} = \frac{\partial\vec{u}}{\partial t} + \vec{u} \cdot \nabla\vec{u}$$
$$\begin{bmatrix}Du/Dt\\Dv/Dt\\Dw/Dt\end{bmatrix} = \begin{bmatrix}\partial u/\partial t + \vec{u} \cdot \nabla u\\\partial v/\partial t + \vec{u} \cdot \nabla v\\\partial w/\partial t + \vec{u} \cdot \nabla w\end{bmatrix}$$

 Nothing different about this, just that the fluid blobs are moving at the velocity they' re carrying.

The Incompressibility Condition

Compressibility

- Real fluids are compressible
- Shock waves, acoustic waves, pistons...
 - Note: liquids change their volume as well as gases, otherwise there would be no sound underwater
- But this is nearly irrelevant for animation
 - Shocks move too fast to normally be seen (easier/better to hack in their effects)
 - Acoustic waves usually have little effect on visible fluid motion
 - Pistons are boring

Incompressibility

.

- Rather than having to simulate acoustic and shock waves, eliminate them from our model: assume fluid is incompressible
 - Turn stiff system into a constraint, just like rigid bodies!
- If you fix your eyes on any volume of space, volume of fluid in = volume of fluid out:

$$\iint_{\partial\Omega} \bar{u} \cdot \hat{n} = 0$$

Divergence

• Let's use the divergence theorem:

$$\iint_{\partial\Omega} \vec{u} \cdot \hat{n} = \iiint_{\Omega} \nabla \cdot \vec{u}$$

- So for any region, the integral of $\nabla \cdot \vec{u}$ is zero
- Thus it's zero everywhere:

$$\nabla \bullet \bar{u} = 0$$

Pressure

Pressure p:

whatever it takes to make the velocity field divergence free

- If you know constrained dynamics, $\nabla \cdot \vec{u} = 0$ is a constraint, and pressure is the matching Lagrange multiplier
- Our simulator will follow this approach:
 - solve for a pressure that makes our fluid incompressible at each time step.

Aside: A Few Figures

Dynamic viscosity of air: $\mu_{air} \approx 1.8 \times 10^{-5} Ns/m^2$ Density of air: $\rho_{air} \approx 1.3 kg/m^3$

Dynamic viscosity of water: $\mu_{water} \approx 1.1 \times 10^{-3} Ns/m^2$ Density of water: $\rho_{water} \approx 1000 kg/m^3$

 The ratio, µ_{air}/µ_{water} ("kinematic viscosity") is what's important for the motion of the fluid...
 ... air is 10 times more viscous than water!

Boundary Conditions

Boundary Conditions

- We know what's going on inside the fluid: what about at the surface?
- Three types of surface
 - Solid wall: fluid is adjacent to a solid body
 - Free surface: fluid is adjacent to nothing (e.g. water is so much denser than air, might as well forget about the air)
 - Other fluid: possibly discontinuous jump in quantities (density, ...)

Solid Wall Boundaries

• No fluid can enter or come out of a solid wall:

$$\vec{u} \cdot \hat{n} = \vec{u}_{solid} \cdot \hat{n}$$

For common case of u_{solid}=0:

$$\vec{u} \cdot \hat{n} = 0$$

- Sometimes called the "no-stick" condition, since we let fluid slip past tangentially
 - For viscous fluids, can additionally impose "no-slip" condition:

$$\vec{u} = \vec{u}_{solid}$$

Free Surface

- Neglecting the other fluid, we model it simply as pressure=constant
 - Since only pressure gradient is important, we can choose the constant to be zero:

$$p = 0$$

 If surface tension is important (not covered today), pressure is instead related to mean curvature of surface

Multiple Fluids

- At fluid-fluid boundaries, the trick is to determine "jump conditions"
 - For a fluid quantity q, [q]=q₁-q₂
- Density jump [ρ] is known
- Normal velocity jump must be zero: $[\vec{u} \cdot \hat{n}] = 0$
- For inviscid flow, tangential velocities may be unrelated (jump is unknown)
- With no surface tension, pressure jump [p]=0

Numerical Simulation Overview

Splitting

- We have lots of terms in the momentum equation: a pain to handle them all simultaneously
- Instead we split up the equation into its terms, and integrate them one after the other
 - Makes for easier software design too: a separate solution module for each term
- First order accurate in time
 - Can be made more accurate, not covered today.

A Splitting Example

Say we have a differential equation

$$\frac{dq}{dt} = f(q) + g(q)$$

- And we can solve the component parts:
 - SolveF(q, Δt) solves dq/dt=f(q) for time Δt
 - SolveG(q, Δt) solves dq/dt=g(q) for time Δt
- Put them together to solve the full thing:
 - $q^* = SolveF(q^n, \Delta t)$
 - $q^{n+1} = SolveG(q^*, \Delta t)$

Does it Work?

• Up to O(Δt): $\frac{dq}{dt} \approx \frac{q^{n+1} - q^n}{\Delta t}$ $= \frac{q^{n+1} - q^*}{\Delta t} + \frac{q^* - q^n}{\Delta t}$ $\approx g(q) + f(q)$

Splitting Momentum

• We have three terms: $\frac{\partial \mathcal{U}}{\partial u} = -\bar{u}$

$$\frac{\partial \vec{u}}{\partial t} = -\vec{u} \cdot \nabla \vec{u} + \vec{g} - \frac{1}{\rho} \nabla p$$

- First term: **advection** $\frac{\partial \bar{u}}{\partial t} = -\bar{u} \cdot \nabla \bar{u}$
 - Move the fluid through its velocity field (Du/Dt=0)

Second term: gravity
$$\frac{\partial \vec{u}}{\partial t} = \vec{g}$$
Final term: pressure update $\frac{\partial \vec{u}}{\partial t} = -\frac{1}{\rho} \nabla p$

• How we'll make the fluid incompressible: $\nabla \cdot \vec{u} = 0$

Space

- That's our general strategy in time; what about space?
- We'll begin with a fixed Eulerian grid
 - Trivial to set up
 - Easy to approximate spatial derivatives
 - Particularly good for the effect of pressure
- Disadvantage: advection doesn't work so well
 - Later: particle methods that fix this

A Simple Grid

- We could put all our fluid variables at the nodes of a regular grid
- But this causes some major problems
- In 1D: incompressibility means $\frac{\partial u}{\partial x} = 0$
- Approximate at a grid point: $\frac{u_{i+1} u_{i-1}}{2\Delta x} = 0$
- Note the velocity at the grid point isn't involved!

A Simple Grid Disaster

- The only solutions to $\frac{\partial u}{\partial x} = 0$ are u=constant
- But our numerical version has other solutions:

Staggered Grids

- Problem is solved if we don't skip over grid points
- To make it unbiased, we stagger the grid: put velocities halfway between grid points
- In 1D, we estimate divergence at a grid point as:

$$\frac{\partial u}{\partial x}(x_i) \approx \frac{u_{i+\frac{1}{2}} - u_{i-\frac{1}{2}}}{\Delta x}$$

Problem solved!

The MAC Grid

- From the Marker-and-Cell (MAC) method [Harlow&Welch' 65]
- A particular staggering of variables in 2D/3D that works well for incompressible fluids:
 - Grid cell (i,j,k) has pressure p_{i,j,k} at its center
 - x-part of velocity u_{i+1/2,jk} in middle of x-face between grid cells (i,j,k) and (i+1,j,k)
 - y-part of velocity v_{i,j+1/2,k} in middle of y-face
 - z-part of velocity w_{i,j,k+1/2} in middle of z-face

MAC Grid in 2D

Array storage

- Then for a nx X ny X nz grid, we store them as 3D arrays:
 - p[nx, ny, nz]
 - u[nx+1, ny, nz]
 - v[nx, ny+1, nz]
 - w[nx, ny, nz+1]
- And translate indices in code, e.g.

$$u_{i+\frac{1}{2},j,k} \equiv u[i+1,j,k]$$

The downside

- Not having all quantities at the same spot makes some algorithms a pain
 - Even interpolation of velocities for pushing particles is annoying
- One strategy: switch back and forth (colocated/staggered) by averaging
- My philosophy: avoid averaging as much as possible!

Advection Algorithms

Advecting Quantities

• The goal is to solve $\frac{Dq}{Dt} = 0$

"the advection equation" for any grid quantity q

- in particular, the components of velocity
- Rather than directly approximate spatial term, we'll use the Lagrangian notion of advection directly
- We're on an Eulerian grid, though, so the result will be called "semi-Lagrangian"
 - Introduced to graphics by [Stam' 99]

Semi-Lagrangian Advection

 Dq/Dt=0 says q doesn't change as you follow the fluid.

• So
$$q(x^{new},t^{new}) = q(x^{old},t^{old})$$

- We want to know q at each grid point at t^{new} (that is, we're interested in x^{new}=x_{ijk})
- So we just need to figure out
 x^{old} (where fluid at x_{ijk} came from) and
 - q(x^{old}) (what value of q was there before)

Finding x^{old}

We need to trace backwards through the velocity field.

- Up to O(Δt) we can assume velocity field constant over the time step
- The simplest estimate is then

$$x^{old} \approx x_{ijk} - \Delta t \, \bar{u}(x_{ijk})$$

- I.e. tracing through the time-reversed flow with one step of Forward Euler
- Other ODE methods can (and should) be used

Which u to Use?

- Note that we only want to advect quantities in an incompressible velocity field
 - Otherwise the quantity gets compressed (often an obvious unphysical artifact)
- For example, when we advect u, v, and w themselves, we use the old incompressible values stored in the grid
 - Do not update as you go!

Finding q(x^{old})

- Odds are when we trace back from a grid point to x^{old} we won't land on a grid point
 - So we don't have an old value of q there
- Solution: interpolate from nearby grid points
 - Simplest method: bi/trilinear interpolation
 - Know your grid: be careful to get it right for staggered quantities!

Boundary Conditions

 What if x^{old} isn't in the fluid? (or a nearest grid point we're interpolating from is not in the fluid?)

- Solution: extrapolate from boundary of fluid
 - Extrapolate before advection, to all grid points in the domain that aren't fluid
- ALSO: if fluid can move to a grid point that isn't fluid now, make sure to do semi-Lagrangian advection there
 - Use the extrapolated velocity

Body Forces

Integrating Body Forces

Gravity vector or volumetric animator forces:

$$\frac{\partial \vec{u}}{\partial t} = \vec{g}$$

Simplest scheme: at every grid point just add

$$\vec{u}^* = \vec{u}^{advected} + \Delta t \, \vec{g}$$

Making Fluids Incompressible

The Continuous Version

We want to find a pressure p so that the updated velocity:

$$\vec{u}^{n+1} = \vec{u}^* - \frac{\Delta t}{\rho} \nabla p$$

is divergence free:

$$\nabla \bullet \vec{\mu}^{n+1} = 0$$

while respecting the boundary conditions:

$$\vec{u} \cdot \hat{n} = \vec{u}_{solid} \cdot \hat{n}$$
 at solid walls
 $p = 0$ at the free surface

The Poisson Problem

Plug in the pressure update formula into incompressibility:

$$\nabla \cdot \left(\vec{u}^* - \frac{\Delta t}{\rho} \nabla p \right) = 0$$

Turns into a "Poisson equation" for pressure:

$$\begin{cases} \nabla \cdot \left(\frac{\Delta t}{\rho} \nabla p\right) = \nabla \cdot \vec{u}^* \\ \frac{\Delta t}{\rho} \nabla p \cdot \hat{n} = (\vec{u} - \vec{u}_{solid}) \cdot \hat{n} \quad \text{at solid walls} \\ p = 0 \qquad \text{at the free surface} \end{cases}$$

Discrete Pressure Update

.

The discrete pressure update on the MAC grid:

$$u_{i+\frac{1}{2}jk}^{n+1} = u_{i+\frac{1}{2}jk}^{*} - \frac{\Delta t}{\rho} \left(\frac{p_{i+1jk} - p_{ijk}}{\Delta x} \right)$$
$$v_{ij+\frac{1}{2}k}^{n+1} = v_{ij+\frac{1}{2}k}^{*} - \frac{\Delta t}{\rho} \left(\frac{p_{ij+1k} - p_{ijk}}{\Delta x} \right)$$
$$w_{ijk+\frac{1}{2}}^{n+1} = w_{ijk+\frac{1}{2}}^{*} - \frac{\Delta t}{\rho} \left(\frac{p_{ijk+1} - p_{ijk}}{\Delta x} \right)$$

Discrete Divergence

 The discretized incompressibility condition on the new velocity (estimated at i,j,k):

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

$$\left(\frac{u_{i+\frac{1}{2}jk}^{n+1} - u_{i-\frac{1}{2}jk}^{n+1}}{\Delta x} + \frac{v_{ij+\frac{1}{2}k}^{n+1} - v_{ij-\frac{1}{2}k}^{n+1}}{\Delta x} + \cdots\right) = 0$$

Discrete Pressure Equations

- Substitute in pressure update formula to discrete divergence
- In each fluid cell (i,j,k) get an equation:

$$\frac{1}{\Delta x} \begin{bmatrix} \left(u_{i+\frac{1}{2}jk} - \frac{\Delta t}{\rho} \frac{p_{i+1jk} - p_{ijk}}{\Delta x}\right) - \left(u_{i-\frac{1}{2}jk} - \frac{\Delta t}{\rho} \frac{p_{ijk} - p_{i-1jk}}{\Delta x}\right) \\ + \left(v_{ij+\frac{1}{2}k} - \frac{\Delta t}{\rho} \frac{p_{ij+1k} - p_{ijk}}{\Delta x}\right) - \left(v_{ij-\frac{1}{2}k} - \frac{\Delta t}{\rho} \frac{p_{ijk} - p_{ij-1k}}{\Delta x}\right) \\ + \left(w_{ijk+\frac{1}{2}} - \frac{\Delta t}{\rho} \frac{p_{ijk+1} - p_{ijk}}{\Delta x}\right) - \left(w_{ijk-\frac{1}{2}} - \frac{\Delta t}{\rho} \frac{p_{ijk} - p_{ijk-1}}{\Delta x}\right) \end{bmatrix} = 0$$

Linear Equations

 End up with a sparse set of linear equations to solve for pressure

- Matrix is symmetric positive (semi-)definite
- In 3D on large grids, direct methods unsatisfactory
- Instead use Preconditioned Conjugate Gradient, with Incomplete Cholesky preconditioner
- See course notes for full details (pseudo-code)
- Residual is how much divergence there is in uⁿ⁺¹
 - Iterate until satisfied it's small enough

Voxelization is Suboptimal

- Free surface artifacts:
 - Waves less than a grid cell high aren't "seen" by the fluid solver – thus they don't behave right
 - Left with strangely textured surface
- Solid wall artifacts:
 - If boundary not grid-aligned, O(1) error
 it doesn't even go away as you refine!
 - Slopes are turned into stairs, water will pool on artificial steps.
- More on this later...