FLUID SIMULATION

Robert Bridson, UBC
Matthias Muller-Fischer, AGEIA Inc.

Adapted from SIGGRAPH 2007 course notes. The original presentation is here:
https://www.cs.ubc.ca/~rbridson/fluidsimulation/

https://www.cs.ubc.ca/~rbridson/fluidsimulation/

The Basic Equations

11 : velocity with components (u,v,w)

p: fluid density

p: pressure

g acceleration due to gravity or animator

w: dynamic viscosity

The Equations

Incompressible Navier-Stokes:

“Momentum Equation”

i 1
X Vi +—Vp=g+VeVi
o1 o o

“Incompressibility condition”

Veuu =0

The Momentum Equation

The Momentum Equation

Just a specialized version of F=ma
Let’ s build it up intuitively

Imagine modeling a fluid with a bunch of particles
(e.g. blobs of water)

A blob has a mass m, a volume V, velocity u

We' |l write the acceleration as Du/Dt
(“material derivative”)

Du -

— _F

Dt

What forces act on the blob?

Forces on Fluids

Gravity: mg

or other “body forces” designed by

animator Dii

m— =mg +...
Dt 5

And a blob of fluid also exerts contact forces
on its neighbouring blobs...

Pressure

The “normal” contact force is pressure (force/area)

How blobs push against each other,
and how they stick together

If pressure is equal in every direction, net force is zero...
Important quantity is pressure gradient:

Du
—=mo-VVp+...
Dy g P

What is the pressure? Coming soon...

Viscosity

Think of it as frictional part of contact force:
a sticky (viscous) fluid blob resists other
blobs moving past it

For now, simple model is that we want
velocity to be blurred/diffused/...

Blurring in PDE form comes from the
Laplacian:

o
Mg - VVp + VuVeVii
Dt

The Continuum Limit (1)

Model the world as a continuum:

particles 2 o
Mass and volume - 0

We want F=ma to be more than 0=0:

Divide by mass

Du _ V |4

—=g—-—Vp+—uVeVu
Dt m m

The Continuum Limit (2)

The fluid density is p=m/V:
Du 1
4+ —Vp=g+VeVi
Dt p P

This is almost the same as the stanford eq' n
(in fact, the form we mostly use!)

The only weird thing is Du/Dt...

Lagrangian vs. Eulerian
Lagrangian viewpoint:
Treat the world like a particle system

Label each speck of matter, track where it goes
(how fast, acceleration, etc.)

Eulerian viewpoint:
FiX your point in space
Measure stuff as it flows past

Think of measuring the temperature:
Lagrangian: in a balloon, floating with the wind

Eulerian: on the ground, wind blows past

The Material Derivative (1)

We have fluid moving in a velocity field u
It possesses some quality g

At an instant in time t and a position in space
X, the fluid at x has g(x,t)

q(x,t) is an Eulerian field
How fast is that blob of fluid’ s q changing?
A Lagrangian question

Answer: the material derivative Dq/Dt

The Material Derivative (2)

It all boils down to the chain rule:

D 0 Jdg d
R Y W s
Dt ot ax dt

_9q
ot

We usually rearrange it:

Dg o
= _%, u*Vq
Dt ot

+ Vgeu

Turning Dg/Dt Around

That is, how fast q is changing at a fixed
point in space (dq/dt) comes from two things:

How fast q is changing for the blob of
uid at x

f
How fast fluid with different values of q is
flowing past

Writing D/Dt Out

We can explicitly write it out from
components:

Dg 0
== _=, u*Vqg
Dt ot

. 0g dg 0
A

ot 0x dy 07

D/Dt For Vector Fields

Say our fluid has a colour variable (RGB vector) C

We still write —

DC oC _
-~ 4+ uVC
Dt ot

The dot-product and gradient confusing?

Just do it component-by-component:

"DR/Dt1 [0OR/dt +iisVR"

DG/ Dt 0G/dt + VG
DB/ Dt 0B/dt + iisVB

DC)
Dt

This holds even if the vector field is velocity itself:

Du oJu
e TR VAT
Dt ot
"Du/Dt| [0u/dt +iieVu "
Dv/Dt | =| dv/dt + iieVv

Dw/ Dt oW/t + lisVw

Nothing different about this, just that the fluid blobs
are moving at the velocity they’ re carrying.

The Incompressibility Condition

Compressibility
Real fluids are compressible

Shock waves, acoustic waves, pistons...

Note: liquids change their volume as well as
gases, otherwise there would be no sound

underwater
But this is nearly irrelevant for animation

Shocks move too fast to normally be seen
(easier/better to hack in their effects)

Acoustic waves usually have little effect on
visible fluid motion

Pistons are boring

Incompressibility

Rather than having to simulate acoustic and
shock waves, eliminate them from our model:

assume fluid is incompressible

Turn stiff system into a constraint, just
like rigid bodies!

If you fix your eyes on any volume of space,
volume of fluid in = volume of fluid out:

50
!lun

Divergence

Let’ s use the divergence theorem:
f f T f f Veii
0€2 Q2

So for any region, the integral of Vej is zero

Thus it’s zero everywhere:

Veuu =0

Pressure

Pressure p:
whatever it takes to make the velocity field

divergence free

If you know constrained dynamics, Vey = ()
IS a constraint, and pressure is the matching

Lagrange multiplier
Our simulator will follow this approach:

solve for a pressure that makes our fluid
incompressible at each time step.

Aside: A Few Figures

Dynamic viscosity of air: U, =1.8 X 10~ Ns/m’

3
Density of air: Pur =1.3 kg/m

Dynamic viscosity of water: . ~1.1x107 Ns/m’
3
Density of water: Prvarer = 1000 kg/m

The ratio, u /1. (kKinematic viscosity”) is
what’ s important for the motion of the fluid...
... air is 10 times more viscous than water!

Boundary Conditions

Boundary Conditions

We know what’ s going on inside the fluid:
what about at the surface?

Three types of surface
Solid wall: fluid is adjacent to a solid body

Free surface: fluid is adjacent to nothing
(e.g. water is so much denser than air,
might as well forget about the air)

Other fluid: possibly discontinuous jump
in quantities (density, ...)

Solid Wall Boundaries

No fluid can enter or come out of a solid wall:
uen = usolid °n
For common case of u,,;4=0:
ienn =0
Sometimes called the “no-stick” condition,
since we let fluid slip past tangentially

For viscous fluids, can additionally
impose “no-slip” condition:

u = usolid

Free Surface

Neglecting the other fluid, we model it simply
as pressure=constant

Since only pressure gradient is important,
we can choose the constant to be zero:

p=0
If surface tension is important (not covered

today), pressure is instead related to mean
curvature of surface

Multiple Fluids

At fluid-fluid boundaries, the trick is to
determine “jump conditions”

For a fluid quantity q, [q]=q;-9>
Density jump [p] is known
Normal velocity jump must be zero: [7en1] = ()

For inviscid flow, tangential velocities may be
unrelated (jump is unknown)

With no surface tension, pressure jump [p]=0

Numerical Simulation Overview

Splitting

We have lots of terms in the momentum

equation: a pain to handle them all
simultaneously

Instead we split up the equation into its terms,
and integrate them one after the other

Makes for easier software design too:
a separate solution module for each term

First order accurate in time

Can be made more accurate, not covered today.

A Splitting Example

Say we have a differential equation

d
X () + 8(q)
dt

And we can solve the component parts:

SolveF(q,At) solves dqg/dt=f(q) for time At

SolveG(qg,At) solves dg/dt=g(q) for time At
Put them together to solve the full thing:

g* = SolveF(g", At)
gnt! = SolveG(g*, At)

Does it Work?

Up to O(AY): dq qn+1 —q

dt At
n+1 % * n
4" -4 4-4
At At

~ g(q)+ f(q)

Splitting Momentum

We have three terms: (9_171 — —jjeVij + § _ le
ot o,
ou
—=—-u-Viu

First term: advection ot
Move the fluid through its velocity field (Du/Dt=0)

ou _
Second term: gravity o =g
ou 1 o
Final term: pressure update E = ‘; P

How we’ Il make the fluid incompressible: Vei; = ()

That’ s our general strategy in time; what
about space?

We' Il begin with a fixed Eulerian grid
Trivial to set up
Easy to approximate spatial derivatives

Particularly good for the effect of
pressure

Disadvantage: advection doesn’ t work so well
Later: particle methods that fix this

A Simple Grid

We could put all our fluid variables at the
nodes of a regular grid

But this causes some major problems

In 1D: incompressibility means 8_u -0

0x

Approximate at a grid point: 4is1 — Ui

2Ax

Note the velocity at the grid pointisn’t
involved!

=0

A Simple Grid Disaster

The only solutions to ou — () are u=constant

0x

But our numerical version has other solutions:
u

Staggered Grids

Problem is solved if we don’ t skip over grid
points

To make it unbiased, we stagger the grid:
put velocities halfway between grid points

In 1D, we estimate divergence at a grid point as:

u Uiy = U,
_(xi)z /5)
0x Ax

Problem solved!

The MAC Grid

From the Marker-and-Cell (MAC) method
[Harlow&Welch’ 65]

A particular staggering of variables in 2D/3D that
works well for incompressible fluids:

Grid cell (i,j,k) has pressure p;;\ at its center

X-part of velocity u;,; /25 in middle of x-face
between grid cells (i,j,k) and (i+1,j,k)

y-part of velocity v;;,;,2x in middle of y-face

z-part of velocity wj; 1,2 in middle of z-face

MAC Grid in 2D

Array storage

Then for a nx X ny X nz grid, we store them
as 3D arrays:

plnx, ny, nz]

ulnx+1, ny, nz]
vinx, ny+1, nz]
w[nx, ny, nz+1]
And translate indices in code, e.q.

Uiyry g = uli +1, j,k]

The downside

Not having all quantities at the same spot
makes some algorithms a pain

Even interpolation of velocities for
pushing particles is annoying

One strategy: switch back and forth
(colocated/staggered) by averaging

My philosophy: avoid averaging as much as
possible!

Advection Algorithms

Advecting Quantities

Dt

“the advection equation” for any grid quantity q
in particular, the components of velocity

Rather than directly approximate spatial term, we’ Il
use the Lagrangian notion of advection directly

We’re on an Eulerian grid, though, so the result will be
called “semi-Lagrangian”

Introduced to graphics by [Stam’ 99]

Semi-Lagrangian Advection

Dqg/Dt=0 says q doesn’ t change as you follow
the fluid.

new new old old)

So g(x)=q(x

We want to know g at each grld point at tnew
(that is, we’ re interested in x"eW=x;;)

So we just need to figure out

xold (where fluid at x;;, came from)
and

g(x°'d) (what value of g was there before)

Finding xold

We need to trace backwards through the velocity
field.

Up to O(At) we can assume velocity field constant

over the time step
The simplest estimate is then
old —
X7 =Xy — Aru(xg,)

l.e. tracing through the time-reversed flow with
one step of Forward Euler

Other ODE methods can (and should) be used

Which u to Use?

Note that we only want to advect quantities in
an incompressible velocity field

Otherwise the quantity gets compressed
(often an obvious unphysical artifact)

For example, when we advect u, v, and w
themselves, we use the old incompressible
values stored in the grid

Do not update as you go!

Finding q(x°'9)

Odds are when we trace back from a grid
point to x°d we won’t land on a grid point

So we don’ t have an old value of g there
Solution: interpolate from nearby grid points

Simplest method: bi/trilinear
interpolation

Know your grid: be careful to get it right
for staggered quantities!

Boundary Conditions

What if x°!d isn’t in the fluid? (or a nearest grid
point we’ re interpolating from is not in the fluid?)

Solution: extrapolate from boundary of fluid

Extrapolate before advection, to all grid points in
the domain that aren’ t fluid

ALSO: if fluid can move to a grid point that isn’t
fluid now, make sure to do semi-Lagrangian
advection there

Use the extrapolated velocity

Body Forces

Integrating Body Forces

Gravity vector or volumetric animator forces:

o
ot s

Simplest scheme: at every grid point just add

lji* — ﬁadvected 1 Atg

Making Fluids Incompressible

The Continuous Version

We want to find a pressure p so that the
updated velocity: Af

—n+1 —F

u' =u ——Vp
0

is divergence free:
V‘lerl _ O

while respecting the boundary conditions:

7 iqe*n at solid walls

U
0 at the free surface

37
P

The Poisson Problem

Plug in the pressure update formula into
incompressibility:

V-(ﬁ* - ﬁvp) =0

o

Turns into a “Poisson equation” for pressure:

rv-(if Vp) Vi

At A
—Vpen=(u-u
0

J\\

,)en at solid walls

soli

p=0 at the free surface

Discrete Pressure Update

The discrete pressure update on the MAC
grid:
n+l : At (Pivijk ~ pijk\
Uiy = UWisypn — |\ Ax
0
n+l : At (Pijs1k ~ pijk\
sz+%k = vij+%k - k A.X
0

pel_x At (Diisr — P
Wijk+% o lek+% 0 Ax

Discrete Divergence

The discretized incompressibility condition on
the new velocity (estimated at i,j,k):

ou . oV s ow 0
ox dy 0z
/un+1 n+1 n+l n+l \

i+ Yk — Wis vy N Viie ik = Vij— i L.
Ax Ax

=0

Discrete Pressure Equations

Substitute in pressure update formula to
discrete divergence

In each fluid cell (i,j,k) get an equation:

oo T e)T T A
- At Do — P

/ At D — pijk\ ~ (B At Dy — pi—ljk\ -

(

E +l\vij+%k p A)C
(
k

Linear Equations

End up with a sparse set of linear equations to solve
for pressure

Matrix is symmetric positive (semi-)definite
n 3D on large grids, direct methods unsatisfactory

nstead use Preconditioned Conjugate Gradient, with
ncomplete Cholesky preconditioner

See course notes for full details (pseudo-code)
Residual is how much divergence there is in u"*!

lterate until satisfied it s small enough

Voxelization is Suboptimal

Free surface artifacts:

Waves less than a grid cell high aren’t “seen” by
the fluid solver - thus they don’ t behave right

Left with strangely textured surface
Solid wall artifacts:

If boundary not grid-aligned, O(1) error
- it doesn’ t even go away as you refine!

Slopes are turned into stairs,
water will pool on artificial steps.

More on this later...

