
15-464/15-664 MiniProject 2
Due March 18 at start of class

The goal of this project is to experiment with simulation. The six project options below give you
choices to develop your own simulator or experiment with existing ones depending on your
interests.

I would like to see a nice implementation of one of these options and that you at least make a
serious attempt at a second one. If you do only one project, I expect a detailed investigation of the
topic that may go well beyond the descriptions below.

You may do your own work or work together in teams of two.

You may also choose your own project. You must get my approval first. The scope should be similar
to the projects below.

Option 1. Spring-Mass Cloth simulation.

Objective: create spring mass cloth and investigate its behavior.

You will create cloth that consists of mass nodes connected by springs and dampers. Explore the
effect of different stiffness and damping settings on the following:

 Simulation speed (how large can you make your timestep?)
 Simulation stability
 Cloth appearance

Can you create multiple instances of cloth that appear to have very different behaviors?

Extensions (not required):

 Handle contact with the environment
 Handle self-collisions
 Explore controlled cloth, where you can use “fake” control forces to coerce the cloth into

different shapes.

Implementation:

You may write your own simulator for this project or use an existing simulator. You could also start
with the modified AMCViewer here: http://graphics.cs.cmu.edu/nsp/course/15464-
s20/www/assignments/AMCViewer-simulation.zip. For AMCViewer, you will need to implement
functions in Cloth.cpp, Particle.cpp and SpringForce.cpp.

Mass-Spring Model

The Mass-Spring Model is a very basic method to simulate cloth. It is relatively easy to implement,
and with some care can produce good results, so it is a good exercise before exploring more
advanced methods.

http://graphics.cs.cmu.edu/nsp/course/15464-s20/www/assignments/AMCViewer-simulation.zip
http://graphics.cs.cmu.edu/nsp/course/15464-s20/www/assignments/AMCViewer-simulation.zip

In the Mass-Spring Model, cloth is simulated as a grid of particles, which are connected to each
other by spring-dampers. Each spring-damper connects two particles and generates a force based
on the particles' positions and velocities. We will use three types of spring dampers that are shown
below: stretch springs (also known as structural springs), shear springs, and bend springs. In
addition to these spring forces, each particle is also influenced by gravity. The layout of this model
is illustrated in the figure below:

Computing Forces

Gravity: gravity is simply a force proportional to the mass of the particle. We can use the

equation:

𝑓𝑔 = 𝑚𝑔

Spring-Dampers: A spring-damper is defined by three constants: its spring constant 𝑘𝑠 , a damping
factor 𝑘𝑑 , and its rest length 𝑙0. We can compute the force using the equation:

𝑓1 = −[𝑘𝑠(‖𝑝1 − 𝑝2‖ − 𝑙0) + 𝑘𝑑(
(𝑣1 − 𝑣2) ∙ (𝑝1 − 𝑝2)

‖𝑝1 − 𝑝2‖
)] ∙

𝑝1 − 𝑝2
‖𝑝1 − 𝑝2‖

𝑓2 = −𝑓1

Resources:

[1] https://steven.codes/blog/cloth-simulation/

Option 2. Constraint based Cloth simulation.

Objective: create constraint based cloth and investigate its behavior

You will create cloth that consists of mass nodes connected by length constraints. You may write
your own simulator for this project or use an existing simulator. You could also start with the
modified AMCViewer described in Option 1.

https://steven.codes/blog/cloth-simulation/

Questions to investigate:

 Can you make your constraint based cloth unstable?
 How does number of constraint update iterations affect cloth behavior?
 Can you create multiple instances of cloth that appear to have very different behaviors?

Extensions (not required):

 Handle contact with the environment
 Handle self-collisions
 Explore controlled cloth, where you can use “fake” control forces to coerce the cloth into

different shapes.

Resources:

Ken Toh did a final project for this class some years ago, which turned into his Masters Thesis.
Details of his implementation may be helpful to read, and are available in this document:
http://www.cs.cmu.edu/~ytoh/stickyfingers.pdf

Some videos from the resulting system are here: http://www.kentoh.com/publications/

Option 3. Experiment with different integrators

Objective: understand the effect of different integration techniques on simulation speed and
stability

Create a simulation environment for testing. It can be as simple as the single spring mass system we
examined in class, it can be your cloth system from Option 1, or any other environment of your
choice that has some interesting dynamic behavior.

Implement three (or more) different integrators. Compare:

 Simulation speed (how large can you make your timestep?)
 Simulation stability
 Simulation accuracy (plot and compare the motion of some interesting points in your scene,

is it the same for each integration technique and choice of timestep?)

 Some choices are:

 Euler integration
 Implicit Euler (try to work out the equations for a simple system)
 RK4
 Semi-implicit Euler
 Verlet
 Leapfrog

http://www.cs.cmu.edu/~ytoh/stickyfingers.pdf
http://www.kentoh.com/publications/

Option 4. Experiment with contact models

Objective: understand the effect of different contact models on contact behavior.

Implement at least two different contact models. You may use an existing simulator or write your
own. Some options for contact models include:

 Penalty method. This paper provides a clear discussion of the penalty method in Section III
and describes how to add friction (not required): Yamane K, Nakamura Y. Stable penalty-
based model of frictional contacts. In Robotics and Automation, 2006 [Paper]

 Constraint based method. Use a constraint based model which simply resets colliding points
back to the surface and iteratively adjusts the simulation bodies to satisfy constraints.

 Impulse based collision response using a coefficient of restitution. Details for how to
implement this option for particles and rigid bodies can be found in Baraff and Witkin’s
course notes: http://www.cs.cmu.edu/~baraff/sigcourse/

 Solve the Linear Complementarity Problem in a multi-contact situation. Baraff and Witkin’s
notes give a description of the setup of this problem, and off the shelf solvers exist. This
option is ambitious.

Provide some simple test scenes that allow you to demonstrate differences with videos and plots to
compare your results.

If you are interested in further reading, this paper gives a very appealing solution for handling large
numbers of contacts, but is out of scope for MiniProject2:
http://www.cs.ubc.ca/labs/sensorimotor/projects/sp_sigasia08/

Option 5. Create a scene that tells a story with simulation

Objective: use simulation in a creative manner

Create a scene that uses simulation to tell a story. The scope is not limited to cloth. You will
probably want to use an existing simulator, such as

 Bullet plugin for Maya
 Maya nCloth, nHair or nParticle (under “FX” menu):
 NVIDIA Flex plugin for Unity: https://developer.nvidia.com/flex
 MuJoCo: http://www.mujoco.org/
 Dart: https://dartsim.github.io/index.html). This is a research project for simulating

robots

Option 6. Understand pros and cons of an existing simulator

Objective: understand an existing simulation engine

https://ieeexplore.ieee.org/abstract/document/1641984
http://www.cs.cmu.edu/~baraff/sigcourse/
https://developer.nvidia.com/flex
http://www.mujoco.org/
https://dartsim.github.io/index.html

Download and install an existing simulation engine. Try to read about how it handles the aspects
of simulation that we talked about in class:

 Contact and collision
 Integration
 Can it do deformable bodies?
 Does it use maximal or minimal coordinates for bodies connected by joints?
 What other features seem important / interesting?

Run your simulator through some basic tests. Choose at least three different tests. Here are some
suggestions:

 Can you make a block slide down an inclined plane?
 Can you make a sphere roll down an inclined plane?
 What happens when you stack a bunch of blocks in a tower?
 What happens when you drop a bunch of blocks on top of each other to form a stack?
 What happens when you initialize the system with objects colliding with one another?
 Can you make a simple spring mass system go unstable? How easily?
 How fast is a simulation with many simple bodies (e.g., many blocks)?

Create a scene to demonstrate this simulator.

Deliverables and Handing in

We will use Autolab (https://autolab.andrew.cmu.edu/) for handins. Please upload a single
compressed file with the following content:

You should provide:

 A README file describing briefly what you did and what you have uploaded into this
directory.

 Your code and documentation of how to run it.
 Any source files required to run your code.
 Videos of animations demonstrating your system
 A 10-minute presentation: Submit your slides or website to describe your goals, techniques

you used, as well as your results.

If you run into quota or authentication problems, you may email the material to nsp@cs.cmu.edu.
Please try to test out autolab handin, however, before the deadline.

If you did not present MiniProject1, you will be asked to present your results from MiniProject2 in
class on the due date.

https://autolab.andrew.cmu.edu/

	Option 1. Spring-Mass Cloth simulation.
	Implementation:
	Mass-Spring Model
	Computing Forces

	Resources:

	Option 2. Constraint based Cloth simulation.
	Resources:

	Option 3. Experiment with different integrators
	Option 4. Experiment with contact models
	Option 5. Create a scene that tells a story with simulation
	Option 6. Understand pros and cons of an existing simulator
	Deliverables and Handing in

