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Abstract

This is a introduction to the Jacobian transpose method, the
pseudoinverse method, and the damped least squares methods for
inverse kinematics (IK). The mathematical foundations of these
methods are presented, with an analysis based on the singular value
decomposition.

1 Introduction

A rigid multibody system consists of a set of rigid objects, called links,
joined together by joints. Simple kinds of joints include revolute (rotational)
and prismatic (translational) joints. It is also possible to work with more
general types of joints, and thereby simulate non-rigid objects. Well-known
applications of rigid multibodies include robotic arms as well as virtual
skeletons for animation in computer graphics.

To control the movement of a rigid multibody it is common to use inverse
kinematics (IK). For IK, it is presumed that specified points, called “end
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effectors,” on the links are are assigned “target positions.” To solve the
IK problem, we must find settings for the joint angles so that the resulting
configuration of the multibody places each end effector at its target position.
More general formulations of IK allow also orientation goals, or directional
goals.

There are several methods for solving IK problems, coming originally
from robotics applications. These include cyclic coordinate descent meth-
ods [43], pseudoinverse methods [45], Jacobian transpose methods [5, 46], the
Levenberg-Marquardt damped least squares methods [41, 34], quasi-Newton
and conjugate gradient methods [43, 49, 15], and neural net and artificial
intelligence methods [19, 27, 36, 38, 20, 22, 40, 16].

The present paper focuses on applications of IK in computer graphics and
real-time animation. There has already been extensive use of IK in computer
graphics [18, 26, 25, 44, 23, 2, 1, 17, 24, 29, 39, 21, 37, 12]: the most common
applications are animating humans or creatures by specifying the positions,
and possibly the orientations, of their hands, feet and head. Our interests lie
particularly in using target positions for end effectors to animate an entire
multibody, and in methods that are robust and behave well in wide range of
situations. As part of the robustness, we want the end effectors to track the
target positions and to do a reasonable job even when the target positions are
in unreachable positions. In this paper, we consider only first order methods
and consider the following generic application: we presume a multibody has
multiple end effectors and multiple target positions, given in real-time in
an online fashion, and want to update the multibody configuration so as to
dynamically track the target positions with the end effectors.

One might wonder why it is important to allow target positions to
be unreachable. There are several reasons: First, it may be difficult to
completely eliminate the possibility of unreachable positions and still get
the desired motion. Second, if target positions are barely reachable and
can be reached only with full extension of the links, then the situation is
very similar to having unreachable targets. Unfortunately, the situation
of target positions in unreachable positions is difficult to handle robustly.
Many methods, such as the pseudoinverse or Jacobian transpose methods,
will oscillate badly in this situation; however, (selectively) damped least
squares methods can still perform well with unreachable target positions.

The outline of the paper is as follows. We first introduce the mathemat-
ical framework for the IK problem. We then discuss the Jacobian transpose
method, the pseudoinverse method, the singular value decomposition, and
the damped least squares (DLS) method. For an extension of the DLS
methods to a method called selectively damped least squares (SDLS), see
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Buss and Kim [7]. Nearly all the present paper is expository, but new
aspects include the possibility of forming the Jacobian matrix with the
target positions instead of the end effector positions. We attempt to explain
the mathematical foundations clearly so as to elucidate the strengths and
weaknesses of the various methods.

For simplicity and to keep the paper short, we do not consider any
aspects of joint limits or avoiding self-collisions; rather, we will only consider
the “pure” IK problem without joint limits and without self-collisions.

2 Preliminaries: forward kinematics and Jacobians

A multibody is modeled with a set of links connected by joints. There
are a variety of possible joint types. Perhaps the most common type is
a rotational joint with its configuration described by a single scalar angle
value. Other joint types include prismatic (i.e., translational, or sliding)
joints, screw joints, etc. For simplicity, we will discuss only rotational joints,
but the algorithms and theory all apply to arbitrary joints. The key point is
that the configuration of a joint is a continuous function of one or more real
scalars; for rotational joints, the scalar is the angle of the joint.

The complete configuration of the multibody is specified by the scalars
θ1, . . . , θn describing the joints’ configurations. We assume there are n joints
and each θj value is called a joint angle (but, as we just said, could more
generally represent a value which is not an angle). Certain points on the links
are identified as end effectors. If there are k end effectors, their positions
are denoted s1, . . . , sk . Each end effector position si is a function of the
joint angles. We write ~s for the column vector (s1, s2, . . . , sk)T ; this can be
viewed as a column vector either with m = 3k many scalar entries or with
k many entries from R3 .

The multibody will be controlled by specifying target positions for
the end effectors. The target positions are also given by a vector
~t = (t1, . . . , tk)T , where ti is the target position for the ith end effector.
We let ei = ti − si , the desired change in position of the ith end effector.
We also let ~e = ~t −~s .

The joint angles are written as a column vector as θ = (θ1, . . . , θn)T .
The end effector positions are functions of the joint angles; this fact can be
expressed as ~s = ~s(θ), or, for i = 1, . . . , k , si = si(θ). The IK problem is to
find values for the θj ’s so that

ti = si(θ), for all i . (1)
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Unfortunately, there may not always be a solution to (1), and there may not
be a unique (best) solution. Even in well-behaved situations, there may be
no closed form equation for the solution.

We can, however, use iterative methods to approximate a good solution.
For this, the functions si are linearly approximated using the Jacobian
matrix. The Jacobian matrix J is a function of the θ values and is defined
by

J(θ) =
(

∂si

∂θj

)
i,j

.

Note that J can be viewed either as a k×n matrix whose entries are vectors
from R3 , or as m × n matrix with scalar entries (with m = 3k ).

The basic equation for forward dynamics that describes the velocities
of the end effectors can be written as follows (using dot notation for first
derivatives):

~̇s = J(θ)θ̇. (2)

The Jacobian leads to an iterative method for solving equation (1).
Suppose we have current values for θ , ~s and ~t . From these, the Jacobian
J = J(θ) is computed. We then seek an update value ∆θ for the purpose
of incrementing the joint angles θ by ∆θ :

θ := θ + ∆θ. (3)

By (2), the change in end effector positions caused by this change in joint
angles can be estimated as

∆~s ≈ J ∆θ. (4)

The idea is that the ∆θ value should chosen so that ∆~s is approximately
equal to ~e , although it is also common to choose ∆θ so that the approximate
movement ∆~s in the end effectors (partially) matches the velocities of the
target positions (see [45]). The update of the joint angles can be used in two
modes: (i) Each simulation step performs a single update to the value of joint
angles using equation (3), so that the end effector positions approximately
follow the target positions. (ii) The joint angles are updated iteratively until
a value of ~s is obtained that is sufficiently close to a solution. It is also
possible to use a hybrid of (i) and (ii), that is, using a small number of
repeated updates using (3) so as to more accurately track the end effector
positions.

The rest of this paper discusses strategies for choosing ∆θ to update the
joint angles. In light of (4), one approach is to solve the equation

~e = J ∆θ (5)
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The entries in the Jacobian matrix are usually very easy to calculate.
If the j th joint is a rotational joint with a single degree of freedom, the
joint angle is a single scalar θj . Let pj be the position of the joint, and
let vj be a unit vector pointing along the current axis of rotation for the
joint. In this case, if angles are measured in radians with the direction
of rotation given by the right rule and if the ith end effector is affected
by the joint, then the corresponding entry in the Jacobian is

∂si

∂θj
= vj × (si − pj),

If the ith end effector is not affected by the j th joint, then of course
∂si/∂θj = 0.

If the j th joint is translational, the entry in the Jacobian matrix is
even easier to compute. Suppose the j th joint performs translation the
direction of the unit vector vj , so that the the joint “angle” measures
distance moved in the direction vj . Then if the ith end effector is
affected by the j th joint, we have

∂si

∂θj
= vj .

For more information, see Orin and Schrader [35] who discuss how
to calculate the Jacobian matrix entries for different representations
of joints and multibodies. The textbook [6, Ch. 12] also discusses a
representation of rigid multibodies and how to calculate the Jacobian.

Calculating the Jacobian

for ∆θ . In most cases, this equation cannot be solved uniquely. Indeed, the
Jacobian J may not be square or invertible, and even if is invertible, just
setting ∆θ = J−1~e may work poorly if J is nearly singular.

An alternate Jacobian. An alternate method for defining the Jacobian
matrix is to let

J(θ) =
(

∂ti

∂θj

)
i,j

,

where the partial derivative is calculated using the formula for (∂si/∂θj)
with ti substituted for si . The meaning of ∂ti/∂θj is that the target
position is thought of as being attached to the same link as the ith end
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effector. The intuition is that with this formulation of the Jacobian, we are
trying to move the target positions towards the end effectors, rather than
the end effectors towards the target positions.

The alternate Jacobian may be used in place of the usual Jacobian in
any of the algorithms discussed below. Our experience has been that this
alternate can improve on the usual Jacobian in terms of reducing oscillation
or overshoot when target positions are too far away to be reached by the
end effectors. However, the drawback is that in some configurations, the
alternative Jacobian can lead to “jerky” behavior. This is particularly true
for rotational joints when the multibody’s links are folded back on each other
trying to reach a close target position.

Setting target positions closer. A recurring problem in tracking target
positions, is that when the target positions are too distant, the multibody’s
arms stretch out to try to reach the target position. Once the multibody is
extended in this way, it usually is near a singularity (that is, the Jacobian is
very sensitive to small changes in joint angles), and the multibody will often
shake or jitter, attempting unsuccessfully to reach the distant target. These
effects can be reduced with DLS and SDLS algorithms, but are difficult to
remove completely.

One technique to reduce this problem is to move the target positions in
closer to the end effector positions. For this, we change the definition of ~e ;
instead of merely setting ~e = ~t −~s , each component ei in the vector ~e has
its length clamped to a specified maximum value. That is, we define

ei = ClampMag(ti − si, Dmax),

where

ClampMag(w, d) =

{
w if ||w|| ≤ d

d w
||w|| otherwise

Here ||w|| represents the usual Euclidean norm of w . The value Dmax is
an upper bound on how far we attempt to move an end effector in a single
update step.

For damped least squares, clamping the magnitudes of ~ei in this way
can reduce oscillation when target positions are out of reach. This has
the advantage of allowing the use of a smaller damping constant; the
smaller damping constant allows significantly quicker convergence to target
positions.∗ When the end effectors are tracking continuously moving target

∗Also for SDLS, [7] have found that clamping the magnitudes of ~ei in this way can
effectively reduce oscillation when target positions are out of reach.
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positions, the Dmax distance should be at least several times larger than an
end effector moves in a single update step. In our experience, setting Dmax

to be approximately half the length of a typical link works well.
For target positions that may jump discontinuously, we have used

separate maximum values Dmax,i for each i . After a discontinuous movement
of the target positions (or when beginning a simulation of a continuously
moving target), we initially set Dmax,i to infinity. After the first simulation
step, we let di be the amount by which the previous simulation step
moved the ith end effector closer to its target position. Then, we let
Dmax,i = di + Dmax , and use Dmax,i to clamp the magnitude of ei .

3 The Jacobian transpose method

The Jacobian transpose method was first used for inverse kinematics by
[5, 46]. The basic idea is very simple: use the transpose of J instead of the
inverse of J . That is, we set ∆θ equal to

∆θ = αJT~e,

for some appropriate scalar α . Now, of course, the transpose of the Jacobian
is not the same as the inverse; however, it is possible to justify the use of the
transpose in terms of virtual forces. More generally, it can be shown that
the following theorem holds [5, 46].

Theorem 1 For all J and ~e, 〈JJT~e,~e〉 ≥ 0.

Proof The proof is trivial: 〈JJT~e,~e〉 = 〈JT~e, JT~e〉 = ||JT~e||2 ≥ 0. 2

The approximation (4) implies that, for sufficiently small α > 0,
updating the angles by equation (3) using ∆θ = αJT~e will change the
end effector positions by approximately αJJT~e . By Theorem 1, this has the
effect of reducing the magnitude of the error vector ~e if α is small enough.

It remains to decide how to choose the value of α . One reasonable way
to try to minimize the new value of the error vector ~e after the update.
For this, we assume that the change in end effector position will be exactly
αJJT~e , and choose α so as to make this value as close as possible to ~e .
This gives

α =
〈~e, JJT~e〉

〈JJT~e, JJT~e〉 .
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4 The pseudoinverse method

The pseudoinverse method sets the value ∆θ equal to

∆θ = J†~e, (6)

where the n × m matrix J† is the pseudoinverse of J , also called the
Moore-Penrose inverse of J . It is defined for all matrices J , even ones
which are not square or not of full row rank. The pseudoinverse gives
the best possible solution to the equation J∆θ = ~e in the sense of least
squares. In particular, the pseudoinverse has the following nice properties.
Let ∆θ be defined by equation (6). First, suppose ~e is in the range (i.e., the
column span) of J . In this case, J∆θ = ~e ; furthermore, ∆θ is the unique
vector of smallest magnitude satisfying J∆θ = ~e . Second, suppose that ~e
is not in the range of J . In this case, J∆θ = ~e is impossible. However,
∆θ has the property that it minimizes the magnitude of the difference
J∆θ − ~e . Furthermore, ∆θ is the unique vector of smallest magnitude
which minimizes ||J∆θ−~e|| , or equivalently, which minimizes ||J∆θ−~e||2 .

The pseudoinverse tends to have stability problems in the neighborhoods
of singularities. At a singularity, the Jacobian matrix no longer has full row
rank, corresponding to the fact that there is a direction of movement of the
end effectors which is not achievable. If the configuration is exactly at a
singularity, then the pseudoinverse method will not attempt to move in an
impossible direction, and the pseudoinverse will be well-behaved. However,
if the configuration is close to a singularity, then the pseudoinverse method
will lead to very large changes in joint angles, even for small movements in
the target position. In practice, roundoff errors mean that true singularities
are rarely reached and instead singularity have to be detected by checking
values for being near-zero.

The pseudoinverse has the further property that the matrix (I − J†J)
performs a projection onto the nullspace of J . Therefore, for all vectors ϕ ,
J(I − J†J)ϕ = 0 . This means that we can set ∆θ by

∆θ = J†~e + (I − J†J)ϕ (7)

for any vector ϕ and still obtain a value for ∆θ which minimizes the value
J∆θ − ~e . This nullspace method was first exploited Liégeois [28], who used
it to avoid joint limits. By suitably choosing ϕ , one can try to achieve
secondary goals in addition to having the end effectors track the target
positions. For instance, ϕ might be chosen to try to return the joint angles
back to rest positions [18]: this can help avoid singular configurations.
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A number of authors (see [4]) have used the nullspace method to help
avoid singular configurations by maximizing Yoshikawa’s manipulability
measure [48, 47]. Maciejewski and Klein [30] used the nullspace method
for obstacle avoidance. A more sophisticated nullspace method, called the
extended Jacobian method, was proposed by Baillieul [4]: in the extended
Jacobian method a local minimum value of a function is tracked as a
secondary objective. The nullspace method has also been used to assign
different priorities to different tasks (see [10, 3]).

An algorithm for the pseudoinverse method can be derived as follows:
From equation (5), we get the normal equation

JT J∆θ = JT~e.

Then we let ~z = JT~e and solve the equation

(JT J)∆θ = ~z. (8)

Now it can be shown that ~z is always in the range of JT J , hence equation (8)
always has a solution. In principle, row operations can be used to find the
solution to (8) with minimum magnitude; however, in the neighborhood of
singularities, the algorithm is inherently numerically unstable.

When J has full row rank, then JJT is guaranteed to be invertible.
In this case, the minimum magnitude solution ∆θ to equation (8) can be
expressed as

∆θ = JT (JJT )−1~e. (9)

To prove this, note that if ∆θ satisfies (9), then ∆θ is in the row span of J
and J∆θ = ~e . Equation (9) cannot be used if J does not have full row
rank. A general formula for the pseudoinverse for J not of full row rank can
be found in [6].

The pseudoinverse method is widely discussed in the literature but
it often performs poorly because of instability near singularities. The
(selectively) damped least squares methods have much superior performance.

5 Damped least squares

The damped least squares method avoids many of the pseudoinverse
method’s problems with singularities and can give a numerically stable
method of selecting ∆θ . It is also called the Levenberg-Marquardt method
and was first used for inverse kinematics by Wampler [41] and Nakamura
and Hanafusa [34].
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The damped least squares method can be theoretically justified as
follows (see [42]). Rather than just finding the minimum vector ∆θ that
gives a best solution to equation (5), we find the value of ∆θ that minimizes
the quantity

||J∆θ − ~e||2 + λ2||∆θ||2,
where λ ∈ R is a non-zero damping constant. This is equivalent to
minimizing the quantity ∣∣∣∣

∣∣∣∣
(

J

λI

)
∆θ −

(
~e
0

)∣∣∣∣
∣∣∣∣ .

The corresponding normal equation is(
J

λI

)T (
J

λI

)
∆θ =

(
J

λI

)T (
~e
0

)
.

This can be equivalently rewritten as

(JT J + λ2I)∆θ = JT~e.

It can be shown (by the methods of section 6 below) that JT J + λ2I is
non-singular. Thus, the damped least squares solution is equal to

∆θ = (JT J + λ2I)−1JT~e. (10)

Now JT J is an n× n matrix, where n is the number of degrees of freedom.
It is easy to show that (JT J + λ2I)−1JT = JT (JJT + λ2I)−1. Thus,

∆θ = JT (JJT + λ2I)−1~e. (11)

The advantage of equation (11) over (10) is that the matrix being inverted is
only m×m where m = 3k is the dimension of the space of target positions,
and m is often much less than n .

Additionally, (11) can be computed without needing to carry out the
matrix inversion, instead row operations can find ~f such that (JJT +λ2I)~f =
~e and then JT~f is the solution.

The damping constant depends on the details of the multibody and
the target positions and must be chosen carefully to make equation (11)
numerically stable. The damping constant should large enough so that the
solutions for ∆θ are well-behaved near singularities, but if it is chosen too
large, then the convergence rate is too slow. There have been a number of
methods proposed for selecting damping constants dynamically based on the
configuration of the articulated multibody [34, 14, 15, 31, 11, 13, 8, 9, 33, 32].
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6 Singular value decomposition

The singular value decomposition (SVD) provides a powerful method for
analyzing the pseudoinverse and the damped least squares methods. In
addition, we shall use the SVD to design a selectively damped least squares
method in [7]. Let J be the Jacobian matrix. A singular value decomposition
of J consists of expressing J in the form

J = UDV T ,

where U and V are orthogonal matrices and D is diagonal. If J is m × n ,
then U is m × m , D is m × n , and V is n × n . The only non-zero entries
in the matrix D are the values σi = di,i along the diagonal. We henceforth
assume m ≤ n . Without loss of generality, σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0.

Note that the values σi may be zero. In fact, the rank of J is equal
to the largest value r such that σr 6= 0. For i > r , σi = 0. We use ui

and vi to denote the ith columns of U and V . The orthogonality of U
and V implies that the columns of U (resp., of V ) form an orthonormal
basis for Rm (resp., for Rn ). The vectors vr+1, . . . ,vn are an orthonormal
basis for the nullspace of J . The singular value decomposition of J always
exists, and it implies that J can be written in the form

J =
m∑

i=1

σiuivT
i =

r∑
i=1

σiuivT
i . (12)

The transpose, DT , of D is the n × m diagonal matrix with diagonal
entries σi = di,i . The product DDT is the m × m matrix with diagonal
entries d2

i,i . The pseudoinverse, D† = (d†i,j), of D is the n × m diagonal
matrix with diagonal entries

d†i,i =
{

1/di,i if di,i 6= 0
0 if di,i = 0.

The pseudoinverse of J is equal to

J† = V D†UT .

Thus,

J† =
r∑

i=1

σ−1
i viuT

i . (13)
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The damped least squares method is also easy to understand with the
SVD. The matrix JJT + λ2I is equal to

JJT + λ2I = (UDV T )(V DT UT ) + λ2I = U(DDT + λ2I)UT .

The matrix DDT +λ2I is the diagonal matrix with diagonal entries σ2
i +λ2 .

Clearly, DDT + λ2I is non-singular, and its inverse is the m × m diagonal
matrix with non-zero entries (σ2

i + λ2)−1 . Then,

JT (JJT + λ2I)−1 = (V DT (DDT + λ2I)−1UT = V EUT ,

where E is the n × m diagonal matrix with diagonal entries equal to

ei,i =
σi

σ2
i + λ2

.

Thus, the damped least squares solution can be expressed in the form

JT (JJT + λ2I)−1 =
r∑

i=1

σi

σ2
i +λ2 viuT

i . (14)

Comparison of equations (13) and (14) makes clear the relationship
between the pseudoinverse and damped least squares methods. In both
cases, J is “inverted” by an expression

∑
i τiviuT

i . For pseudoinverses, the
value τi is just σ−1

i (setting 0−1 = 0); whereas for damped least squares,
τi = σi/(σ2

i + λ2). The pseudoinverse method is unstable as σi approaches
zero; in fact, it is exactly at singularities that σi ’s are equal to zero.

For values of σi which are large compared to λ , the damped least squares
method is not very different from the pseudoinverse since for large σi ,
σi/(σ2

i + λ2) ≈ 1/σi . But, when σi is of the same order of magnitude as λ
or smaller, then the values σ−1 and σi/(σ2

i + λ2) diverge. Indeed, for any
λ > 0, σi/(σ2

i +λ2) → 0 as σi → 0. Thus, the damped least squares method
tends to act similarly to the pseudoinverse method away from singularities
and effectively smooths out the performance of pseudoinverse method in the
neighborhood of singularities.

7 Selectively damped least squares

For the material that used to be in this section, see Buss and Kim [7].
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Figure 1: The Y and double-Y shapes. The end effectors are at the ends of
the branches; the red balls indicate the target positions.

8 Experimental results and recommendations

For the rest of the material that used to be in this section, plus the results of
additional experiments, see Buss and Kim [7].

To compare the IK algorithms, we implemented the “Y”-shaped and
“double-Y” shaped multibodies pictured in figure 1. The first has seven
links with two end effectors and the latter has 16 links with 4 end effectors.
We let the target positions (the red balls in the figures) move in sinusoidally
varying curves in and out of reach of the multibodies. The target positions
moved in small increments (just large enough to still look visually smooth),
and in each time step we updated the joint angles once.† Since joint angles
were updated only once per time step, the end effectors tracked the target
positions only approximately, even when the target positions were within
reach. We visually inspected the simulations for oscillations and tracking
abilities. We also measured the accuracy of the tracking over a period of
hundreds of simulation steps.

The Jacobian transpose had the advantage of being fast, but of poor
quality. Its quality was poor for the Y shape and extremely poor for the
double-Y shape. However, in other simultations, we have seen the Jacobian
transpose method work well for a system with a single end effector.

The pseudoinverse method worked very poorly whenever the target
positions were out of reach, and we do not recommend its use unless joint

†All our software, including source code, is available from the web page
http://math.ucsd.edu/∼sbuss/ResearchWeb/ikmethods. Short movie clips of the
Jacobian transpose, the pure pseudoinverse method, the DLS and the SDLS methods are
also available there.
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angles are severely clamped with ClampMaxAbs.
The damped least squares method worked substantially better than the

Jacobian transpose method, although it is somewhat slower. We attempted
to set the damping constant λ so as to minimize the average error of the end
effectors’s positions, but at the point where the error was minimized, there
was a lot of oscillation and shaking. Thus, we had to raise the damping
constant until unwanted oscillation became very rare (but at the cost of
accuracy in tracking the target positions).

We also implemented a version of the DLS method which uses the
ClampMag method to clamp the components of the ~e vector: this method
is called DLS ′ . The advantage of the DLS ′ method is that the clamping of ~e
reduces oscillation and shaking, and thus a lower damping constant can be
used. The lower damping constant allows the multibody to more agressively
move towards the target positions.

The runtimes for two different methods are described in the table below.
Runtimes are in microseconds and were measured with custom C++ code on
a 2.8GHz Pentium. The DLS ′ runtime is not reported, but is very close to
that of DLS. For the Y-shape, the Jacobian matrix is 6×7, for the double-Y,
it is 12 × 16.

Jacobian
Shape Transpose DLS

Y 1.1 µs 2.2 µs
Double-Y 6.5 µs 18.5 µs

We conclude with some recommendations. First, the Jacobian transpose
performed poorly in our tests, but we have seen it work well in situations
where there is a single end effector. For these applications, the Jacobian
transpose is fast and easy to implement. For multiple end effectors, the DLS
or DLS ′ methods can be used. For controlled situations where a damping
constant can be set ahead of time, the DLS ′ method gives good performance
and relatively easy implementation. For recommendations relating to the
use of selectively damped least squares, see [7].

A final recommendation that applies to any method is that it is almost
always a good idea to clamp the maximum angle change in a single update
to avoid bad behavior from unwanted large instantaneous changes in angles.
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