
b y J e f f L a n d e r G R A P H I C C O N T E N T

Well, look at it piece by piece. There
are two methods for studying motion:
kinematics and kinetics. Kinematics is
the science of motion without regard
to the forces that cause it. If I were
interested in how forces and torques
act upon an object to create motion, I
would be looking into the kinetics
side of dynamics. But I don’t want to
open that can of worms. So for now,
let’s just stick to kinematics.

Kinematics is really about the geom-
etry of motion. If you read my
columns in March through May 1998,
you know that when animating a
character, it’s often convenient to
build a skeletal hierarchy that repre-
sents the different parts of the charac-
ter. When animating this character, I
keep track of the position and orienta-
tion of each of these parts. For exam-
ple, to move a character’s hand into a
desired position, I may rotate the
upper arm, then the lower arm, and
finally lower the hand, until I am
happy (see Kine in Figure 1). This
form of animation is known as for-
ward, or direct, kinematics (it’s for-
ward because you manipulate each
joint forward throughout the hierar-
chy).

But, what if I wanted just to posi-
tion the hand and let the software cal-
culate a set of joint orientations for
the other bones to generate the final
position? That’s the goal of inverse
kinematics. Given a desired position
and orientation for a final link in a
chain, establish the transformations
required for the rest of the chain.

You can see how this is a big plus
for animators. By simply dragging
around the hands and feet, they can
position the entire character. That’s
why any 3D graphics software that’s
interested in competing in the anima-

tion market must have IK. But, how
does this apply to real-time games?

Inverse Kinematics and Gaming

I nteractivity is very important in 3D
games. Players want the ability to

truly interact with their environments.
However, this level of interaction is
difficult to create. If some of the goals
in the game include picking up objects
or manipulating switches and levers,
then the character needs the ability to
visually interact with these objects. To
make the problem easier, many game
titles create one canned animation for
each action. Then, when the character
encounters an object that it needs to
pick up, there are two ways to handle
the action: either the player must line
up the character manually to perform
the interaction, or the game must
align the character with the object
automatically. The former technique
can lead to frustration on the players’
parts as they try to align the character
manually. The latter can lead to visual
problems if the character is allowed to
correct too far. Anyone who has
played games such as TOMB RAIDER is
very familiar with the issues involved.

Now, these methods are perfectly
reasonable cheats that game designers
use to avoid difficult problems from
either a programming or production
perspective. However, if you have the
desire and computational bandwidth
to spare, it would be good to solve this
problem. By implementing an IK sys-
tem in a real-time game, you can
enable the character to reach out inter-

actively for any object within its reach.
Inverse kinematics allows you to cre-

ate complex characters that face the
player. How about a serpent that
whips its head around to confront the
character, no matter from what direc-
tion the character approaches? Inverse
kinematics opens up many similar pos-
sibilities to game designers. So, now
that you’re all convinced that you
need inverse kinematics in your game,
how do you go about doing it?

Taking Animation to the Sixth Degree

I need to take a minute to discuss
degrees of freedom. You see state-

ments such as, “A complete six-degree-
of-freedom engine,” in ad copy all the

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 8 G A M E D E V E L O P E R

9

Oh My God, I Inverted Kine!

W e have all heard about inverse kinematics. It has become a buzz-

word in computer graphics. High-end 3D animation packages

brag about how effectively they handle IK. So IK clearly has

something to do with animation, right?

Jeff can be freely manipulated about an arbitrary axis at Darwin 3D, for a fee of
course. To impose your own restrictions on him, e-mail jeffl@darwin3d.com.

F I G U R E 1 . Kine application in

action.

time. But what does that really mean?
In my March 1998 column, “Better 3D:
The Writing Is on the Wall,” I dis-
cussed degrees of freedom and how
they were affected by rotations. To
recap loosely, an articulated figure is
connected by a series of joints. Each
joint forms the number of degrees of
freedom in the next object of the hier-
archy. Figure 2A depicts a simple slid-
ing joint like you may see in a shock
absorber. This joint, called a prismatic
joint, exhibits one degree of transla-
tional freedom. Moving the joint only
moves the end position in one dimen-
sion. Figure 2B depicts a basic rotation-
al, or revolute joint. It allows rotation
around one axis defining one degree of

rotational freedom.
In actuality, most joints in a charac-

ter have more then one degree of free-
dom. For example, a wrist joint usually
allows rotation to some extent in the
x, y, and z axes. This represents three
full degrees of freedom for the wrist
alone. However, when a game engine
is described as having six degrees of
freedom, this refers to the player’s
point of view. The player is able to
move the camera in all three direc-
tions and has rotational freedom about
all three axes.

When you’re trying to solve the

inverse kinematics of a system, you are
solving a system of nonlinear equa-
tions. Each added degree of freedom
makes the problem more complex.
This means that each way you can
limit the system will make the calcula-
tions easier later.

So, How Do You Do It?

I n general, there are two forms of
solutions for an inverse kinematic

system: closed form solutions and
numerical solutions. Closed form solu-
tions are found analytically by using
noniterative calculations. John Craig
has shown that all systems with only

revolute and prismatic joints having a
total of six DOF in a single series chain
are solvable closed form systems (see
For further info). To solve a closed
form system, one can take algebraic
and geometric approaches. The benefit
of the closed form solution is that it
can be calculated quickly and exactly.

One uses numerical solutions when
the system is too complicated for
closed form methods. They use itera-
tive calculations to approach an actual
solution as closely as possible. Because
of the iterative method used, a numer-
ical solution can take much more time

to calculate. But the approach solves
very complex kinematic systems.

Once More into the Trig

T o solve these problems, you need
to be pretty comfortable with

trigonometry. If you’re like me, your
trig is a little rusty. I recommend that
you get your hands on a good trig
book and go through the basic identi-
ties and conversion formulas. It will
make your descent into the wild world
of kinematics a lot less painful. You’ll
be surprised how much it will help out
your 3D programming skills, too.

Let me start by taking a look at the
closed form solutions. They’re much
easier to understand and provide a
strong basis for the iterative methods.
Take a look at the system in Figure 3.
This represents a two-joint articulated
arm in a single plane. By restricting
the motion to the x,y plane, the calcu-
lations are much easier. That doesn’t
mean it’s not an interesting case. A
character reaching for an object can
be calculated in a single 2D plane and
still maintain a lot of flexibility.

The first bone is of length L1 and is
rotated about the origin by θ1 degrees.
The second bone is of length L2 and is
rotated about the local axis by θ2
degrees. This puts the end position of
this system at P. By applying basic
trigonometry I know that the position
of the origin of the second bone is:

θ2 = (L1 * cos(θ1), L1 * sin(θ1))
(Eq. 1)

G R A P H I C C O N T E N T

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

10

F I G U R E S 2 A A N D 2 B . Figure 2A represents one translational degree of freedom, and Figure 2B represents one rotational

degree of freedom.

To solve these problems, you need to be pretty
comfortable with trigonometry. If you’re
like me, your trig is a little rusty. I recommend
you get your hands on a good trig book...

If I then add in the second bone, I
get a final position for P.

PX = (L1 * cos(θ1)) + (L2 * cos(θ1+θ2))
PY = (L1 * sin(θ1)) + (L2 * sin(θ1+θ2))

(Eq. 2)

This is the formula for the forward
kinematics for the system in Figure 3. It
represents the two degrees of freedom
in the figure. Because of the few
degrees of freedom and the restriction
to 2D, the formula is not that bad. But
what I really want to know is, given a

position P, what values for θ1 and θ2 do
I need to solve the equation?

One key piece of math that I’m
going to pull out of my rusty mind is a
couple of basic trig identities.

cos(a+b) = cos(a)cos(b) - sin(a)sin(b)
sin(a+b) = cos(a)sin(b) + sin(a)cos(b)

In order to finish it up, I need to
square both parts of Equation 2 and
add them together, applying my trig
identities along the way. This gives me
the following:

x2 + y2 = L1
2 + L2

2 + 2L1L2cos(θ2).
(Eq. 3)

I can now easily solve for θ2.

(Eq. 4)
The angle is obtained by inverting

the cosine operation.

(Eq. 5)
By solving for θ1 using Equation 2

and the identities, you get the final
piece of the puzzle.

(Eq. 6)
That’s all there is to it. It’s clear that

if there were many more degrees of
freedom, this technique would be
impossible. But for this problem, I’m
off and running. Equations 5 and 6
give me all I need to code a solution to
the system in Figure 3.

I Can’ t Reach that Far

A nother important issue in an
inverse kinematic system is the

idea of reachability. Given a position P,
is it possible for the figure to reach that
spot? A nice side effect comes out of
Equation 4. If the value of the division
is not in the range of -1 to 1, then the
point is not reachable by the figure. At
this point, I can bail out and avoid the
rest of the calculations.

θ
θ θ

1 =
− +(L x + (L

2L L
1 2 1 2

1 2

sin()) cos())L y2

θ2

2 2

1 2

Acos
x y

2L L
=

+ − −L L1
2

2
2

cos(
x

22

2

θ) =
+ − −y L L

L L

2
1

2
2

2

1 2

G R A P H I C C O N T E N T

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

12

///

// Procedure: Compute IK

// Purpose: Compute an IK Solution to an end effector position

// Arguments: End Target (x,y)

// Returns: TRUE if a solution exists, FALSE if the position isn't in reach

///

BOOL COGLView::ComputeIK(CPoint endPos)

{

/// Local Variables ///

float l1,l2; // BONE LENGTH FOR BONE 1 AND 2

float ex,ey; // ADJUSTED TARGET POSITION

float sin2,cos2; // SINE AND COSINE OF ANGLE 2

float angle1,angle2; // ANGLE 1 AND 2 IN RADIANS

///

// SUBTRACT THE INITIAL OFFSET FROM THE TARGET POS

ex = endPos.x - (m_UpArm.trans.x * m_ModelScale);

ey = endPos.y - (m_UpArm.trans.y * m_ModelScale);

// MULTIPLY THE BONE LENGTHS BY THE WINDOW SCALE

l1 = m_LowArm.trans.x * m_ModelScale;

l2 = m_Effector.trans.x * m_ModelScale;

// CALCULATE THE COSINE OF ANGLE 2

cos2 = ((ex * ex) + (ey * ey) - (l1 * l1) - (l2 * l2)) / (2 * l1 * l2);

// IF IT IS NOT IN THIS RANGE, IT IS UNREACHABLE

if (cos2 >= -1.0 && cos2 <= 1.0)

{

angle2 = (float)acos(cos2); // GET THE ANGLE WITH AN ARCCOSINE

m_LowArm.rot.z = RADTODEG(angle2); // CONVERT IT TO DEGREES

sin2 = (float)sin(angle2); // CALC THE SINE OF ANGLE 2

// COMPUTE ANGLE 1

angle1 = (-(l2 * sin2 * ex) + ((l1 + (l2 * cos2)) * ey)) /

((l2 * sin2 * ey) + ((l1 + (l2 * cos2)) * ex));

m_UpArm.rot.z = RADTODEG(angle1); // CONVERT IT TO DEGREES

return TRUE;

}

else

return FALSE;

}

L I S T I N G 1 . Compute an IK solution to an end effector position.

F I G U R E 3 . Closed form solution 1.

Another method for checking
whether the goal is reachable is to see if
the distance to the goal point is less
than or equal to the sum of the lengths

of the joints. This illustrates an impor-
tant point. When solving a kinematic
problem with analytical methods, it’s
not always possible to find a solution
that’s close enough. Sometimes you
don’t want close. You only want a solu-
tion if it’s correct. But if you would pre-
fer your system to be as close as possi-
ble, an iterative numerical solution is
probably better.

Bring on the Code

U sing these formulas in an applica-
tion is pretty easy. There are a cou-

ple of things to remember. The formu-
las assume that the base of the figure is
at (0,0). In the case of a character, this
may not be true. In my application, I
subtract the base offset from the desired
end position. This makes things work
out quite nicely. The other issue is that
the trig functions in C require radians.
If your animation system or API
requires degrees, an extra conversion
step is required. By using lookup tables
for the trig functions, or an animation
system that handles radians, this con-
version can be eliminated. However, on
current PC systems, this is probably not
an issue because the calculations are rel-
atively minor.

You can see the algebraic solution to
my inverse kinematic problem in
Listing 1. The routine sets the rotation

values of each joint in degrees if the
target position is in reach. You will
notice the reachability test right in the
middle of the listing.

Another Closed Form Solution

W hat I just went through is
known as an algebraic strategy

for the closed form manipulator.
Another strategy for solving the closed
form is the geometric solution. The
strategy is to break the problem down
into a couple of plane geometry prob-
lems. The problem is framed in Figure
4. The strategy is to create the line C
that extends between the origin and
the target position. We can then make
use of the law of cosines to solve for
angle θ2.

The law of cosines states

c2 = L1
2 + L2

2 - 2 L1L2cos(C).

I can substitute 180 - θ2 for C,
leaving

c2 = L1
2 + L2

2 - 2 L1L2cos(180 - θ2).

Applying the trig identity of the sum
of cosines and the facts that cos(180) =
-1 and cos(-θ) = cos(θ), I can substitute
cos(180 - θ2) with -cos(θ2). This yields

c2 = L1
2 + L2

2 + 2 L1L2cos(θ2).

You will notice that this is the same
as Equation 3. The same algebra is
applied to get the value for θ2. To solve
for θ1, I need to find the angles θ3 and
θ4. θ3 is easy.

θ3 = Atan2(b,a)

By applying the law of cosines again,
I can solve for θ4.

The inverse cosine is calculated so
that θ4 is between 0 and 180 degrees.
Then the angles are combined. They

are added if θ2 is less than 0 and sub-
tracted if θ2 is greater than 0.

θ1 = θ3 + θ4 // θ2 is less than 0
θ1 = θ3 - θ4 // θ2 is more than 0

I didn’t provide code for the geomet-
ric solution, but feel free to try it out
for yourself.

The Application

T he sample application this month
is a 2D inverse kinematic solver for

a two link manipulator. If you click
anywhere on the screen, Kine will try
and reach it. If the point is in his reach,
the solution is displayed. If the point is
not in reach, a message is displayed.
The application uses much of the same
framework as my previous articles. One
difference is that the display is an
orthogonal view. This works well for
2D displays.

We have the basics of inverse kine-
matics out of the way. Next month, I’ll
attack the more difficult problem of
solving arbitrary hierarchies using an
iterative numerical strategy. Until
then, check out the source code and
application on the Game Developer web
site. ■

cos(
a b

4

2 2

θ) = + + −L L
L c

1
2

2
2

12

G R A P H I C C O N T E N T

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

14

Craig, John J., Introduction to Robotics:

Mechanics and Control. Second

Edition. Reading, Mass.: Addison-

Wesley, 1989. This is a very good

book on robotics. It provides analyti-

cal solutions for many different

types of robotic manipulators.

McKerrow, Phillip John. Introduction to

Robotics. Reading, Mass.: Addison-

Wesley, 1991.

Watt, Alan and Mark Watt. Advanced

Animation and Rendering

Techniques. New York, New York:

ACM Press, 1992. Yes, I used it again.

Get the hint and get the book.

Heineman, E. Richard. Plane

Trigonometry with Tables. McGraw

Hill, 1956. An older trigonometry

book that I picked up a while ago. If

you are working on 3D graphics, you

need a book like it.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

F I G U R E 4 . Closed form solution 2.

When solving a kinematic problem with
analytical methods, it’s not always possible
to find a solution that’s close enough.

	back:

