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Conditional stochastic simulation for
character animation

By N. Courty* and A. Cuzol
..........................................................................

In a context of interactive applications, adapting motion capture data to new situations or
producing variants of them are known as non trivial tasks. We propose an original method
that produces motions that preserve the statistical properties of a reference motion while
ensuring some constraints. This method uses principles of conditional stochastic simulation
to achieve this goal. Notably, a new real time algorithm, performing sequentially and
producing the desired motion is introduced. Possible applications of our method are
numerous and several examples are given, along with results. Copyright © 2010 John Wiley
& Sons, Ltd.
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Introduction

The production of new motions from existing ones is a
crucial problem in character animation for several rea-
sons: it can alleviate the costs of motion capture and
data post-processing; it allows to adapt the motion to
distinct types of constraints in a context of interac-
tive applications where there is no a priori about the
action, and as well can add variety and prevent the
clone effect, especially for crowds.1 Existing solutions for
the creation of a new motion can be divided into two
categories: interpolative and generative. The first cate-
gory refers to methods combining (generally in a lin-
ear way) existing motions,2–4 whereas the second deals
with learned models of motions. In the absence of phys-
ical or analytical models of motions, statistical models
have the capability of expressing the knowledge avail-
able in the data, and have revealed over the last years
to be a tool of choice for enclosing the motion specific
information.5–9

Our method belongs to this category and can synthe-
size new motions that share the same statistics up to order
two of a reference motion. Assuming that the inherent
variability of a motion is a realization of a stochastic pro-
cess, our method first learns its structure by treating it as a
Gaussian process. Then, new realizations of motions can
be obtained by stochastic simulation, which guarantees
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that the obtained motion has the correct statistics. Never-
theless, this is not sufficient to assert the correctness and
realism of the motion. The aim of the proposed method is
to allow to add kinematic constraints to the system. The
contributions of this paper are in this direction and are
twofold: (i) using a double kriging operation, we show
how it is possible to constrain the stochastic simulation
to reach given values at given instants, which amounts to
keyframe the simulation (ii) a novel real-time algorithm
performing sequentially is proposed to conduct this op-
eration.

The remainder of the paper is organized as follows:
the next section presents a short presentation of related
work and the following section gives an overview of
the method and its philosophy. The subsequent sec-
tion presents some principles of geostatistics used in
our method, notably, the links with Gaussian processes
will be emphasized. The section thereafter is dedicated
to the presentation of stochastic simulation, along with
the algorithmic versant of the theory, followed by possi-
ble applications to character animations through three
examples: motion reconstruction, variations synthesis,
and motion control. The final section concludes the
paper.

Background

Our method belongs to the family of statistical models
of character motions. The seminal work of Pullen and
Bregler10 is the first to use a non parametric multivariate
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probability density model to express the dependencies
between joint angles in motions. Samples drawn from
these distributions are then used to generate new se-
quences from an input motion. Non parametric models
have also been used more recently to handle the varia-
tion synthesis problem,9 where Lau et al. use dynamic
Bayesian networks to both handle spatial and temporal
variations. Our method differs from their work given the
fact that in our case only one motion is necessary to pro-
duce variants.

However, most of existing works concentrate on para-
metric families of statistical models. In Reference [11],
Brand and Hertzmann were the first to model a mo-
tion with hidden Markov models. The motion texture
paradigm6 uses a two level statistical model, where short
sequences of motions (textons) are modeled as linear
dynamic system along with a probability distribution
of transitions between them. Chai and Hodgins12,5 also
use linear time invariant models such as autoregressive
models to model the dynamic information in the mo-
tions. Gaussian processes first served in the computer
animation community to perform dimensionality reduc-
tion and construct a latent variable model.13 Gaussian
processes have been also widely used in the context
of computer vision.14 In Reference [7], Wang et al. ex-
tended the latent space formulation with a model of
dynamics in the latent space. Most recent applications
of Gaussian processes include motion editing,8 motion
synthesis of a responsive virtual character15, and style-
content separation.16 Contrary to these previous works,
our method does not require any global optimization
procedure as it can perform sequentially, thus making
it fully suitable for real time systems, even with a large
number of characters such as in a crowd.

Method Overview

Let M be a reference motion. M can be represented as
a collection of d dimensional vectors q, each of them
parameterizing one configuration of the articulated fig-
ure. Usually, those vectors are indexed over time, so that
M = {qt}t=1,...,T . Our method, depicted in Figure 1, starts
by applying a dimensionality reduction technique to the
data. This part is described in the next subsection, while
the basic assumptions and the philosophy of our method
are described subsequently.

Data Representation

Before applying our method to motion data, we per-
form dimensionality reduction on them. The objectives
are twofold: (i) working on smaller sets of data while
keeping most of the informative part, and (ii) decorrelate
the different dimensions of the signal so that it is possi-
ble to work on them independently. For this purpose, we
choose the Principal Geodesic Analysis (PGA) scheme,17

which has been recently used in the context of compres-
sion of motion data.18 It can be seen as a generalization of
PCA on general Riemannian manifolds. Its goal is to find
a set of directions, called geodesic directions or principal
geodesics, that best encode the statistical variability of
the data. In our case, and conversely to Reference [18],
the global translation of the root of the character should
be taken into account as an important part of the mo-
tion. Similarly to Reference [6], we choose to encode the
translation velocity of the root in the vector q which then
belongs to the following Lie groupR3 × SO(3)n if n joints
parameterize the articular configuration of the character.

Figure 1. Overview of the proposed method. During an offline phase, an example motion is first decomposed with principal
geodesic analysis. The resulting trajectories are used to estimate the hyperparameters of a given covariance function. At runtime,
the conditional stochastic simulation uses this covariance function, a random generator and some constraints to produce a new

motion.
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This allows while synthesizing a new motion, to build a
new root trajectory by integrating the velocity. The expo-
nential and logarithmic maps for this Lie group are found
easily, and as in Reference [18], PGA is computed by ap-
plying PCA in the tangent space at the intrinsic mean of
the data.

Basic Assumptions

Let Xi = {Xi(t)}t=1,...,T be the ith component obtained
from the PGA technique applied on the reference mo-
tion. This trajectory is assumed to be a realization of a
Gaussian process Xi with covariance function Ci. This
process is assumed to be ergodic, meaning that its statis-
tical properties can be inferred from one finite realization
of it. If the observed realization is of sufficient length, we
can indeed consider that it contains the same information
as several different realizations of the process. We also as-
sume that the underlying process is stationary, meaning
its joint probability distribution does not change when
shifted in time, reducing for the Gaussian process to the
property that the two first moments do not depend on
time.

Motion Synthesis Methodology

Let us first note that the methodology we propose to
synthetize new motions requires the explicit knowledge
of the covariance function Ci for each resulting compo-
nent of the PGA decomposition. In practice, a paramet-
ric model is first chosen for the covariance function and
its hyperparameters are estimated from each realization
Xi. An example of parametric covariance model is the
following one:

Ci(t, t′) = αi exp

(
−|t − t′|2

ρi

)
+ σiδtt′ (1)

where ρi will be called the length-scale which determines
how quickly the covariance falls, δ is one if t = t′ and zero
elsewhere, and the associated σi traduces the nugget ef-
fect (small scale variations, corresponding to noise). This
model is used for all applications in this paper, and the
parameters are estimated with a maximum likelihood
approach for each PGA component.

The input of the covariance model and its estimation
from observed trajectories in the reduced space corre-
spond to the top right part of Figure 1. Note that this
step, like the PGA analysis, is performed offline.

Once the parameters of the covariance functions Ci are
known for all PGA directions, a model of motion is avail-
able in the PGA space. New motions can then be synthe-
sized from this model. If one aims at simulating motions
with the same statistical properties as the reference mo-
tion, a realization of a Gaussian process with covariance
Ci can easily be obtained for each component, and a new
motion can be reconstructed from the PGA approach.
However, in order to improve the resulting motion, con-
straints have to be introduced into the simulation proce-
dure. The problem can then be formulated as the condi-
tional simulation of a Gaussian process, with kinematic
constraints as constraint values. The conditional simula-
tion relies on the well known linear prediction problem
from Gaussian processes (described in the Section “Pre-
diction from Gaussian Processes”). Based on this linear
prediction, it is shown in the Section “Stochastic Simu-
lation” how to respect these constraints while maintain-
ing the statistical properties of the reference motion. This
part, performed online, is depicted on the lower part of
Figure 1.

Prediction from Gaussian
Processes

Given p observations X(t1), . . . , X(tp) at times t1, . . . , tp of
a given Gaussian process with known mean and covari-
ance function C, one can look at the prediction of X(t) for
a given time t. In this section, we show that the Kriging
approach and the Gaussian Process regression method
solve this problem in the same way.

Kriging

Kriging19 is a linear interpolation method issued from the
geostatistical community. Mukai and Kuriyama4 used
this technique in the context of computer animation to
find an optimal set of weights for blending motions. In
the kriging approach, the estimation X̂(t) is expressed as a
linear combination of the p known values X(t1), . . . , X(tp)
as follows:

X̂(t) =
p∑

i=1

λi(t)X(ti) (2)

where λ(t) = (λ1(t), . . . , λp(t))T stands for the kriging co-
efficients.
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It is possible to express those coefficients with the fol-
lowing equation:

λ(t) = �−1
(p)�(t) (3)

where

�(p) =




C(t1, t1) · · · C(t1, tp)

...
. . .

...

C(tp, t1) · · · C(tp, tp)


 (4)

and

�(t) = (C(t, t1), . . . , C(t, tp))T (5)

These coefficients are obtained under the constraints that
the estimation is unbiased and that the variance of the
kriging error given by

Var(X(t) − X̂(t)) = C(t, t) − �T
(t)�

−1
(p)�(t) (6)

is minimized.

Gaussian Process Regression

A similar approach is known as Gaussian Process (GP)
regression in the machine learning community and vi-
sion communities.20 The GP approach aims at solving the
same prediction problem: given p observations X(p) =
(X(t1), . . . , X(tp))T , one looks at the estimation of X(t) at a
given unobserved time t. GP’s approach solve this prob-
lem using the assumption that the process is Gaussian,
and building the conditional distribution p(X(t) |X(p))
which is itself Gaussian. The joint distribution of X(t)
and X(p) writes indeed:

[
X(p)

X(t)

]
∼ N

(
0,

[
�(p) �T

(t)

�(t) C(t, t)

])
(7)

where �(p) and �(t) are defined by Equations (4) and (5).
The conditional distribution p(X(t) |X(p)) is then ob-

tained from a little matrix algebra,20 and it comes that
this distribution is Gaussian described by

p
(
X(t) |X(p)

) ∼ N
(
�T

(t)�
−1
(p)X(p), C(t, t) − �T

(t)�
−1
(p)�(t)

)
(8)

The mean �T
(t)�

−1
(p)X(p) of this distribution is clearly the

same as the kriging estimate in Equation (2), and the
variance C(t, t) − �T

(t)�
−1
(p)�(t) corresponds to the variance

of error given by Equation (6). The Gaussian Process re-
gression is then another expression of kriging.

Stochastic Simulation

In the following we assume that Z is a Gaussian process
with mean µ and covariance function C. The objective is
to simulate trajectories Z(sim) = (Z(sim)(t1), . . . , Z(sim)(tN ))
of length N of this process. The trajectories have to be
independant and respect the statistical properties of Z:

E
(
Z(sim)(t)

) = µ ∀t, (9)

Cov
(
Z(sim)(t), Z(sim)(t′)

) = C(t, t′) ∀t, t′ (10)

Knowing the covariance function C, the covariance of
a trajectory Z(sim) is then a matrix denoted �(N) of size
N × N, with

�(N) =




C(t1, t1) · · · C(t1, tN )

...
. . .

...

C(tN, t1) · · · C(tN, tN )


 (11)

Non-conditional Stochastic
Simulation

In this section we present how to simulate a trajectory
ZNC respecting the properties (9–10). One possible and
simple simulation method is based on the Cholesky de-
composition of the covariance matrix �(N). We first sam-
ple a vector y = (y1, . . . , yN )T composed of N indepen-
dant realizations of the standard Gaussian distribution,
so that y ∼ N(0, I(N)). Then we set

ZNC = L(N)y + µ (12)

where L(N) is obtained from the Cholesky factorization
of the covariance matrix: �(N) = L(N)L

T
(N) (provided that

�(N) is positive semi definite). From this decomposition
it is easy to verify that E(ZNC) = µ and Cov(ZNC) = �(N).

One possible concern with this method is, from a com-
putational point of view, the Cholesky factorization of
�(N) which is o(N3). However, this operation can be con-
ducted only once when �(N) is known.
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Conditional Stochastic Simulation

In some cases, it can be interesting to force the simulations
to reach given values Z(t′1), . . . , Z(t′p) (experimental data,
keyframes specified by animators, etc.) at given time in-
stants t′1, . . . , t

′
p. In this section we explain how to respect

these constraints while maintaining properties (9–10).
One could think of simulating new trajectories us-

ing the kriging estimate (Equation 2) or sampling from
the posterior defined by the GP regression (Equation 8),
for all times t between observed values.20 Resulting tra-
jectories would then reach observed values. However,
these methods do not create trajectories respecting the
property (10). The covariance structure is indeed not re-
spected, and simulated trajectories are then smoother
than those simulated with the right covariance structure
C.

Note that recently, a method to sample new trajectories
solving a global maximum a posteriori estimation condi-
tioned to observed valued has been proposed by Ref-
erence [8]. However, with such an approach there is no
guarantee neither that the statistical properties of the ref-
erence motion are preserved.

A possible way to obtain trajectories that both respect
the required covariance property and reach fixed values
is to use a double kriging operation.21 Let us recall that
the simple kriging allows to find an estimate Ẑ(t) at time
t that differs from the unknown Z(t) by the kriging error
Z(t) − Ẑ(t). This error is unknown but can be simulated
by means of a secondary process having the same proper-
ties as Z. A trajectory ZNC = (ZNC(t1), . . . , ZNC(tN )) is first
simulated using the non-conditional simulation tech-
nique described in the previous subsection. A new trajec-
tory ẐNC = (ẐNC(t1), . . . , ẐNC(tN )) is then obtained by the
kriging approach, from all values ZNC(t′1), . . . , ZNC(t′p).
The resulting kriging error ZNC(t) − ẐNC(t) for each t

is finally added to the trajectory Ẑ = (Ẑ(t1), . . . , Ẑ(tN ))
obtained from the kriging based of the given values
Z(t′1), . . . , Z(t′p):

ZC(t) = Ẑ(t)︸︷︷︸
Kriging
estimate

+ ZNC(t) − ẐNC(t)︸ ︷︷ ︸
Kriging

error

∀t (13)

We can directly observe that the trajectory ZC

goes through fixed values Z(t′1), . . . , Z(t′p), since the
kriged trajectory ẐNC goes through fixed values
ZNC(t′1), . . . , ZNC(t′p):

ZC(t′i) = Ẑ(t′i) + ZNC(t′i) − ẐNC(t′i) (14)

= Z(t′i) ∀t′i = t′1, . . . , t
′
p (15)

Moreover, it can be proved that ZC respects both proper-
ties (9) and (10). The resulting simulation is then a sam-
ple from a Gaussian process with the required covariance
structure C, and that is constrained to go through partic-
ular values Z(t′1), . . . , Z(t′p).

The algorithm that sums up this conditional simulation
technique is the following:

Algorithm 1 Compute trajectory ZC =(
ZC(t1), . . . , ZC(tN )

)
Input: Covariance structure C of the process
Input: Z(t′i) at t′i = t′1, . . . , t

′
p

1: From C compute the N × N covariance matrix �(N)

2: L(N) = Cholesky(�(N))
3: Simulate ZNC using L(N) with Equation (12)
4: Estimate trajectory ẐNC from �(N) and fixed values

ZNC(t′i) following the kriging Equation (2)
5: Estimate trajectory Ẑ from �(N) and fixed values Z(t′i)

following the kriging Equation (2)
6: return ZC(t) = Ẑ(t) + ZNC(t) − ẐNC(t) ∀t = t1, . . . , tN

The main computational time is spent in the Cholesky
decomposition since this operation is o(N3). When N is
large, this can become a problem. In the context where N

is not known, or if a continuous output stream is de-
sired (in order to produce a virtually infinite random
sequence), an alternative algorithm can be used. Let us
first remark that the Cholesky decomposition produces
a matrix L which is lower triangular. This mean that the
pth output of the simulation depends on the last p − 1
elements that were drawn from the standard Gaussian
distribution. This pth output can thus be computed pro-
vided that the pth line of L and the past elements are
known. However, it is noticeable that the Cholesky de-
composition has a recursive formulation, that makes pos-
sible to compute the pth line from the p − 1 previous
lines in the matrix. Also, since the covariance function
is assumed to be neglectful after a given distance ρ (cor-
responding to the length-scale), we can reasonably as-
sume that the influence of known values Z(t′i) is neglect-
ful whenever |t′i − t| < ρ. By restraining the computation
of each element ZC(t) of the output as a function of suf-
ficiently near Z(t′i), and by updating iteratively the pth
line of the Cholesky decomposition, it is possible to de-
sign an algorithm that produces sequentially a correct
output:

In this algorithm, updateCholesky allows to com-
pute the tth line Lt

(ρ) of the Cholesky decomposition from
all previous lines.
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Algorithm 2 Compute trajectory ZC sequentially

Input: Covariance structure C of the process
Input: Z(t′i) at t′i = t′1, . . . , t

′
p

1: y ← FIFO(2ρ) {y has a FIFO structure of size 2ρ}
2: ZNC ← FIFO(2ρ) {and so ZNC}
3: t ← 1
4: repeat
5: Lt

(ρ) = updateCholesky(L0:t−1
(ρ) )

6: y ← push(yt ∼ N(0, 1))
7: ZNC ← push(Lt

(ρ)y)
8: Estimate trajectory ẐNC from C and fixed values

ZNC(t′i) (Equation (2)), ∀t′i such that |t′i − t| < ρ

9: Estimate trajectory Ẑ from C and fixed values
Z(t′i)(Equation (2)), ∀t′i such that |t′i − t| < ρ

10: return ZC(t) = Ẑ(t) + ZNC(t) − ẐNC(t)
11: t ← t + 1
12: until needed

Application to Character
Animation

We propose here several possibilities to exploit condi-
tional stochastic simulation in the context of character
animation. The first example shows how conditional sim-
ulation can be used to reconstruct missing or damaged
parts of a motion; the second one presents possible ap-
plications in motion editing and the last one deals with
motion control.

Motion Reconstruction

It is usual with traditional motion capture devices to
encounter markers occlusions that alter the quality of
the motion reconstruction. With markerless motion cap-
ture this problem is even more present as far as the
complete pose estimation can fail for a more or less
short period of time.22 The objective is to reconstruct
the missing parts of the signal. Most of the classical ap-
proaches perform linear or spline interpolation between
the known parts of the motion. In the case of large holes,
those types of interpolation behave badly as they tend
to produce a continuous and smooth output which is
generally different from the original motion dynamics.
Our method first learns the covariance structure on the
known parts of the motion and then simulates the un-
known part of the motion conditioned to all known single
frames.

Figure 2 presents an illustration of the reconstruc-
tion for two different hole lengths. One can see that

for small holes, the variability between the different
simulations proposed by our method is restrained, and
that results are close to a simple kriging interpola-
tion. For longer holes, the variability is bigger and re-
sults differ from the kriged solution. Far from observa-
tions, the kriging converges indeed toward a mean es-
timate, flattening the reconstructed part. On the other
hand, each of the different trajectories simulated by
the conditional approach is statistically coherent with
the known part of the motion (which means here that
the covariance structure of the whole reconstructed sig-
nal is the same than the one learned from the known
part). Those proposed solutions might not correspond to
the real motion, but can be used as credible, potential
solutions.

Motion Variations Synthesis

Our method is able to generate new variants of a mo-
tion, and, conversely to Reference [9], with only one ex-
ample motion. Figure 3 shows four different trajectories
of the right hand during a punch motion. Those trajec-
tories correspond to four different simulations obtained
from a single punching motion. Figure 4 shows varia-
tions obtained from a walking motion. When generating
motion variations, one could wish to control the devia-
tion from the original motion. To achieve this, let us first
note that the density of constraints on precise zones is
directly related to the similarity with the original mo-
tion. Another possibility would be to keep unchanged
some of the first components of the PGA. In this case,
only the remaining components have to be simulated.
This can be understood if one considers that the first
modes of PGA contain the trend of the motion (as dis-
cussed in the Section “Method Overview”), and that the
stochastic parts are concentrated on the less meaningful
modes.

Exemplary Based Motion Control

We show here how conditional simulation can be effi-
ciently used in the context of motion control. By motion
control we mean that, given an exemplar motion, a new
motion can be produced along with a set of kinematic
constraints, and eventually timing information. Condi-
tional simulation allows to derive an efficient, real-time
motion synthesis process by allowing to add kinematic
constraints, such as hands or feet positions, to the sys-
tem, along with timing information. The character pose is
solved for by applying PGA-based Inverse Kinematics,18
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Figure 2. Hole filling using conditional stochastic simulation. In this example the length-scale of the covariance function
is around 10. When the size of the hole is 40, the simulation is very constrained and the variability is limited. In contrast, when
the hole is larger, our method provides different results with a greater variability, whereas the classical linear or kriged interpolate

flatten the signal.

which directly gives the corresponding coordinates in the
PGA space. Then, a new motion is simulated over a time
interval which is centered around the constraint time,
and which length is twice the maximum among all esti-
mated length-scales λi (which corresponds to the range
of time dependance in the covariance model estimated
for each PGA component). This interval contains indeed
all poses that present significant time dependance with
the new constraint and that have then to be recomputed.
This simulation is conducted conditioned to every other
unchanged poses in the motion. This operation can even-
tually be processed sequentially.

Figure 5 shows an example of this process. A baseball
catch (motion 20 from subject 143 in CMU database) was
used. A new catch pose is computed with PGA-based IK
(Figure 5a). A new motion is then computed in its vicin-
ity (the first PGA component is shown in Figure 5b). Two
image strips showing rendering with a skinned charac-
ter of both original and simulated sequences are shown
(Figure 5c,d). Figure 6 shows another example, where
a single kick motion was used to produce a continuous
motion of three kicks at three different locations.

Figure 3. Generating different punching motions. The four
different trajectories correspond to the right hand position
along four different simulations. The transparent punch pose

was used as constraint in the simulation process.
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Figure 4. Variants synthesis. Our system was used to generate variants of the walking motion presented in (a). Part (b) shows
the result of one simulation with pose constraints depicted in a different color (red). Part (c) and (d) are ,respectively, obtained

keeping unchanged the 3 and 6 first PGA components in the motion.

Figure 5. Motion control. This example handles a baseball catch motion. Part (a) presents the original catch and a new catch
generated by PGA-IK (applied on both arms). Part (b) shows the first component of the PGA with its new simulated part. Notice
the time interval over which the simulation has been performed. Part (c) and (d) illustrate, respectively, the original motion and

the synthesized motion on four frames.

Figure 6. Kick sequence. The original sequence (a), containing one kick, is used to produce a continuous sequence (b) of three
different kicks at different locations.
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Conclusion and Discussion

From one single observed motion, the proposed method
based on conditional simulation is able to reconstruct
completely new variants of this motion, or to reconstruct
unknown parts of it. For all these tasks, the conditional
formulation guarantees that the input constraints (de-
fined as known parts of the motion or external kine-
matic constraints) are respected. Moreover, simulated
motion trajectories present by construction of the method
the same covariance structure as the reference motion.
This property comes from the Gaussian assumption at
the root of the method. As a matter of fact, the refer-
ence motion is assumed to be a realization of a Gaussian
process defined by a mean and a covariance function.
The proposed method is able to sample new trajectories
that are independant realizations of the same process,
and as such have the same statistical properties. Note
that this approach is different from a direct sampling
based on the posterior distribution described in Equa-
tion (8). Such simulations are indeed able to respect kine-
matic constraints, but do not share the same properties
as the reference motion. From a computational point of
view, the proposed sequential formulation of the method
makes it real-time and as such adapted to interactive
applications.

However, it has to be noted that the underlying Gaus-
sian assumption may be too restrictive. The resulting
motions may fail to reproduce more complex dynamical
structures that could be observed in the reference motion
(feet sliding is an example). Moreover, the stationarity
assumption is hard to respect for all kinds of motions.
Non-stationary components such as clear trends or peri-
odic components for instance, should be removed before
learning the covariance model from the data. This can
be done for example by fitting a trend and/or periodic
model and removing these parts from the reference sig-
nal, or trying to adjust non stationary covariance models,
but both solutions are far from being trivial. This objec-
tive will constitute one of the main follow-ups of this
work. A second objective will be the introduction of new
types of constraints to the system, related to dynamics
information for instance. This will imply to reformulate
the conditional simulation part.
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