
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2006)

M.-P. Cani, J. O’Brien (Editors)

Fat Graphs: Constructing an interactive character with

continuous controls

Hyun Joon Shin and Hyun Seok Oh

Division of Digital Media, Ajou University, Suwon, Korea

Abstract

This paper proposes a methodology that allows users to control character’s motion interactively but continuously.

Inspired by the work of Gleicher et al. [GSKJ03], we propose a semi-automatic method to build fat graphs where

a node corresponds to a pose and its incoming and outgoing edges represent the motion segments starting from

and ending at similar poses. A group of edges is built into a fat edge that parameterizes similar motion segments

into a blendable form. Employing the existing motion transition and blending methods, our run-time system allows

users to control a character interactively in continuous parameter spaces with conventional input devices such as

joysticks and the mice. The capability of the proposed methodology is demonstrated through several applications.

Although our method has some limitations on motion repertories and qualities, it can be adapted to a number of

real-world applications including video games and virtual reality applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism

1. Introduction

Encouraged by powerful 3D graphics hardware devices, in-

teractively controlled characters are widely used in many ap-

plications including video games, broadcasting, and virtual

reality applications. In order to make an interactive charac-

ter believable, its motion should be realistic. Simultaneously,

the animation synthesis must be efficient enough to make the

character respond to the user’s control immediately.

There has been a good amount of research results on in-

teractively controlled characters. One of the successful ap-

proaches is the graph-based approach. In order to rearrange

an existing animation temporally, this approach analyzes the

given animation data and builds a motion graph while re-

arranging pieces in a connected way. Sometimes, graphs

with contrived structures are built to enhance responsiveness

of character controls while providing the user with discrete

choice. Another widely used approach is motion blending.

Combining the existing animation in the space-domain, this

approach enables the user to control the animated character

continuously and precisely in parameter spaces.

This paper suggests a methodology that allows users to

interactively and continuously control animation of a char-

acter with a little run-time overhead. To do this, we propose

fat graphs. A node in a fat graph denotes a group of poses

and the incoming and outgoing edges represent the motion

segments starting from and ending with the poses. A group

of edges builds a fat edge that parameterizes similar motion

segments into a blendable form. At each node, the user can

choose one of the outgoing edges which correspond to avail-

able actions starting from the pose at the node. While the

motion segment corresponding to a selected edge is being

realized, motion can be controlled precisely in a continuous

parameter space.

Character motion control methods in interactive applica-

tions involving graphs and motion blending have been active

for decades. For instance structures similar to motion graphs,

called move trees have been utilized in the game industry

while applications requiring continuous control over char-

acter motion have employed motion blending techniques.

However, in most cases, graphs are constructed and motion

segments are parameterized manually. Similarly to the work

of Gleicher et al. [GSKJ03], we develop a efficient near-

automatic method to build an interactive character controlled

in continuous parameter spaces.

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org


Hyun Joon Shin & Hyun Seok Oh / Fat Graph

Our work involves three main steps:

• We propose a novel data structure that allows users to pro-

duce a variety of character motion based on two existing

methods: graph based approach and motion blending.

• Our scheme entails building parameterization on a set of

motion segments for run-time control with conventional

input devices.

• We also provide a run-time methodology to control the

character motion with conventional input devices such as

joysticks and mice coupled with keyboards.

This paper consists of five sections. In Section 2, we re-

view all related work. In Sections 3 and 4, we exhibit our

method for authoring an interactive character. In Section 5,

a scheme that allows the user to synthesize character motion

interactively while controlling motion continuously is pre-

sented. Finally, we demonstrate our experimental results in

Section 6 and discuss our contributions and the limitations

of the proposed method in Section 7.

2. Related Work

A graph-based approach [AF02, KGP02, LCR∗02, CLS03,

AFO03, GSKJ03, KPS03, LL04] is one of the most suc-

cessful approaches to produce a novel animation based on

an existing motion. This approach builds sophisticated data

structures which store the connectivity information between

animation frames of the given motion. This information is

then used to rearrange the animation frames into a novel

sequence. Using this information, one can resort to search

a quality animation sequence that satisfies a user specified

goal can be synthesized efficiently by means of searching.

The work of Gleicher et al. [GSKJ03], which has inspired

us involves design of a special data structure to efficiently

produce animation for an interactively controlled character

together with an authoring method for such a data struc-

ture. We use a similar data structure and also build graphs

with contrived structures to construct the initial form of fat

graphs. However, our data structure is further improved to

allow users to control animation of a character in a continu-

ous manner. This is done via grouping the edges that contain

similar motion segments automatically with little user inter-

vention.

Given a set of similar motion segments, motion blend-

ing is the most widely used technique to produce a mo-

tion satisfying the user specification represented by contin-

uous values. Wiley and Hahn proposed synthesis of a mo-

tion that approximately passes through the user specified

point [WH97]. They parameterized the reachable space of

a body part geometrically using a dense grid and produced

a motion segment that reached the user specified point on

the space. Rose et al. placed given motion segments on a

parameter space based on the characteristics of the motion

segments and adopted radial basis functions (RBF) to com-

pute weights of the motion segments corresponding to the

user-specified parameters [RCB98]. Park et al. proposed a

motion blending technique for on-line real-time locomotion

generation [PSKS04]. They parameterized a variety of trans-

portation motion segments based on their speeds, turning an-

gles, and styles and adopted RBF to compute the weights of

the motion segments. Kovar and Gleicher proposed a gen-

eralized framework to blend two motion segments [KG03].

They extended their work to search blendable pieces from

a large motion database and to parameterize the pieces au-

tomatically. Mukai and Kuriyama exhibited that the geosta-

tistical blending method produces better quality motion than

the conventional ones [MK05].

Our approach to parameterizing motion segments is mo-

tivated by those of Wiley and Hahn [WH97], and Kovar and

Gleicher [KG03], where motion segments are paremeterized

based on their spatial properties. Here, we merge their ideas

to establish the mapping between a parameter and corre-

sponding motion spaces. Kovar and Gleicher densely sam-

pled the parameter space to establish the piecewise linear

mapping between motion space and parameter space. Wiley

and Hahn accelerated run-time composition by carefully su-

pervising the motion capture session to build regular grid on

the parameter spaces. Our approach consists of two steps:

1. randomly sampling the parameter space, and 2. building a

regular grid on it. By doing this, we can apply our parameter-

ization method to the motion capture data from unsupervised

sessions and accelerate motion composition at run-time. Si-

multaneously we approximate the parameter space with a 2D

plane such that the user can choose a parameter with conven-

tional 2D input devices.

3. Fat Graph Authoring

A fat graph consists of nodes corresponding to poses in

the given corpus of motion data and edges representing the

groups of similar motion segments connecting the poses.

Traversing the graph connects the motion segments to pro-

duce a sequence of animation. At a node, a user can select an

outgoing edge to produce the corresponding action that fol-

lows the previous animation. An edge in a fat graph may in-

clude more than one similar motion segments, so these seg-

ments in the selected edge are blended with one another to

produce the precise user-specified motion (See Figure 1).

At a node, the number of outgoing edges corresponds to

the actions that start from the pose at the node. Therefore,

a graph having a small number of nodes but many outgoing

edges offers many choices of action at a time. On the other

hand, one can produce a wide variety of quality motions with

a large set of blendable motion segments. Therefore, ver-

satility in motion synthesis depends on the connectivity of

the graph and the cardinalities of the motion segments in its

edges.

c© The Eurographics Association 2006.



Hyun Joon Shin & Hyun Seok Oh / Fat Graph

Motion

Base pose

Match set

Node

Fat edge

Figure 1: Fat graph construction: Given a base pose (red

box) in the motion, the similar poses (green dots) are cho-

sen to be built into a hub-node (green circle). The motion

segments connecting the node (horizontal line segments at

top) are grouped (red dashed line and blue dotted line) to

construct fat edges (red dashed arc and blue dotted arc.)

3.1. Graph Structure Construction

A graph with a contrived structure can be built employing the

notion of hub-nodes as in Snap-together motion suggested

by Gleicher et al. [GSKJ03]. This is a graph node with many

incoming and outgoing edges. Therefore, the pose at a hub-

node should enable many motions to start from and end at

it. For example, a hub-node for a set of martial arts motions

would correspond to a ready pose. For a set of walking mo-

tion any pose could be built into a hub-node since one can

start many walking cycles from at every animation frame.

Such graphs were constructed using the method proposed

by Gleicher et al. [GSKJ03].

Their approach maintains, a hub-node can be built either

automatically or semi-automatically. High connectivity of

the graph is enabled by a hub-node being built automati-

cally such that the corresponding pose, called base pose, has

the maximum number of similar poses, called match set. To

do this, given the corpus of motion capture data, the dis-

tances between every pair of poses are computed adopting

the distance metric proposed by Kovar et al. [KGP02]. Every

frame, whose distance from the base pose is locally minimal

and smaller than a threshold, is collected into the match set

of the base pose. We construct a hub-node automatically us-

ing the base pose with the largest match set. Here, the thresh-

old can be set to control the trade-off between the quality of

output motion and the connectivity of the graph.

Using the base pose and the match set suggested by the

system, users can either accept or choose an alternative base

pose based on their knowledge on the motion repertories.

Post the hub-node selection, the system then provides the

user with the corresponding match set. In our implemen-

M

M’

ll
F

Figure 2: The distance between two motion segments: Given

two motion segments M and M′ (left), the distance between

every pair of poses are computed (middle). We then cumulate

the distance along the correspondence curve (red curve) and

normalize the distance by the motion length l (right).

tation, we enable the user to add, delete, and tweak an el-

ement of the match set for better motion segmentation. In

most of the experiment, the system suggests reasonable base

poses and match sets for the given motion. Hub-nodes can be

added repeatedly to obtain a desirable structure is obtained.

3.2. Fat Edges

Once the hub-nodes are built, we make fat edges by grouping

edges with similar actions. Every edge connecting the same

nodes containing similar action can be blended to produce a

novel motion. The distance between two motion segments is

the squared sum of pairwise distances between every match-

ing pose normalized by the length of a motion segment. In

detail, we first establish the dense temporal correspondence

between the motion segments. Since the motion segments

in the edges are relatively short and we are interested in a

pair of motion segments similar to each other, we discov-

ered that a standard dynamic time warping technique pro-

vided reasonable results. Given the correspondence map F

from a motion M to M′, the distance between M and M′ is

l

∑
t

d
(

M(t),M′ (F(t))
)2

l
, (1)

where M(t) is the pose at t of motion M, d(·) is the distance

between two poses as stated above, and l is the length of M

(See Figure 2).

Given a set of edges connecting the same nodes, each edge

in the set is initially built into an individual group. Every pair

of groups is merged into a group when the distance between

any edge in one group and any edge in the other group is

smaller than a threshold. This threshold can also be set to

improve the motion quality sacrificing the versatility of mo-

tion control. Repeating the merging process till any pair of

groups which cannot be merged yield the final groups which

form the fat edges of the graph. In our implementation, the

user can manually add or delete edges of a group and alter

their ownership.

c© The Eurographics Association 2006.



Hyun Joon Shin & Hyun Seok Oh / Fat Graph

4. 2D Motion Parameterization

Each of the fat edges contains one or more motion segments

to be blended with one another at run-time. Since it is almost

impossible for users to specify the blending weight of each

motion segment, we parameterize the set geometrically in

the authoring step, and then provide the users with geometric

control over the blending weights.

Our idea is based on the observation that many users want

to control the motion using the position of a joint at a partic-

ular time instance. For example, users often want to specify

the translation of the body represented by the root transla-

tion in order to control walking motion. For kicking mo-

tions, they probably want to be precise with the hitting point,

which corresponds to that on a foot at impact. Therefore,

users first select the joint of interest and specify the time

instance. Based on this information, the system generates a

parameter space covering the location of the joint at the time

instance.

In order to find the relation between the blending weights

and the positions of the joint obtained by blending the mo-

tion segments, we adopt the idea proposed by Kovar et

al. [KG04], which densely samples parameter space ran-

domly and approximates the mapping between them with a

piecewise linear function. With randomly generated weight

combinations, we sample the joint position acquired by

blending the motion segments with the method that we will

describe in Section 5.1. In our experiment, we found that a

few hundred samples are enough to form a reachable space

of the joint achieved by blending the given motion segments.

To incorporate conventional input devices with two con-

trol axes such as joysticks and the mouse for motion control

at run-time, we need to parameterize the motion with two

parameters. This can be done in four steps: plane determi-

nation and projection, parametric axis determination, space

segmentation, and regular sampling (See Figure 3). In the

first step, the 3D sample positions are projected onto the 2D

plane that approximates the samples best. For intuitive con-

trol at run-time, the parameter space is parameterized once

again with novel parametric axes corresponding to control

axes of devices. The plane is then segmented into triangles

such that a given point on the plane locates the surround-

ing three samples to form the barycentric coordinate frame.

The space is then regularly sampled to reduce the run-time

overhead.

Plane determination and projection: Conventional in-

put devices, especially gaming devices usually have two con-

trol axes. Therefore, we reduce the dimensionality of the pa-

rameter space to two, so the parameter value can be selected

with such devices intuitively and immediately. To do this, we

project the randomly sampled joint positions onto a plane.

The best approximating plane is spanned by two principal

axes of the samples. The samples are then projected onto the

plane and the projections construct a two-dimensional pa-

rameter space. Since we sample the joint position of only

similar motion segments at the matching time instance, our

experiments showed that the samples form a near planar sur-

face in 3D space and the projections do not lead to much

error (See the second and third columns of Figure 3.)

Parametric axis determination: Now, we need to deter-

mine two orthogonal axes on the plane that correspond to

the control axes of input devices. Note that the principal axes

do not necessarily match the parametric axes with which to

control the motion intuitively. We observed that it is a good

choice to assign one axis (usually y-axis of input device) to

3D y-axis if possible. Where the plane is near horizontal, the

axis of an input device is mapped to the sagittal axis which

corresponds to the front direction of the character. Based on

those observations, we first examine the plane to determine

if it is upright enough to be parameterized with 3D y-axis by

measuring the angle between y-axis and the normal vector

of the plane. If the angle is smaller than π
4 , the projection of

y-axis and its orthogonal axis on the plane are selected as the

control axes. If the angle is larger than π
4 , the forward direc-

tion of the character, which is usually z-axis aligned to the

orientation of the root, is projected onto the plane to form a

parametric axis, and its orthogonal axis on the plane is se-

lected as the other parametric axis.

Space segmentation: Given a point on the plane, our goal

is to compute a weight combination with which the blended

motion passes through the point. Since we have the weight

combinations for many samples on the plane, we can calcu-

late this at a point by interpolating those of the neighboring

samples. When we have a small number of motion segments

at a fat edge, RBF interpolation produces a nice mapping

from a point on the parameter space to a weight combina-

tion. However, when the number of the motion segments at

an edge becomes larger, it needs more computing time to

compute the weight combination. Therefore, we triangulate

the space taking the projected samples as the vertices of the

triangles. Delaunay triangulation method is adopted to do

this, by which, the given point can be represented with the

barycentric coordinates uniquely in the triangle constructed

with three samples.

Regular sampling: In the triangulated space, we need to

frequently visit every triangle at run-time to find one that in-

cludes the given point. It is computationally quite expensive

especially in interactive applications. To make this process

more efficient at run-time, we sample the space regularly

with a two-dimensional grid. For each grid point, we find

the included triangle and compute its weight combination

by linearly interpolating those at the triangle vertices. At run

time, the weight combination for a given point can be ef-

ficiently computed by bilinear interpolation of those at the

grid points nearby.

5. Run-time Motion Synthesis

At run-time, traversing the graph produces a sequence of an-

imation, connecting the motion segments on the edges tra-

c© The Eurographics Association 2006.



Hyun Joon Shin & Hyun Seok Oh / Fat Graph

Figure 3: Parameterization of kicking motion at impact: (Left to Right) the positions of the foot, randomly sampled points, their

projections, parameterization axis, triangulation, and grid.

versed. As the conventional graph-based motion synthesis

methods, the motion segments are blended around the node

to connect them seamlessly. Moreover, the motion segments

in the fat edge being traversed are blended based on the

user-specified weight combination. In this section, we dis-

cuss blending the motion segments in the fat edge with the

given weights. We then exhibit our method that lets the user

control the graph traversal and the weights.

5.1. Motion Composition

At a particular time instance, we interpolate three types of in-

formation separately: timing information, horizontal move-

ment, and joint angles. Given the lengths of motion segments

are different from one another in a fat edge. Moreover, the

temporal correspondence between a pair of motion segments

is not generally linear, so timing information need to be han-

dled carefully to produce quality animation. Provided with

a set of temporally matching poses, we blend the horizontal

positions and orientations of character while ignoring the ab-

solute positions and orientations in the original motion data.

The angles of an individual joint are blended to be copied

into the character pose at the animation frame.

Timing information: At each animation frame, we

collect the corresponding poses from the source motion

segments. Similarly to the previous approaches [RCB98,

PSKS04, KG03], we first establish the correspondence be-

tween a reference time and the animation frames of the

source motion segments. This can be done simply by tak-

ing the timing information of a motion segment (the longest

segments in our implementation) as the reference time, and

reusing its dense correspondence maps with the other seg-

ments, which we have already computed to compare the mo-

tion segments. Given a reference time instance T , the corre-

sponding pose from i−th motion is Mi (Fi(T )), where Mi(t)
is the pose of i−th motion at t and Fi(t) is the time corre-

spondence map from the reference motion segment to i−th

motion segment. The increment ∆T of the reference time

for the next animation frame is computed by blending the

changing ratio of T to the timing of the motion segments:

∆T = ∑
i

wi(T )
dT

dFi
∆t, (2)

where wi(T )’s are the current blending weights and ∆t is the

time increment for the desirable animation frame rate, which

is usually 1/30.

Position and Orientation: The position and orientation

of the character are computed incrementally so that we can

blend a motion segment with ones whose actions are simi-

lar but starting directions and locations are different. Instead

of the absolute position and orientation of the root segment,

we store its horizontal displacement and its rotation about

y-axis from the previous animation frame. Computing the

planar displacement is trivial. The orientation change about

y-axis is computed as follows. Given the orientations of the

root segment at two consecutive animation frame q(t) and

q(t + ∆t), we first rotate z-axis (or any axis that lays on the

horizontal plane) with q(t) and q(t + ∆t) to compute v(t)
and v(t + ∆t), respectively. Let θ be the signed angle be-

tween the normalized projections of v(t) and v(t + ∆t) onto

the horizontal plane. The rotation vector representing the ro-

tation from q(t) to q(t +∆t) about y-axis is ŷθ/2, where ŷ is

y-axis. In motion synthesis step, the displacements and ro-

tations represented with rotation vector are blended with the

weights and cumulated into the previously synthesized ani-

mation.

Joint angles: In order to blend the angles of a particular

joint, we adopt the approach proposed by Park et al. [PSS02]

since it implicitly eliminates any possible problem due to

the antipodal equivalence property of the unit quaternion

space. This approach finds a unit quaternion from which the

weighted squared sum of the cosine angles to the given joint

angles is minimized. Using this method, the blended joint

angles can be computed efficiently and applied atop the ori-

entation and position obtained above.

5.2. Run-time Control

At run-time, a user directs the graph traversal by choosing

actions at a time. Since there are a few fat edges starting from

a hub-node, the user can select the action to follow starting

from the pose at the node. A run-time application may adopt

the devices that provide discrete choices, such as keyboards

and buttons of joysticks. Each fat edge from a hub-node is

assigned to a key or a button, and an action can be chosen by

pressing the corresponding key or button.

Once a fat edge is selected, a weight combination of the

c© The Eurographics Association 2006.



Hyun Joon Shin & Hyun Seok Oh / Fat Graph

motion segments in the fat edge is specified to produce an

output motion. Since we have already parameterized the mo-

tion segments in the fat edge with the two parametric axes,

the user can specify parameters using input devices with two

control axes, such as joysticks and mice. The first parametric

axis, which corresponds to the projection of y-axis onto the

parametric plane (or sagittal axis) would be map to y-axis of

the control device. The other parametric axis is to mapped to

x-axis of the device. Given the x and y value from the device,

the surrounding four grid points are found and their weight

combinations are blended by means of bilinear interpolation

to produce the final motion on the fly.

6. Result

We tested our authoring system for four sets of input mo-

tion data: random walking, random sneaking, baseball bat-

ting, and kicking. All the input motion data was captured

with a Vicon optical motion capture system at the rate of 120

frames per second and time-scaled to 30 frames per second

for real-time animation.

Our system consists of two subsystems: graph authoring

and parameterization system. Our graph authoring system

reads the motion data, and finds the most frequent pose in it.

The user can alter the threshold to determine similar poses.

We often set the threshold as 1 in our experiment where the

height of character is about 10. The user can also pick a base

pose manually and the system automatically finds the match

set with the given threshold. While a hub-node is being cho-

sen, the system displays the fat edges by marking the mo-

tion segments in a fat edge with a color. The user can tweak

the threshold that is used determine the similarity between

motion segments. The value is highly dependent on motion

repertories, but we found that with the character, 1 prevents

variations of an action from being combined together, and 4

sometimes allows different actions to be grouped.

Once our parameterization system reads the graph, it al-

lows the user to choose a fat edge to work on. After the user

selects a time instance on the time-line and picks a joint of

interest, our system visualizes the parameter space. The user

can generate and review the blended motion either by spec-

ifying the weights or by picking a point in the parameter

space.

The most time consuming part in the work flow is calcula-

tion of the distance between every pair of animation frames.

Ignoring it, the graph authoring process generally takes few

minutes including the time to examine the motion segments

in edges. In our experiment, parameterizing an edge took

less than a minute. Moreover, since the number of the fat

edges is much smaller than that of the original edges, assign-

ing the edges to a controller can be done much quickly com-

pared to the method proposed by Gleicher et al. [GSKJ03].

Random walking: For our random walking example, we

(a) Random walking

(b) Random sneaking

(c) Baseball batting

(d) Martial arts

Figure 4: Parameter spaces

c© The Eurographics Association 2006.



Hyun Joon Shin & Hyun Seok Oh / Fat Graph

captured the motion of an actor walking around. The mo-

tion capture data contain 22 complete walking cycles. Our

authoring system found a pose as the base pose and one fat

edge corresponding to walking cycles. We built a graph with

one hub-node and one fat edge. The fat edge contained 21

motion segments. We parameterized the edge based on the

root position at the last frame of the edge. The parameter

space was built with 100 random samples which form a hor-

izontal plane (See Figure 4(a).) The parameterization axes

corresponded to forward/backward and left/right directions.

We implemented a test application to evaluate run-time ca-

pability of our methodology. In the system, we used a mouse

to control the step width and turning angles in the parameter

space.

Random sneaking: In the random sneaking example, the

input motion capture data contained 32 cycles of sneaking

steps. Our authoring system provided a hub-node with 22

matching frames. A few steps were excluded since they cor-

responded to walk cycles while standing upright. The para-

meterization method same to the random walking example

was used for this sneaking example (See Figure 4(b).) The

same test application was implemented to verify the motion

quality.

Baseball batting: We used a number of baseball batting

motions for the third example. In the motion capture ses-

sion, the actor was asked to swing a bat aiming at nine arbi-

trary points. For this example, we built one hub-node graph

with three fat edges. The hub-node corresponded to the ready

pose of batting and the edges contained waiting, another

waiting, and swing motions. The swing motions were pa-

rameterized based on the right hand position at the impact

point, since we did not have the corresponding bat motions.

The constructed parameter space was similar to the strike

zone (See Figure 4(c).) For run-time, we implemented a sim-

ple test system that played back one of waiting motion re-

peatedly, and started a swing motion when the user picked a

hitting point.

Martial arts: In the last example, martial arts motion data

were used to build a graph. Given the many kicking and hop-

ping motions, we built a graph with two hub-nodes corre-

sponding to the left and right ready stance poses. Since the

variation of actions was quite high, eleven fat edges were

built. Every edge contained a style of kick actions starting

from left and right ready stance poses except two which

corresponded to short hopping motions. We could reduce

the number of fat edges to build fatter edges by increasing

the threshold used in edge grouping process sacrificing the

quality of blended motions. The parameter space of the fat-

test edge is shown in Figure 4(d). By selecting a point on

the space, we could produce the kicking motion T the given

point.

7. Discussions

In this paper, we provide a method to synthesize an anima-

tion of a character based on the existing animation. Analyz-

ing motion data with little user intervention, a graph with a

contrived structure is built and the similar motion segments

on the edge are parameterized for continuous control. At

run-time the animation is controlled interactively based on

the user selection of action and the blending weights.

In the version of the interactive character system pro-

posed by Gleicher et al. [GSKJ03], the motion segments

are modified such that the motion can be connected with-

out any processing at run-time. Contrary to this, the pro-

posed method stitches the motion segments to connect them

seamlessly on the fly. This reduces quality degradation due

to the high connectivity at hub-node, which is often found in

the original version. Although this approach clearly requires

more computation at run-time causing overheads, it is still

quite small compared to the overhead due to motion blend-

ing for parametric control. In fact, we found the proposed

method is efficient enough to drive a few ten of characters

simultaneously in real-time.

Our approach suffers from the limitations like the types

of motion that can be built into a graph with the contrived

structure more than the original version. Our approach is ef-

fective only when many actions start and end with similar

poses so they are built into a graph with a small number of

hub-nodes. Moreover, the given motion needs to have many

similar actions to be parameterized. We believe, however,

that these restrictions do not necessarily prevent the pro-

posed method from being adopted in applications, such as

video games where characters perform a limited repertory

of motion and most of them start and end with very simi-

lar poses. For example, in a martial arts game, many actions

start from the ready pose of the martial arts and stop at the

same pose. Moreover, most of actions can be classified into

a few sets with many variations. Such motion repertories fit

well into the proposed method.

Another limitation of the proposed method is that the mo-

tion cannot be extrapolated. This is because we triangulate

the parameter space and compute the weight combination at

a point based on its barycentric coordinate. We believe that

selecting a few motion segments for an edge and adopting

RBF interpolation technique would be one of the most ef-

fective solutions.

Acknowledgement

This work was supported (in part) by the Ministry of Infor-

mation & Communications, Korea, under the Information

Technology Research Center(ITRC) Support Program.

References

[AF02] ARIKAN O., FORSYTH D. A.: Interactive motion

generation from examples. ACM Transactions on Graph-

c© The Eurographics Association 2006.



Hyun Joon Shin & Hyun Seok Oh / Fat Graph

ics 21, 3 (2002), 483–490.

[AFO03] ARIKAN O., FORSYTH D. A., O’BRIEN J. F.:

Motion synthesis from annotations. ACM Transactions on

Graphics 22, 3 (2003), 402–408.

[CLS03] CHOI M. G., LEE J., SHIN S. Y.: Planning

biped locomotion using motion capture data and proba-

bilistic roadmaps. ACM Transactions on Graphics 22, 2

(2003), 182–203.

[GSKJ03] GLEICHER M., SHIN H. J., KOVAR L.,

JEPSEN A.: Snap-together motion: assembling run-time

animations. In Proceedings of 2003 ACM Symposium on

Interactive 3D Graphics (Apr. 2003), pp. 181–188.

[KG03] KOVAR L., GLEICHER M.: Flexible automatic

motion blending with registration curves. In Proceedings

of the 2003 ACM SIGGRAPH / Eurographics Symposium

on Computer Animation (Aug. 2003), pp. 214–224.

[KG04] KOVAR L., GLEICHER M.: Automated extraction

and parameterization of motions in large data sets. ACM

Transactions on Graphics 23, 3 (2004), 559–568.

[KGP02] KOVAR L., GLEICHER M., PIGHIN F.: Motion

graphs. ACM Transactions on Graphics 21, 3 (2002),

473–482.

[KPS03] KIM T., PARK S. I., SHIN S. Y.: Rhythmic-

motion synthesis based on motion-beat analysis. ACM

Transactions on Graphics 22, 3 (2003), 392–401.

[LCR∗02] LEE J., CHAI J., REITSMA P. S. A., HODGINS

J. K., POLLARD N. S.: Interactive control of avatars an-

imated with human motion data. ACM Transactions on

Graphics 21, 3 (July 2002), 491–500.

[LL04] LEE J., LEE K. H.: Precomputing avatar behav-

ior from human motion data. In Proceedings of the 2004

ACM SIGGRAPH / Eurographics symposium on Com-

puter animation (2004), pp. 79–87.

[MK05] MUKAI T., KURIYAMA S.: Geostatistical motion

interpolation. ACM Transactions on Graphics 24, 3 (Aug.

2005), 1062–1070.

[PSKS04] PARK S. I., SHIN H. J., KIM T., SHIN S. Y.:

On-line motion blending for real-time locomotion gen-

eration. Computer Animation and Virtual Worlds 15, 3

(2004), 125–138.

[PSS02] PARK S. I., SHIN H. J., SHIN S. Y.: On-line

locomotion generation based on motion blending. In Pro-

ceedings of ACM SIGGRAPH Symposium on Computer

Animation (July 2002), pp. 105–112.

[RCB98] ROSE C., COHEN M. F., BODENHEIMER B.:

Verbs and adverbs: Multidimensional motion interpola-

tion. IEEE Computer Graphics & Applications 18, 5

(September - October 1998), 32–40.

[WH97] WILEY D., HAHN J. K.: Interpolation synthesis

of articulated figure motion. IEEE Computer Graphics

and Applications 17, 6 (November 1997), 39 –45.

c© The Eurographics Association 2006.


