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Abstract

The determination of an accurate centre of rotation (CoR) from segment marker positions is of interest across a wide range of

applications, but particularly for clinical gait analysis and for estimating the hip joint centre during surgical intervention of the knee,

for limb alignment purposes. For the first time in this survey of formal methods, we classify, analyse and compare different methods

(geometric, algebraic, bias compensated algebraic, and Pratt sphere fit methods, as well as the centre transformation technique, the

Holzreiter approach, the helical pivot technique, the Schwartz transformation techniques, the minimal amplitude point method and

the Stoddart approach) for the determination of spherical joint centres from marker position data. In addition, we propose a new

method, the symmetrical CoR estimation or SCoRE, in which the coordinates of the joint centre must only remain constant relative

to each segment, thus not requiring the assumption that one segment should remain at rest.

For each method, 1000 CoR estimations were analysed with the application of isotropic, independent and identically distributed

Gaussian noise (standard deviation 0.1 cm) to each of the marker positions, to all markers on the segment simultaneously and the

two in combination. For the test conditions used here, most techniques were capable of determining the CoR to within 0.3 cm, as

long as the spherical range of motion (RoM) of the joint was 451 or more. Under the most stringent conditions tested, however, the

SCoRE was capable of best determining the CoR, to within approximately 1.2mm with a RoM of 201. The correct selection and

application of these methodologies should help improve the accuracy of surgical navigation and clinical kinematic measurement.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The determination of joint kinematics during clinical
motion analysis often includes assumptions regarding
the point about which two segments move relative to
one another. The determination of this so-called centre
of rotation (CoR) can often be difficult to measure in
vivo (Cappozzo et al., 2005; Croce et al., 2005), but
knowledge of its exact location is important in clinical
gait analysis settings, where the calculation of hip joint
moments may form the basis of therapy. In addition, the
e front matter r 2005 Elsevier Ltd. All rights reserved.
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ability to establish the hip joint centre for determining
lower limb alignment axes during surgical intervention
(Kinzl et al., 2004) of the knee is becoming increasingly
important with the increasing popularity of navigation
systems, with accuracy a premium.

Although specific bone landmarks and joint positions
can be measured using techniques such as digital
roentgen stereophotogrammetric (Vrooman et al.,
1998) and video fluoroscopy analysis (Dennis et al.,
1998), reflective marker positions determined using
infra-red optical systems allow non-invasive measure-
ment of kinematics in real time. During gait analysis or
surgery, such markers may be fastened to the skin or
more directly attached to the bone segments. The CoR
at the hip may then be calculated from the three-
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dimensional (3D) coordinates of the markers, measured
during manipulation of the femur relative to the pelvis.
During measurement of these marker positions, the
relative motion between the markers and bone (from,
e.g. local shifting and deformation of the skin) and the
accuracy of the measurement system have been shown
to be main causes of error, or artefact (Leardini et al.,
2005; Stagni et al., 2005; Taylor et al., 2005). Any
computational method for determining the CoR must
therefore be able to provide accurate results from noisy
marker positions.

The most widely used methods for estimating the
positions of joint centres are based on simplified models
for the specific joint in question. Most of these
approaches then apply empirical relations between
externally palpable bone landmarks and the joint centres
themselves (Bell et al., 1990; Kadaba et al., 1990; Davis
et al., 1991; Frigo and Rabuffetti, 1998; Vaughan et al.,
1999). The results of such approaches, termed predictive
or regression methods, for human hip joints have been
shown to be accurate to approximately 2 cm when
compared with X-ray measurements (Bell et al., 1990;
Neptune and Hull, 1995).

Recently, so-called formal methods have been pro-
posed that do not refer to empirical correlations. The
underlying mathematical approaches can be divided into
two categories. The first includes variants of sphere
fitting methods, where the centre and the radii of spheres
are optimised to fit the trajectories of marker positions
(Cappozzo, 1984; Bell et al., 1990; Shea et al., 1997;
Silaghi et al., 1998; Leardini et al., 1999; Piazza et al.,
2001; Gamage and Lasenby, 2002; Halvorsen, 2003).
The second type of approach considers the distance
between markers on each joint segment fixed (apart
from skin artefacts and measurement errors), to enable
the definition of a local coordinate system (Stoddart et
al., 1999; Marin et al., 2003; Piazza et al., 2004;
Schwartz and Rozumalski, 2005; Siston and Delp, in
press). Appropriate transformation of these local
systems for all time frames into a common reference
system enables approximation of the joint centre at a
fixed position. These techniques are considered ‘‘co-
ordinate transformation methods’’.

A number of studies have compared these different
predictive and formal methods (Bell et al., 1990; Seidel
et al., 1995; Leardini et al., 1999; Camomilla et al., in
press), but reached unclear conclusions, since testing has
been performed under different conditions. Many
approaches may only be used under the assumption
that one body segment is at rest relative to the other.
Whilst the appropriate transformation of one set of
markers into the local coordinate system of the second is
nearly always possible, the measurements of the segment
at rest can lead to systematic errors, and the use of
techniques that consider this disadvantage is therefore
necessary. The goal of this study was to perform a
systematic survey of formal techniques for estimating
the CoR. In addition, we propose a new method of joint
centre determination that is capable of the dynamic
assessment of two body segments moving simulta-
neously.
2. Methods

2.1. The virtual hip joint

For appropriate, direct comparisons between differ-
ent approaches to determine the CoR, including their
statistical analyses, numerical simulations in which the
exact joint position is known are most suitable. This
allows the fast simulation of various geometric situa-
tions, marker numbers and placement, and error
conditions. We have consequently used a virtual joint
with positions that could easily represent markers used
during gait analysis or lower limb surgery: using marker
sets approximately 10 and 15 cm distant from the CoR.
The configuration used in this study contains four
markers attached to each of the simulated thigh and
pelvis segments (Fig. 1).

In order to study the influence of marker artefacts and
measurement errors, specific noise has been applied to the
generated marker positions. Based on previous kinematic
analyses (Taylor et al., 2005), which suggested that marker
artefacts are composed of measurement error together
with both elastic distortion, where markers move inde-
pendently of the marker set as a whole, and synchronous
shifting of the entire marker set, two distinct artificial error
types have been included in this study. Firstly, isotropic,
independent and identically distributed Gaussian noise
(standard deviation 0.1 cm) was applied to each of the
marker positions. Secondly, a similar Gaussian noise was
applied, but with the deviations applied to all markers on
the segment simultaneously (also standard deviation
0.1 cm). These two error conditions and their combination
were applied to the generated data and assessed to
determine the ability of each of the methods described
below to calculate the CoR.

Two movement scenarios were additionally super-
imposed on the marker positions. In the first, one of the
two segments could rotate randomly around the CoR,
but within a specified angular cone of movement, or
range of motion (RoM), and was affected by the
aforementioned noise conditions. In this case, the other
segment was held stationary (Fig. 1). This movement
was assumed to be similar to a situation where the
subject performs specific circular motions of the leg, i.e.
flexion-extension together with abduction-abduction. In
the second scenario, one of the two segments could
again rotate randomly around the CoR, but now noise
conditions were applied to both marker sets. Addition-
ally, the complete joint configuration (CoR and marker
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Fig. 1. Visualisation of an exemplary test configuration of the virtual hip, shown for a 201 range of motion. Four markers were considered for each

segment (although only a single marker is displayed for each time point for the thigh marker set, left) and are shown attached to a common centre of

rotation. Ranges of motion of 51, 101, 201, 451 and 901 were examined in the study.
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sets) was able to randomly translate in space, enabling
the simulation of a moving CoR.
2.1.1. Sphere fit methods

Within this class of joint determination methods, it is
assumed that the CoR is stationary, an assumption that is
only reasonable if one segment is also at rest, which is
highly unlikely during gait analysis. Sphere fit methods
together with some of the coordinate transformation
techniques discussed later are therefore usually only
applicable after a transformation of the marker coordi-
nates of one segment into a fixed coordinate system of the
second segment. Under this condition the markers on, e.g.
the femoral segment move on the surface of a sphere with
specific radii around a common, pelvic, centre. Thus, this
approach attempts to fit best both the radii and the
position of the joint centre to the marker data. Presented
as the basis of a number of biomechanical methods
(Cappozzo, 1984; Bell et al., 1990; Shea et al., 1997; Silaghi
et al., 1998; Leardini et al., 1999; Piazza et al., 2001;
Gamage and Lasenby, 2002; Halvorsen, 2003), sphere
fitting methodologies also arise in other scientific and
technical disciplines (for an overview see Gander et al.
(1994), Chernov and Lesort (2003) and Nievergelt (2003)).

The method supposes that the kinematics of two
segments, k ¼ 1; 2, are represented by markers
j ¼ 1; . . . ;m. The global marker positions pk

ij are given
in the time frames i ¼ 1; . . . ; n. If one segment is
assumed to be at rest, the index k is omitted. The most
apparent approach is then to minimise the sum of the
squared Euclidean (geometric) distances between the
sphere and the marker positions,

f geomðc; r1; . . . ; rmÞ ¼
Xm

j¼1

Xn

i¼1

ðkpij � ck � rjÞ
2; (1)
where c is the CoR and rj the radius of the sphere on
which marker j moves.

This technique is termed a geometric sphere fit method
and has been evaluated by Piazza and co-workers (Piazza
et al., 2001). The minimisation of (1) is a non-linear
problem without closed solution, which is solved itera-
tively (Marquardt, 1963; Gander et al., 1994; Chernov and
Lesort, 2003; Deuflhard and Hohmann, 2003). Note
that the radii rj in (1) can be computed directly as
rj ¼ ð1=nÞ

Pn
i¼1kpij � ck. Since at least an initial guess for

c is required, other modified least-squares criterion
methods have been proposed that do not require a starting
estimate, originally by Delonge (1972) and Kåsa (1976):

f algðc; r1; . . . ; rmÞ ¼
Xm

j¼1

Xn

i¼1

ðkpij � ck2 � r2j Þ
2: (2)

Whilst the approach, called an algebraic sphere fit
method or Kåsa–Delonge estimator, has the advantage
that this minimisation task has a simple closed solution
(Pratt, 1987; Chernov and Lesort, 2003), it is strongly
biased, i.e. a systematic error exists such that even for a
large number of trials, the mean of the computed CoRs
do not converge to the true value (Zelniker and Clarkson,
2003; Chernov and Lesort, 2004). This technique has
been employed in various forms (Cappozzo, 1984; Shea et
al., 1997; Gamage and Lasenby, 2002). Furthermore, the
Reuleaux method proposed by Halvorsen et al. (1999)
was later identified by Cereatti and co-workers (Cereatti
et al., 2004) as an incomplete algebraic sphere fit. To
overcome the bias problem, Halvorsen proposed a
modified approach, named the bias compensated alge-
braic sphere fit method, where the bias is iteratively
reduced (Halvorsen, 2003).

Another form of sphere fit, hereafter named the Pratt
sphere fit method, has also been proposed (Pratt, 1987),
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in which none of the bias associated with the algebraic
sphere fit method is present:

f Prattðc; r1; . . . ; rmÞ ¼
Xm

j¼1

1

r2j

Xn

i¼1

ðkpij � ck2 � r2j Þ
2. (3)

Here, we investigated different numerical techniques
for the minimisation tasks in both the geometric sphere
fit and the Pratt sphere fit methods (Marquardt, 1963;
Gander et al., 1994; Chernov and Lesort, 2003;
Deuflhard and Hohmann, 2003). With any reasonable
initial estimate for the position of the CoR (i.e. one that
is not more than a few centimeters from the true centre
and therefore leads to a convergent solution), these
techniques were comparably accurate and effective.
2.1.2. Transformation techniques—one sided approaches

Similar to the sphere fit methods, one sided transfor-
mation techniques assume that one segment and there-
fore the CoR is stationary. Assuming that at least three
markers on the moving segment are present, it is
possible to define rigid-body transformations, i.e.
rotations Ri and translations ti, i ¼ 1; . . . ; n, which
transform a given reference marker set onto the time
varying marker configurations. If the CoR is stationary,
all these transformations should map a single common
Fig. 2. Illustration of the construction of local coordinates for the femor

transform the CoR vector, ~c, from the global into the local coordinate syste
fixed point, ~c, onto the actual joint positions. Thus, the
joint centre is the particular point c, for which a ~c exists,
such that

c ¼ Ri ~cþ ti; i ¼ 1; . . . ; n. (4)

This approach can then be extended by defining a
local coordinate system on the moving segment, in
which the marker coordinates should remain stationary
with time. The coordinate transformations from a global
coordinate system into these local systems should always
yield the same value for the joint centre, providing the
advantage that no reference marker configuration is
required. Thus, the ti may be interpreted as the vectors
from the global origin to the point of origin in the
segment fixed system and Ri as rotation matrices that
map the (translated) global coordinate system to these
segment fixed systems (Fig. 2).

The most obvious approach, here named the centre
transformation technique (CTT), is therefore to com-
pute transformations ðRi; tiÞ from global coordinates
into local coordinates and then to determine c and ~c for
which the residual of (4) is minimal. Thus, the objective
function

f CTTðc; ~cÞ ¼
Xn

i¼1

kRi ~cþ ti � ck2 (5)
al segment. The translations ti, together with the rotations r1i ; r
2
i ; r

3
i ,

ms.
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must be minimised. This is equivalent to the linear least-
squares problem:

R1 �I

..

. ..
.

Rn �I

0
BB@

1
CCA ~c

c

� �
¼ �

t1

..

.

tn

0
BB@

1
CCA, (6)

where I is the 3D identity matrix. This form of the
problem can be easily solved using appropriate numer-
ical techniques, i.e. normal equations:

nI �
Pn
i¼1

RT
i

�
Pn
i¼1

Ri nI

0
BBB@

1
CCCA ~c

c

� �
¼

�
Pn
i¼1

RT
i ti

Pn
i¼1

ti

0
BBB@

1
CCCA, (7)

which, for c, yields the closed solution:

nðn� 1ÞI �
Xn

i;j¼1;iaj

RiR
T
j

 !
c

¼ ðn� 1Þ
Xn

i¼1

ti �
Xn

i;j¼1;iaj

RiR
T
j tj. ð8Þ

Alternatively, a numerically more robust QR decom-
position method (Deuflhard and Hohmann, 2003) may
be used to solve Eq. (6). Similar methodologies have
been evaluated with a mechanical linkage (Siston and
Delp, 2005) and used in the determination of human hip
joint positions during various common daily activities
(Piazza et al., 2004).

A CTT related approach has been derived by
Holzreiter (Holzreiter, 1991), here named the Holzreiter
approach. Eliminating ~c from two type (4) equations,
one with index i and the other with j, yields

ðRiR
T
j � IÞc ¼ RiR

T
j tj � ti. (9)

Since ðRiR
T
j � IÞ is a matrix of rank 2 for

RiaRj ;Ri;RjaI , Eq. (9) does not determine a unique
centre c, but rather has a set of solutions that define the
rotation axis of the marker set transformation from
frame i to j. The CoR, c, may then be determined by
minimising

f HRðcÞ ¼
Xn

i¼1;j¼1;iaj

kðRiR
T
j � IÞc� RiR

T
j tj þ tik

2, (10)

or, equivalently, by solving the linear least-squares
problem

R1R
T
2 � I

..

.

Rn�1R
T
n � I

0
BB@

1
CCAc ¼

R1R
T
2 t2 � t1

..

.

Rn�1R
T
n tn � tn�1

0
BB@

1
CCA. (11)

In a similar process used to calculate the CTT solution
(from (6) to (8)), it is possible to derive a closed solution
for c as

2nðn� 1ÞI �
Xn

i;j¼1;iaj

ðRiR
T
j þ RjR

T
i Þ

 !
c

¼ 2ðn� 1Þ
Xn

i¼1

ti �
Xn

i;j¼1;iaj

ðRiR
T
j tj þ RjR

T
i tiÞ, ð12Þ

which produces the same outcome as Eq. (8), i.e. results
in an identical CoR as the CTT. The drawback of the
Holzreiter approach, however, is that it requires a much
larger matrix of dimension ð3nðn� 1Þ=2Þ � 3, rather
than of 3n� 6 for the CTT.

Based on the original methodology from Woltring et
al. (1985), a further approach, here named the helical
pivot technique, determines the CoR as the point closest
to all instantaneous helical axes (Woltring, 1990). The
original helical axis approach describes the movement of
a rigid-body as a rotation around and a translation
parallel to a unique helical axis. For n time frames,
there are k ¼ nðn� 1Þ=2 possible helical axes, which
may be defined by the points nearest to the origin,
si; i ¼ 1; . . . ; k, and direction vectors ni; i ¼ 1; . . . ; k. By
defining Qi ¼ I � nin

T
i as the projections onto the

orthogonal complements of ni, the CoR is approximated
as the point nearest to all helical axes, using

Xk

i¼1

Qic ¼
Xk

i¼1

si. (13)

Since it is mostly assumed that the helical axis
determination is very sensitive to small rotation angles,
Wi, several weighting terms wi have been proposed
(Woltring et al., 1985; Halvorsen, 2002; Camomilla et
al., in press). Rather than in (13), the CoR was
determined using

Xk

i¼1

wiQic ¼
Xk

i¼1

wisi, (14)

with wi ¼ sinðWi=2Þ, as suggested in the original work
(Woltring et al., 1985) or wi ¼ Wi as in other studies
(Camomilla et al., in press). We have proven, however,
that when this variable, wi, is set to sin2ðWi=2Þ, an
equivalent formulation to the CTT is produced, i.e. Eq.
(14) becomes identical to (12).

A further approach, named the Schwartz transforma-
tion technique (Schwartz and Rozumalski, 2005), is only
presented here in a form that assumes one segment is at
rest. This method is based on Eq. (9), taking on a similar
construction to the Holzreiter approach. Here, however,
the CoR is defined by the intersection or nearest point
between the axis described by Eq. (9) and one further
axis of rotation represented by

ðRkRT
l � IÞc ¼ RkRT

l tl � tk, (15)
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where k and l are further time points. The CoR is
therefore calculated by the minimisation of

f STTðcÞ ¼ k RiR
T
j � I

� �
c� RiR

T
j tj þ tik

2

þ k RkRT
l � I

� �
c� RkRT

l tl þ tkk
2, ð16Þ

which possesses a closed solution similar to (12). In
practice, this approach computes an approximation for
c, for each group of four frames, where at least three
must be different. Since the resulting Oðn4Þ estimates for
c have a distribution that can be non-normal and
asymmetric, the authors proposed the use of the mode
of this distribution as the final approximation for the
joint centre position.

Another approach, the minimal amplitude point
method, has been proposed by Marin and co-workers
(Marin et al., 2003). Here, the transformations from the
moving to the fixed segment (or global coordinates) are
calculated:

~c ¼ Ricþ ti; i ¼ 1; . . . ; n. (17)

The CoR, c, is then defined as the point that ‘‘moves’’
the least under the transformations ðRi; tiÞ. The mini-
misation of the discontinuous objective function

f MAMðcÞ ¼
X

k¼x;y;z

max
i¼1;...;n

Ricþ tið Þk � min
i¼1;...;n

Ricþ tið Þk

� �

(18)

was then performed by the authors using a genetic
algorithm (Houck et al., 1995). We found that it is
alternatively possible to use simulated annealing (van
Laarhoven and Aarts, 1987) to achieve faster optimisa-
tion.

The final approach within our classification of
transformation methods, together with a review of
similar methods in the field of computer vision, was
published by Stoddart and co-workers (Stoddart et al.,
1999). This method, here called the Stoddart approach,
is not restricted by the assumption that one segment
must remain at rest. Here, local reference coordinate
systems are chosen on both segments as mean segment
fixed systems, computed by averaging the coordinate
systems over all time frames. This approach leads to a
closed solution similar to (8).

In some of the previous approaches, e.g. Eqs. (8), (11)
or (16), it follows that these methods may be imple-
mented without using the transformations Ri directly,
but rather only the transformations RiR

T
j , which may be

understood as the direct rotations from frame j to frame
i. Such rotations, together with the corresponding
translations, can be easily computed using a variety
of methods, e.g. (Söderkvist and Wedin, 1993; Eggert
et al., 1997).
2.1.3. Transformation techniques—two sided approaches

In practice, contrary to the general assumptions of the
last section, neither of the two segments will be fixed and
a coordinate transformation from the global to the
segment fixed coordinates usually precedes determina-
tion of the joint centre. This transformation, of course,
is subject to the same sources of error and problems with
defining local coordinate systems as those for the other
segment. Here, approaches that can determine the CoR
without requiring this initial transformation have been
classified as two sided approaches. Although presented
as one sided approaches for ease of description, only the
Schwartz transformation technique and the Stoddart
approach from the methods considered in the previous
sections do not require the assumption that the CoR
must remain stationary. Additionally, we present a
novel approach here, named the symmetrical CoR
estimation (SCoRE), that is also capable of considering
a moving CoR.

All sphere fit methods inherently require a CoR fixed
in the global coordinate system. For coordinate
transformation methods, however, no stationary CoR
is required, but it is necessary to define local coordinate
systems on each segment. The philosophy of the
approach presented here is that the coordinates of the
CoR must remain constant relative to both segments.
Mathematically, this leads to the objective function

f SCoREðc1; c2Þ ¼
Xn

i¼1

kRic1 þ ti � Sic2 þ dið Þk2, (19)

which must be minimised, in which c1; c2 are the centres
of rotation in the local coordinate systems and
ðRi; tiÞ; ðSi; diÞ the transformations from the local
segment coordinates into an appropriate global system.
Similar to (5), this can be written as a linear least-
squares problem

R1 �S1

..

. ..
.

Rn �Sn

0
BB@

1
CCA c1

c2

 !
¼

d1 � t1

..

.

dn � tn

0
BB@

1
CCA, (20)

which has again a closed solution, but is better solved by
numerically more robust methods (Deuflhard and
Hohmann, 2003). In the global coordinate system, this
approach yields a joint position for each segment and
each time instant, Ric1 þ ti and Sic2 þ di, which are not
necessarily exactly coincidental. The most obvious
estimation for the actual global CoR is therefore to
take the mean between these two positions.
2.2. Numerical simulation

In order to perform a fair comparison between the
various aforementioned approaches, we repeated all
simulations nt ¼ 1000 times, each with 200 time frames,
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with different random conditions, i.e. distribution of the
marker positions within a specified RoM and Gaussian
noise attributed to each marker. As a measure of the
performance of each method, the root mean square
(RMS) errorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nt

Xnt

i¼1

kci � cexk
2

s
(21)

was calculated, where ci is the CoR estimation of the ith
simulation and cex the exact centre position. The CoR
was then determined for simulated movements of either
one or both segments within five different specified
angular cones of movement of 51, 101, 201, 451 and 901.
3. Results

For all approaches, the RMS errors increased
approximately exponentially with decreasing RoM
(Fig. 3, top) when one segment was held stationary
and noise was applied independently to each marker on
the moving segment to simulate skin elasticity condi-
tions and measurement errors. Since movement was
only applied to a single segment, the SCoRE approach
reduces to the same formulation as the CTT and the two
methods therefore delivered identical results. Under
these conditions, the algebraic approach clearly led to
unacceptably large errors when the RoM was small, but
improved rapidly when the segments rotated more than
approximately 201 relative to one another. On average,
with only a 51 RoM, an error in the position of the CoR
of more than 5 cm could be expected for all methods
(Fig. 3, top) except for the geometric, the bias
compensated algebraic and the Pratt sphere fit ap-
proaches, which would produce an error of about 1 cm.
With a wider RoM, the accuracy of all methods
increased rapidly, and one could expect to determine
the position of the CoR within 1 cm using all approaches
when the RoM increased beyond 201. The geometric, the
bias compensated algebraic and the Pratt sphere fit
methods, which produced the best CoR estimation
under these conditions, gave indistinguishable results
from one another in every case tested.

Various weighting parameters, wi, from Eq. (14) were
checked for the helical pivot technique. It was found
that the best results were always obtained with
wi ¼ sin2ðWi=2Þ, even if the differences were small.
Although approached from a different perspective, the
use of this weighting factor ensures that the formulation
of the helical pivot technique becomes completely
equivalent to that of the CTT.

The Schwartz transformation technique had the
disadvantage of prohibitively long computation times
due to the large number of centre estimates. In this
study, some 200 million CoR estimations were required
for each single 200 time frame simulation (over 1 week
was required on a 2GHz computer for the required
repetitions for each of the 20 RoM simulations) and it
was therefore deemed too computationally expensive to
be included for all measurement frames. A selection of
individual comparisons was thus performed, each
producing indistinguishable results from the CTT,
Holzreiter, and helical pivot techniques (Fig. 3), even
if the centre distributions were significantly asymmetric.

When Gaussian noise was applied only to the marker
set as a whole, simulating synchronous shifting of the
marker set, all methods were capable of determining the
CoR much more accurately (Fig. 3, bottom). Again,
under these conditions, the SCoRE, CTT, Holzreiter,
Schwartz and helical pivot techniques produced indis-
tinguishable results. Here, these approaches could
determine the CoR to within 0.25 cm, even for very
small ranges of motion, producing a clear improvement
on the other techniques. The errors, in general, were
much smaller than under the application of noise to
individual markers, however, and, with the exception of
the algebraic sphere fit method, all approaches were
capable of reproducing the CoR accurately with a RoM
of approximately 201.

When a combination of individual and group marker
noise was applied, the effects were approximately
additive and the accuracy of the determination of the
CoR was therefore dominated by the errors associated
by the independent marker motion.

When both segments were subjected to motion and
noise artefacts (Fig. 4), the positions of all markers on
one segment had to be transformed into the local
coordinate system of the second segment for all one
sided approaches. As a result, the one sided and the two
sided approaches now differed. Under these conditions,
the SCoRE, CTT, Holzreiter, Schwartz and helical pivot
techniques produced the most accurate results for small
RoMs (approximately 0.5 cm error at 201 RoM). The
geometric, the bias compensated algebraic and Pratt
sphere fit approaches, which previously displayed good
results when one segment was fixed, now yielded much
larger errors (approximately 2 cm error at 201 RoM),
particularly when noise was applied to individual
markers. Once again, the algebraic fit determined the
least accurate CoR at low RoMs. Similar to the
conditions when one segment was fixed, the combina-
tion of individual and group marker noise produced
almost additive results, the errors again dominated by
individual marker noise.
4. Discussion

The ability to accurately determine the CoR is of
importance across a number of disciplines, but particu-
larly in the field of orthopaedics, where knowledge of
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the hip joint centres can lead to improved clinical
assessment, kinematic measurement, surgical navigation
or positioning and orientation of replacement compo-
nents. Whilst biomechanical literature has paid con-
siderable attention to the issue of determining the CoR,
this is, to the authors’ knowledge, the first time that a
complete, systematic classification and survey of formal
techniques for estimating the centre about which two
segments rotate has been performed. In addition, a new
method, the SCoRE, has been presented, which is
capable of considering two segments moving simulta-
neously.

From the marker set configurations, segment move-
ments and artefact conditions applied to the marker
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sets, which were roughly based on the human hip joint
and the errors associated with marker measurement, this
study demonstrated that most commonly employed
techniques were capable of determining the CoR to
within 0.3 cm, as long as the RoM of the joint was 451 or
more. Under more limited RoMs, however, the differ-
ences in accuracy between approaches became much
more apparent, with only the SCoRE, CTT, Holzreiter,
Schwartz and helical pivot approaches maintaining
small errors: at 201, these techniques were about three
times better than the minimal amplitude point method,
the next best approach (Fig. 4). It should be noted that
the Schwartz and helical pivot approaches, which give
almost identical results to the CTT, require more
complex implementations, whereas the CTT is com-
posed only of a few lines of code.
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It was observed that the error conditions played a
large role in the accuracy of each approach, particularly
for the sphere fit methods, which performed well when
one segment was held stationary, but became relatively
much less accurate when movement and noise were
applied to both segments. The SCoRE and other
transformation-based approaches, however, fared rela-
tively better with the additional movement of the second
segment, producing the most accurate estimations of the
CoR. These approaches, which consider the complete
configurations of the two segment marker sets, have
inherent advantages over sphere fits, where all markers
are treated completely independently. It should be noted
that for all sphere fit methods, the best results were
obtained only if Eqs. (1), (2) or (3) were evaluated for
every marker attached to the moving segment, rather
than for the centroid of the set, i.e. when a concentric
sphere was determined for each marker in the set, each
with the identical CoR. A number of previous studies,
e.g. (Leardini et al., 1999; Piazza et al., 2001) have failed
to consider these conditions and have instead only used
the averaged marker set coordinates. When these
simplifications were examined in this study, and not all
markers or only the centroid positions were considered,
a substantial loss of accuracy was determined in the
position of the CoR.

Few previous comparative assessments have been
performed on multiple CoR approaches. The relative
performance of different techniques is therefore difficult
to ascertain due to varying test conditions and
kinematics. Camomilla and co-workers studied a
number of approaches also considered in this investiga-
tion with segment motion and error conditions similar
to those examined in Fig. 3 (top), where one segment
was assumed to be fixed and not subject to skin marker
artefacts (Camomilla et al., in press). Although the
marker configuration, joint geometry and joint motion
were different, it was observed that their bias compen-
sated algebraic fit slightly outperformed the ‘‘minimal
linear displacement point’’ (here called Holzreiter
approach) and the helical pivot approach—results that
complement our observations for this general set of
conditions. It must be noted that their results for the
geometric fit (S2 in the Camomilla study) suffered from
the inaccuracy described previously, in that only the
centroid position, rather than all individual marker
coordinates were used. This resulted in the apparent
discrepancy for these specific results. Complete motion
of the joint, including both axes, the CoR itself and
noise applied to both sets of markers (Fig. 4), was not
considered in the Camomilla study, and therefore these
conditions could not be compared.

The same study (Camomilla et al., in press) examined
a number of different regimes for finding the optimal
motion of the marker set. Their findings demonstrated
that the more equally the markers were distributed over
the surface of the ‘‘sphere’’, the more accurate the
calculation of the CoR. Since the markers in our study
were equally distributed over the entire RoM, rather
than limited to only a number of arcs as described by
their ‘‘star arc’’, an extrapolation of their results would
seem to support a more accurate CoR determination
under a more even distribution of markers, as used in
this study. Despite limiting their movements to these
distinct paths, however, the errors of the estimations at
the comparable 200 measurement frames were of the
same order observed in this study.

Some of the more elaborate methods such as the
Schwartz transformation technique, the minimal ampli-
tude point method, and the Stoddard approach did not
perform as well or as rapidly as the conceptually simpler
algorithms. Due to its additional extreme computational
cost, the Schwartz transformation technique was tested at
only a limited number of points. Despite producing results
that were almost identical to the CTT, the Holzreiter
approach or the helical pivot technique, and more accurate
than many of the other techniques, this method is
prohibitively time-consuming with the computing power
available and as such becomes currently impractical.

In this study, the moving marker set was allowed to
rotate within a specific cone, or RoM, which varied
between 51 and 901. For any reasonable estimations of the
CoR based on the conditions used in this study, relative
motion of the two segments of at about 201 or more was
required. In cases where, e.g. the surgical intervention of a
joint is required, it may be possible that the patient is
unable to rotate the joint and such ranges of motion are
not possible. In these cases, the geometric, bias compen-
sated algebraic and Pratt sphere fit approaches will have
reduced accuracy, and coordinate transformation techni-
ques such as the SCoRE should be used.

For the simulation of marker artefacts, normally
associated with measurement inaccuracies, elastic distor-
tion of the skin and synchronous shifting of the entire
marker set, isotropic, independent and identically distrib-
uted Gaussian noise with a standard deviation of 0.1 cm
was applied to each marker position and the whole
segment marker set. Whilst the Gaussian noise error
conditions induced to the marker positions in this study
were not taken from actual clinical gait data, the amount
of marker artefact was considered appropriate for a first
comparative estimate of the accuracy of the approaches
examined. It is possible, however, that the accuracy with
which it is possible to determine the CoR is reduced in
more obese patients, where the soft tissues covering the
underlying bones cause additional shift and distortion
errors in the marker positions and configurations.
Although examining these effects was beyond the scope
of this study, it may be possible to reduce the effect of skin
stretching the marker set configuration by applying
orthogonal distance regression techniques to remove
relative marker to marker movements (Taylor et al., 2005).
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The conditions used in this study (marker configura-
tion, error conditions, segment movement etc.) should be
seen as only a typical example for demonstrating the
accuracy of each of the various approaches. With, e.g. a
different number of markers, different marker placement
or configuration, it may be entirely possible to achieve a
more accurate joint position. Specific techniques may
therefore offer further enhancement of the accuracy of
the approaches investigated in this study by optimising
the configuration and position of markers within the sets.
The conditions chosen in this study, however, allowed a
complete and fair comparison between the different
methods. Furthermore, the relative performance of the
different approaches investigated in this study is almost
independent of the test conditions. If the specific
conditions were known prior to a practical application,
it could be that the optimal method of CoR determina-
tion can be chosen for those conditions. Although highly
unlikely, it may be that certain applications require the
determination of a CoR when one segment is rigidly
fixed. Under such circumstances, the use of the geometric,
bias compensated algebraic or Pratt sphere fit techniques
may be justified. Under more normal conditions for
kinematic assessment, but also in the operating theatre
where it is almost impossible to hold one segment
stationary relative to the global measurement system,
the use of the SCoRE has here been shown to yield the
best results. This method has the benefit that it is fast and
just as, or more simple, to implement as any of the other
techniques. It also has the distinct advantage that the
position of the joint centre is provided in both of the local
segment coordinate systems.

For the first time, a complete survey and classification
of formal methods has been performed in this study. A
new method, the SCoRE, has additionally been pre-
sented, for which no assumption of the segment move-
ments relative to the CoR is required. In nearly all test
scenarios investigated in this study, the SCoRE pro-
duced the smallest errors in the estimation of joint
centre. Follow-up work to this study involves similar
direct comparisons to be performed on clinical data.
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Stoddart, A.J., Mrázek, P., Ewins, D., Hynd, D., 1999. A computa-

tional method for hip joint centre location from optical markers.

In: Proceedings of the BMVC 99, Proceedings of the 10th British

Machine Vision Conference. Nottingham, UK.

Taylor, W.R., Ehrig, R.M., Duda, G.N., Schell, H., Seebeck, P.,

Heller, M.O., 2005. On the influence of soft tissue coverage in the

determination of bone kinematics using skin markers. Journal of

Orthopaedic Research 23, 726–734.

van Laarhoven, P.J., Aarts, E.H., 1987. Simulated Annealing: Theory

and Applications. Springer, Berlin.

Vaughan, C.L., Davis, B.L., O’Connor, J., 1999. Dynamics of Human

Gait. Human Kinetics Publishers.

Vrooman, H.A., Valstar, E.R., Brand, G.J., Admiraal, D.R., Rozing,

P.M., Reiber, J.H., 1998. Fast and accurate automated measure-

ments in digitized stereophotogrammetric radiographs. Journal of

Biomechanics 31, 491–498.

Woltring, H.J., 1990. Data Processing and Error Analysis: Model

and Measurement Error Influences in Data Processing. Berlec

Corporation, Washington.

Woltring, H.J., Huiskes, R., de Lange, A., Veldpaus, F.E., 1985. Finite

centroid and helical axis estimation from noisy landmark

measurements in the study of human joint kinematics. Journal of

Biomechanics 18, 379–389.

Zelniker, E.E., Clarkson, I.V.L., 2003. A statistical analysis of the
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