
Modeling the Motion of a Hot, Turbulent Gas

Nick Foster and Dimitris Metaxas

Center for Human Modeling and Simulation
University of Pennsylvania, Philadelphia
ffostern j dnmg@graphics.cis.upenn.edu

Abstract

This paper describes a new animation technique for model-
ing the turbulent rotational motion that occurs when a hot
gas interacts with solid objects and the surrounding medium.
The method is especially useful for scenes involving swirling
steam, rolling or billowing smoke, and gusting wind. It can
also model gas motion due to fans and heat convection. The
method combines specialized forms of the equations of motion
of a hot gas with an e�cient method for solving volumetric
di�erential equations at low resolutions. Particular emphasis
is given to issues of computational e�ciency and ease-of-use
of the method by an animator. We present the details of our
model, together with examples illustrating its use.

Keywords: Animation, Convection, Gaseous Phenomena,
Gas Simulations, Physics-Based Modeling, Steam, Smoke,
Turbulent Flow.

1. Introduction

The turbulent motion of smoke and steam has always inspired
interest amongst graphics researchers. The problem of model-
ing the complex inter-rotational behavior that arises as gases
of di�erent temperatures mix and interact with solid objects
is still an open one. This behavior forms the part of so many
everyday scenes (e.g., steam rising from street gratings) that
it remains an important topic in computer graphics.

There have been several previous approaches to modeling
gas motion for computer graphics. Wejchert and Haumann
[18] and Sims [13] modeled gases using the manual super-
position of deterministic wind �elds. This gives an animator
control over the ow in an animation by placing vortices and
ow �eld components by hand. More random motion, due
to turbulence and di�usion, has proved amenable to spec-
tral analysis. Shinya and Fournier [15], Stam and Fiume [16],
and Sakas [12] de�ne stochastic models of turbulent motion
in Fourier space, and then transform them to give periodic,
chaotic looking vector �elds that can be used to convect gas
particles or interact with simple objects.

These and similar approaches to modeling turbulent gases
require that the animator has micro-control over the behav-
ior of the gas. They characterize the visual behavior of gases
without accurately modeling the physics-based components
of gas ow. This leaves the animator with the sometimes dif-
�cult task of de�ning wind �eld parameters and small scale
stochastic turbulence parameters wherever the visual charac-
teristics of the ow vary signi�cantly. For simple scenes and
homogeneous e�ects this leads to good results which can be

easily controlled. However, for scenes involving complex mo-
tion or a lot of interaction between a gas and other objects,
it is almost impossible to manually create and control a nat-
ural looking animation. This is because the appearance of
this kind of phenomena is very sensitive to the behavior of
the gas as a volume. Rising steam, for example, is directed
by the interaction and mixing between it and the surround-
ing air, as well as the convective ow �eld around static or
moving objects. It would be prohibitively di�cult to model
these e�ects by hand even using existing methods for de�n-
ing stochastic turbulence and laminar wind �elds. The best
way to achieve realism would be to model these e�ects in a
physically accurate way, but the methods available to do so
are ine�cient, and tailored to computational uid mechanics
rather than computer graphics.

Another popular method has been to treat gases as collec-
tions of particles. Ebert, Carlson, and Parent [3], Reeves and
Blau [11], and Stam and Fiume [17] reduced the complex-
ity of the gas volume modeling problem in this way by using
discrete particles to represent gaseous motion. Particle sys-
tems are generally e�cient, but have two inherent drawbacks.
First, a real gas is a continuous medium; selecting particular
regions, and then estimating the interaction between them,
can lead to unpredictable results for the animator. It is also
unclear how interaction between volumes of gas is modeled us-
ing forces between particles. Often, the rotational component
of such interaction still needs to be added manually. Second,
the most visually interesting gaseous behavior is due to the
fact that the gas being modeled is mixing with its surrounding
medium. This medium has not been modeled in the particle
system methods and so its e�ects can only be estimated. This
may lead to visual simulations that have an unrealistic feel to
them. Yaeger, Upson, and Myers [10] generated an excellent
animation of the surface of the planet Jupiter by building a
vorticity �eld from a particle-based motion system. The re-
sults were very realistic, but the method does not generalize
to three dimensions and cannot account for ow around ob-
stacles. In addition, a Cray X-MP was required to achieve
reasonable computation times. A similar combination of vor-
tex �eld and particle motion was used by Chiba et. al. [1] for
their 2D simulations of ames and smoke. This technique does
generalize to three dimensions and handles laminar gas ow
around objects very nicely, but it isn't strictly physics-based.
Again, this puts responsibility on the animator to achieve re-
alism. These methods do show however, that the combination
of visual simulation and physics-based simulation can lead to
satisfying results for computer graphics.

In this paper we develop a new physics-based model specif-
ically designed to realistically animate the complex rotational
component of gaseous motion, e�ects due to regions of di�er-
ent temperature within a gas, and the interaction between
gases and other objects. This work directly addresses the
problem that no graphics models exist for the precise cal-
culation of the turbulent, buoyant, or rotational motion that
develops as a gas interacts with itself and solid objects. In
the past, de�nition of this component of gas motion has been
done via ad hoc methods or left to the skill of the animator.
The paper's main contribution is a method for the e�cient
animation of both the turbulent and swirling behavior of a
three-dimensional volume of hot gas in an arbitrary environ-
ment. The model we have developed accounts for convection,
turbulence, vorticity and thermal buoyancy, and can also ac-

curately model gas owing around complex objects. This gives
rise to a number of realistic e�ects that could not be mod-
eled previously, such as hot steam being vented into a boiler
room or the rolling smoke cloud from an explosion. We show
that not only is the proposed method accurate, it is also fast,
straightforward, and can be used as a general graphics tool.
Fast, because we use a simpli�ed set of equations (compared
to those used in the computational uid dynamics literature)
which are adequate for modeling the desired e�ects. Straight-
forward, because boundary conditions are set automatically
and can be used to model di�erent types of objects (rough or
smooth for example). The model is mathematically nontriv-
ial, but we will show that its solution proceeds in relatively
simple computational steps.

2. Developing a gas model for computer graphics

Before trying to model a hot gas for computer graphics pur-
poses, it is important to have some intuition for those fac-
tors that inuence its motion. Consider as an example, an
old fashioned steam engine venting a jet of hot gas from its
boiler. A governing factor in the motion of the gas is the
velocity it has when rushing into the surrounding air. As it
mixes with the slower moving air, the steam experiences drag
(shearing forces), and starts to rotate in some places. This
rotation causes more mixing with the air, and results in the
characteristic turbulent swirling that we see when gases mix.
A second important factor that governs gas motion is temper-
ature. As the steam is vented, it tends to rise. Hotter parts of
the gas rise more quickly than regions which have mixed with
the cooler air. As the gas rises, it causes internal drag, and
more turbulent rotation is produced. This e�ect is known as
thermal buoyancy. Turbulent motion is further exaggerated
if the gas ows around solid objects. At �rst the gas ows
smoothly along the surface, but it eventually becomes chaotic
as it mixes with the still air behind the object. Finally, even
when conditions are calm, di�usion due to molecular motion
keeps the gas in constant motion.

In the next sections we derive a \customized" numerical
model for animating visually accurate gaseous behavior based
on the motion components described above. We call the model
customized, because it incorporates only the physical ele-
ments of gaseous ow that correspond to interesting visual
e�ects, not those elements necessary for more scienti�c accu-
racy. The model is built around a physics-based framework,
and achieves speed without sacri�cing realism as follows.

A volume of gas is represented as a combination of a scalar
temperature �eld, a scalar pressure �eld, and a vector veloc-
ity �eld. The motion of the gas is then broken down into two
components: 1) convection due to Newton's laws of motion,
and 2), rotation and swirling due to drag and thermal buoy-
ancy. The rotational, buoyant, and convective components of
gaseous motion are modeled by coupling a reduced form of
the Navier-Stokes equations with an equation for turbulent
mixing due to temperature di�erences in a gas. This cou-
pling provides realistic rotational and chaotic motion for a
hot gaseous volume.

In general, solving a nonlinear system throughout a 3D vol-
ume is much too time consuming for animation because any
algorithm that does so accurately has a complexity of O(n3)
[4]. However, the authors have recently shown that for com-
puter graphics, realistic looking results can be obtained in a
reasonable amount of time if such a system is suitably approx-
imated and solved at very low resolutions [5]. For a gas this
is done in two stages. First, we solve equations correspond-
ing to the two motion components in a voxel environment
containing rectangular approximations to arbitrary static ob-
jects. This signi�cantly reduces scene complexity, makes the
application of boundary conditions trivial, and yet keeps the
basic structure of the objects intact allowing for interaction
between them and the gas. Second, the solution proceeds us-
ing a �nite di�erence approximation scheme which preserves

the turbulent and rotational component of gaseous motion
even at very low resolution, making the scheme e�cient and
suitable for use as a general graphics tool. So even though the
method is still O(n3), we have reduced n signi�cantly (40{60
in the examples given).

The result is a scheme that calculates the movement and
mixing of a gas within interesting environments in a visually
and physically accurate way. The output from the system is a
pre-sampled, regular grid of time varying velocity or temper-
ature values, which, when combined with massless particles,
can be rendered in a number of ways using popular volume
density rendering methods.

For the following discussion of the method, we take a New-
tonian approach and treat �nite regions in space as individual
gaseous elements. An element can vary in temperature and
pressure and allows gas to ow through it with arbitrary ve-
locity, but its position remains �xed. We now present the
model used to calculate the components of gaseous motion
mentioned above.

2.1. Convection and Drag

The velocity of gas in an element is a�ected by a number of
factors. First, it is pushed along, or convected, by its neigh-
bors. Second, the gas is drawn into adjacent regions of greater
velocity (or lower pressure). This is called vorticity, or drag.
Third, the element is a�ected by forces such as gravity. In
some extreme gaseous phenomena there may also be motion
caused by shock and pressure waves that arise because gas
can be locally compressed. If, however, the class of e�ects
that we want to model is restricted to day-to-day sub-sonic
e�ects such as smoke from �res, steam from steam engines,
and so on, then the terms due to the compressibility of the
gas will have only a minor e�ect on the overall motion. There-
fore, we make a simplifying assumption that locally, the gas is
incompressible. Furthermore, we assume that motion due to
molecular di�usion is negligible relative to other e�ects. When
these assumptions are applied to the Navier-Stokes equations,
which fully describe the forces acting within a gas, a reduced
form can be derived. For brevity the full equations are not
reproduced here, but the reduced form, without compressive
e�ects, or gravity forces is

@u

@t
= �r � (ru)� (u � r)u�rp; (1)

where r is the gradient operator, u is the velocity of the gas,
� is the inner product operator, and p is the pressure of the
gas. This equation models how the velocity of a gas changes
over time depending on convection ((u � r)u), its pressure
gradient (rp), and drag (�r�(ru)). It is generally combined
with the continuity equation which models mass conservation
and which is discussed later in this paper. The � coe�cient
is the kinematic viscosity. Intuitively, small � models a less
viscous gas in which rotational motion is more easily induced.
Equation (1) models the convective and rotational velocity in
our customized gas.

2.2. Thermal Buoyancy

Forces due to thermal buoyancy also induce motion in a gas.
If a hot gaseous element is surrounded by cooler elements,
the gas will rise (or move against gravity in cases of interest
to us). We model this e�ect by de�ning a buoyant force on a
gaseous element, as

Fbv = ��gv(T0 � Tk); (2)

where gv is gravity in the vertical direction, � is the coe�cient
of thermal expansion, T0 is an initial reference temperature
(a balmy 28oC for the examples in this paper), and Tk is the
average temperature on the boundary between a gaseous cell
and the one above it. Although simple, this equation seems
to work very well.

In order to use (2) to calculate buoyant forces, the evolution
of temperature within the gas must also be modeled. Adja-
cent elements exchange energy by straight convection (hot
gas owing from one element to another) and also by small
scale turbulent mixing through molecular collisions with adja-
cent elements. Thus, the change in temperature of a gas over
time can be characterized as a combination of the convection
and di�usion of heat from adjacent regions. The di�erential
equation that governs this process is [14]

@T

@t
= �r � (rT)�r � Tu; (3)

where u is the velocity of the gas, T is its temperature, and
� can be chosen to represent both turbulent and molecular
di�usion processes. The structural similarity between (1) and
(3) should be apparent. The second term on the right de-
scribes how temperature at a point changes due to convec-
tion, whereas the �rst term on the right takes into account
changes in temperature due to di�usion and turbulent mix-
ing. By solving (3) for a volume of hot gas, it is possible to
calculate the force on a gaseous element due to thermal buoy-
ancy using (2). This force a�ects velocity and so can be added
as a new term to (1) giving

@u

@t
= �r � (ru)� (u � r)u�rp+ Fbv: (4)

Equations (3) and (4) together provide us with a model for
the rotational and turbulent motion that makes the mixing
of hot and cold regions of a gas so interesting to watch.

3. Building a Useful Animation Tool from the
Model

To obtain realistic motion from a volume of gas, the govern-
ing equations must be solved over time in three dimensions.
The authors recently showed that for liquids, such volume
calculations can be made with computational times and ac-
curacy acceptable for a computer animation application if the
environment and equations are suitably approximated [5]. A
similar method is used here to solve the gas motion equa-
tions. A voxel-based scene approximation is combined with
a numerical scheme known as �nite di�erences. For (3) and
(4), this leads to a straightforward algorithm that solves for
the motion of a hot gas and takes into account arbitrary (ap-
proximated) objects as well as animator-controlled special ef-
fects. In addition, the method can be solved over a coarse grid
without losing any of the behavioral characteristics of the gas,
making it relatively e�cient for even complex scenes.

3.1. Modeling the Simulation Environment

In order to solve the gas motion equations so that they rep-
resent the behavior of a gas in an animation environment, we
need to represent the scene in a meaningful way with respect
to the equations. We �rst approximate the scene as a series of
cubic cells to reduce its complexity, and to form a grid upon
which we can de�ne temperature, pressure, and velocity.

A collection of solid 3D objects can be approximated as a
series of regular voxels that are axially aligned to a coordinate
system x,y,z (see Fig. 1a). If a portion of the medium (gas)
surrounding the objects is likewise voxelized using the same
coordinate system, then the boundaries of the objects can be
made to coincide with the faces of gas voxels (Fig. 1b). The
resulting grid can be used to solve physics-based di�erential
equations in an e�cient and straightforward way [5].

Consider a single cell in this grid (Fig. 2). It can be iden-
ti�ed by its position relative to the origin in the x, y, z, di-
rections, as i, j, k, respectively. At the center of the cell,
we de�ne variables Ti;j;k and pi;j;k to represent the average
temperature and average pressure within the cell. Likewise,
in the center of each face of the cell we de�ne a variable to

(a) (b)

Figure 1: Using regular voxels to approximate (a) a scene
containing solid objects and (b) the medium around those ob-
jects.

i,j,k-1/2

∆τ

∆τ

∆τ

z x

y

(i,j,k)

u w

v

i-1/2,j,k

i,j+1/2,k

Figure 2: Numbering convention for a single cell in the voxel
grid. �� is the side length for each face of the cell.

represent the gas velocity perpendicular to that face. This
leads to the velocities u,v,w shown in Fig. 2. Intuitively, cells
at i,j,k and i + 1,j,k will share the face velocity ui+1=2;j;k.
Once the environment over which we wish to calculate gas
motion is discretized in this way, it is possible to calculate,
using (3) and (4), how the temperature, pressure, and ve-
locity throughout the grid vary over time. By using linear
interpolation, the temperature (or velocity and pressure) at
any point in the volume can be found. As an example, the u
velocity of the gas at the center of the cell can be found from
(ui�1=2;j;k + ui+1=2;j;k)=2.

3.2. Applying the Equations to the Grid

To solve (3) and (4) we recast them to a form that is applica-
ble to the regular voxel grid, using a numerical method called
�nite di�erences. A di�erential term such as

@T

@y

is approximated using a Taylor series to give a new expression
for the derivative,

@T

@y
=

1

2h
(T (y + h)� T (y � h)) +O(h2); (5)

where h is the �nite distance over which the derivative is being
taken, and O(h2) denotes that terms of order 2 or higher exist.
Likewise, a second order derivative,

@2T

@y2
;

is written as

@2T

@y2
=

1

h2
(T (y + h)� 2T (y) + T (y � h)) +O(h2); (6)

where h is as before. If h is taken to be �� , the grid width,
then for a single voxel, we approximate (6) such that

@2T

@y2
=

1

��2
(Ti;j+1;k � 2Ti;j;k + Ti;j�1;k)

using terms that correspond directly to variables on the vox-
elized grid, and ignoring terms of order 2 or higher (in h).
Using this basic technique, (3) is �rst expanded as a series of
�rst and second order di�erential terms,

@T

@t
= �(

@2T

@x2
+
@2T

@y2
+
@2T

@z2
)�

@Tu

@x
�
@Tv

@y
�
@Tw

@z
; (7)

and then completely rewritten in terms of the free variables
on the �nite grid,

T
n+1
i;j;k

= T
n
i;j;k +�tf(1=��)[(Tu)

n
i�1=2;j;k � (Tu)

n
i+1=2;j;k

+ (Tv)
n
i;j�1=2;k � (Tv)

n
i;j+1=2;k + (Tw)

n
i;j;k�1=2

� (Tw)
n
i;j;k+1=2] +

�

��2
[(T

n
i+1;j;k � 2T

n
i;j;k + T

n
i�1;j;k)

+ (T
n
i;j+1;k � 2T

n
i;j;k + T

n
i;j�1;k)

+ (T
n
i;j;k+1 � 2T

n
i;j;k + T

n
i;j;k�1)]g; (8)

where a term such as (Tu)ni+1=2;j;k represents the temperature

ow between cells (i; j; k) and (i + 1; j; k), and is calculated
as

(Tu)
n
i+1=2;j;k =

un
i+1=2;j;k

2
(T

n
i;j;k + T

n
i+1;j;k):

Using (8), the temperature at the center of cell i,j,k at time
t + �t can be found in terms of the temperatures at time t
in adjacent cells. Tn+1 denotes the value of T at time t+�t,
while Tn, denotes the value at time t. It is simply a matter
of plugging in the old values of T in order to �nd the new
value. In a similar way, (4) is also expanded as �rst and sec-
ond order di�erentials, written in terms of cell face velocities
and cell pressures, and then solved to �nd un+1

i;j;k in terms of

uni;j;k (see Appendix A). Thus, to �nd how the velocity and
temperature change over a time interval �t, (8) and (17) are
applied simultaneously to each cell in the grid. Because �� is
a constant, this calculation involves only oating point mul-
tiplication and addition, making it reasonably e�cient. The
change in pressure for a cell is calculated separately and is a
fortunate side e�ect of mass conservation which is described
in the next section.

3.3. Ensuring Accuracy

The approximation of the animation environment as regu-
lar voxels is the main source of e�ciency for our algorithm.
The drawback, however, is that low resolution variable sam-
pling can introduce error into the calculation. Because the
free variables u and T are sampled at �xed positions in space
�� apart, an error of order O(��2) is introduced into T and
u when the �nite di�erence approximation is applied to the
voxels (the O(h2) terms from (5) and (6)). For temperature
this is not signi�cant, but for u it represents mass that has
been created (or destroyed) as a side e�ect of the algorithm.
This means that each cell in the scene acts as a small gas
source or sink, slightly altering the total mass of gas in a
scene. To correct for this change in mass, we need to ensure
that at any point in the scene (unless we speci�cally want a
source or sink), the mass of gas owing in, is the same as the
mass owing out. This can be characterized by a constraint
equation that is actually part of the Navier-Stokes equations,

r � u = 0: (9)

For a single grid cell, the left hand side of (9) is approximated
using the Taylor series method, and rewritten in terms of the
grid variables, giving

(r � u)i;j;k =
1

��
[ui+1=2;j;k � ui�1=2;j;k + vi;j+1=2;k

� vi;j�1=2;k + wi;j;k+1=2 � wi;j;k�1=2]; (10)

where (r � u)i;j;k is the mass divergence at the center of the
cell. For mass to be conserved, this scalar �eld must be zero
in every cell. This requires a solution to the classic three
dimensional Poisson equation. The computational method
described by Harlow and Welch [8] was one of the earliest
in print, and although that approach is two-dimensional in
scope, it can be modi�ed so that it is suitable for our gas
model.

We de�ne a potential �eld, , which is sampled at the cen-
ter of each grid cell and is initially zero everywhere. Then, for
every frame of animation, we iterate over the grid, updating
 according to

h+1
i;j;k

=
2

8=��2
f�(r � u)i;j;k +

1

��2
[

h
i+1;j;k +

h
i�1;j;k +

h
i;j+1;k

+
h
i;j�1;k +

h
i;j;k+1 +

h
i;j;k�1]g �

h
i;j;k; (11)

where (r � u)i;j;k is given by (10). This �eld is considered to
have converged, i.e., the iteration stops, when, for every cell
in the grid,

�
�
�
�
�

j h+1
i;j;k

j � j h
i;j;k

j

j h+1
i;j;k

j+ j h
i;j;k

j

�
�
�
�
�
< �: (12)

For the examples given later in this paper, � is taken to be on
the order of 10�4, and convergence is achieved in about 8-20
iterations per frame.

After convergence, the �eld represents the relative dis-
crepancy in mass between adjacent cells. By adjusting u ac-
cording to the gradient in , u can be made to satisfy (9)
directly [8]. The velocity components on the grid cell faces
are adjusted to correct for the divergence �eld by

un+1
i+1=2;j;k

= un+1
i+1=2;j;k

�
 i+1;j;k � i;j;k

��
;

vn+1
i;j+1=2;k

= vn+1
i;j+1=2;k

�
 i;j+1;k � i;j;k

��
;

wn+1
i;j;k+1=2

= wn+1
i;j;k+1=2

�
 i;j;k+1 � i;j;k

��
: (13)

The temperature, Tn+1
i;j;k , need not be changed. This �nal step

makes the necessary small adjustments in the velocity �eld to
preserve mass and ensure that the calculation remains physi-
cally accurate. In addition, it can be shown that the gradient
in the pressure �eld, pi;j;k, is equal to the gradient in i;j;k
[8]. Because (4) depends only on the gradient in p, we can use
the �eld directly when calculating gas motion, instead of
calculating the pressure.

3.3.1. Stability

An important issue with respect to accuracy is the numerical
stability of the algorithm. Instability can occur when small os-
cillations in the variables resonate and dominate the solution.
With the model we have described this can happen when the
velocity of any part of the gas allows it to move further than
�� in a single timestep. To ensure stability for an animation
with a maximum gas velocity of juj, the timestep, �t, must
be set according to,

�t juj < ��: (14)

For all the examples given in this paper �t was set to 1
30
Sec,

to achieve the standard animation framerate. This is an or-
der of magnitude lower than the maximum stable timestep
for even the most violent of the examples shown. A further

Set values

T

T0

v0

0u

u

v

Calculated values

Object Boundary

Gas Cell

Object Boundary Cell

Figure 3: Setting temperature and velocity conditions at the
boundary between a gas and an object.

condition for numerical stability is a necessary feature of the
�nite-di�erence method and it forces a lower bound on the
kinematic viscosity, �. Linear analysis has shown that for the
Navier-Stokes equations, � must satisfy [4]

� > (�t=2)max[u2 ; v2; w2] (15)

for the system to remain stable.

3.4. Boundary Conditions for Special E�ects

The regular voxel grid makes application of the gaseous mo-
tion equations e�cient and straightforward. It also makes it
easy to specify temperature, pressure, and velocity along the
edges of solid objects so that interaction between objects and
gas can be modeled accurately. Such \boundary conditions"
can also be used to specify special e�ects involving gas ow-
ing into or out of the environment. Referring to Fig. 3, the
application of the �nite di�erence forms of (3) and (4) to the
gas cell may require grid values from an adjacent object cell.
These values are set automatically depending on the type of
material or object that the cell represents.

For example, a hot radiator cannot allow gas to pass
through it, so the velocity, u, (v in the 2D �gure) is set to zero
for cell faces that represent the radiator boundary. Tangen-
tially however, we want gas to ow freely along the surface.
Therefore u, is set equal to the external tangential velocity
u0. Temperature ows freely from the radiator to the air, so
the temperature, T , within the boundary cell is set to the
desired temperature of the radiator. If a heating fan were be-
ing modeled instead of a radiator, then u on the object cell
faces would be set to model air owing into the environment.
For a standard obstacle, such as a wall or table, u is set to
zero and T is set to the ambient temperature. The pressure is
more di�cult to set with a desired e�ect in mind. Therefore
the object pressure is simply set equal to the external gas
pressure so that it has no local e�ect on the ow. There are
no restrictions on how boundary conditions can be set. Some
examples of u and T for interesting e�ects are given in Table
1.

3.5. The Turbulent Gas Algorithm

The complete algorithm for animating turbulent gas has two
stages. The �rst involves decisions that need to be made by
an animator in order to create a particular e�ect. The steps
the animator must take are:

1. Subdivide the environment into regular voxels with side
length �� . The environment need not be rectangular,
any arrangement is acceptable as long as voxel faces are
aligned.

2. Select boundary conditions for velocity and temperature
similar to those in Table 1.

3. Consider viscosity, thermal expansion, and molecular dif-
fusion, and set �, �, and � accordingly (1/10 �� or higher

Object Type u v T Result

Rough and -u0 0 T0 Lots of turbulence close
rocky to the object
Concrete 0 0 T0 Some turbulence, object

slows ow
Smooth u0 0 T0 No turbulence, ow
Plastic una�ected
Open Window 0 vx Tx Gas can ow in or out

depending on Tx and vx
Hot Fan 0 vx Tx Hot gas is forced into

the scene
Steaming 0 0 Tx Gas cells next to
soup boundary are heated

Table 1: Examples of di�erent object boundary conditions.
A subscript x represents a value chosen by the animator. A
subscript 0 means that the value is taken directly from the
adjacent gas cell (see Fig. 3).

for little visible turbulence, 1/100 �� or lower for greater
swirling).

4. Determine �t from the minimum of 1
30

th
of a second and

the largest stable timestep given by (14) and (15).

After the parameters for the animation have been chosen, the
automatic part of the process proceeds as follows:

5. Apply boundary conditions to the sides of objects cho-
sen to simulate fans, heaters, sources, or sinks. Set the
boundary velocity of other objects to zero, and set interior
temperatures to the ambient temperature.

6. Use the �nite di�erence approximations of (3) and (4) to
update the temperature and velocity, Ti;j;k and ui;j;k, for
each cell (making use of instead of pressure).

7. Use (10) to �nd the divergence �eld, (r�u), for the gas to
conserve mass.

8. While the iteration convergence condition, (12), is not sat-
is�ed,

� Sweep the grid, calculating the relaxation adjustment,
 , for each cell using (11).

9. Update the cell face velocities, ui;j;k, using (13).
10. Goto step 5.

This algorithm has been implemented on an SGI Indigo2
workstation using a simple interface to allow an animator
to de�ne obstacles, heat or steam sources and sinks, as well
as moving fans, and to include them in an animation.

3.6. Rendering

There have been many approaches to rendering gaseous phe-
nomena presented in recent years. A good discussion of them
can be found in [17] and is not repeated here. To best il-
lustrate the contributions of this paper, a rendering method
involving suspended particles has been used. Massless par-
ticles are introduced into a scene and used to represent the
local density of light-reecting (or absorbing) matter. Once
introduced, the particles are convected using the velocity �eld
calculated from (4). The change in position of a particle k, at
xk, over a single timestep is found from

x
n+1
k

= x
n
k +�t un

x
;

where ux is found from the particle's position in the grid
using linear interpolation. The particles themselves can be
introduced as part of a boundary condition (proportional to T
or u for example) or distributed however the animator wishes.
The particles have no e�ect on the calculated motion, they are
just used for rendering purposes to visualize how the density
of smoke or steam changes as the gas medium moves.

Figure Cell Calc. Time Render Time
Resolution (s/frame) cycles (M/frame)

4 60x35x60 15.0 8 23
5 40x60x40 24.0 10 38
6 40x50x40 28.0 13 45
7 60x60x45 49.0 20 14

Table 2: The calculation and rendering times for each of the
examples. Cell resolution is approximate because the scenes
are not rectangular. Cells that play only a small part in the
motion of the gas are not used.

For each frame of animation, the instantaneous distribution
of particles is used as a density map for use with a volume
renderer. There is no straightforward physics-based way to
determine what density volume each particle represents or
how many particles to use. This is dictated by the particu-
lar e�ect the animator wants (lots of very dense particles for
smoke from burning tires, very few for smoke from a candle
ame). The general formula for the examples shown here is
to set each particle to represent 1=50th of the volume of a
single cell, and adjust its density according to the desired ef-
fect. The volume renderer used is similar to that described by
Ebert and Parent [2]. For each pixel in an image, a viewing
ray is cast through the density volume to �nd the e�ective
opacity of the particle cloud as seen from the viewer. If de-
sired, the ray can be subdivided, and for each subdivision,
a ray is cast through the volume towards each light source.
This signi�cantly increases the cost of rendering, but it does
allow for smoke and steam to self shadow and to fall under
the shadow of other objects. This technique has been imple-
mented as a volume shader for use with the BMRT implemen-
tation of the RenderMan Standard [7]. This shader was used
for all the examples in this paper. It should be noted that the
particle representation of suspended matter also makes the
method ideal for rendering using Stam and Fiume's warped
blobs [17].

4. Results

This paper has shown that the motion of a hot gas can be ac-
curately calculated using an e�cient low-resolution technique.
In the following examples we illustrate the kind of rotational
motion and gas/object interaction that is well suited to the
method. All of the examples were calculated on an SGI In-
digo2 with 64 Mb of memory. Table 2 gives the calculation
times for each example, the approximate resolution of the en-
vironment, and the rendering time for a single image. Table
3 gives more speci�c information about each example includ-
ing the width of each cell, the � and � coe�cients, and the
maximum gas velocity in the example.

Steam Valve

The images shown in Fig. 5 demonstrate the interaction of
hot steam with solid objects. The voxel version of this en-
vironment is shown in Fig. 1. The steam is forced into the
environment by setting both T and u boundary conditions
on a set of voxels representing a pressure release valve. The
input velocity is 0:3m=s, and the steam temperature is 80oC.
This is consistent with steam being vented from a boiler. The
result is the billowing e�ect of the cloud of steam. In the ani-
mation, turbulence builds up just in front of the nozzle as the
steam is vented at high velocity.

The same environmental conditions were also used to an-
imate the interaction of steam from three separate valves.
Three frames from this animation are shown in Fig. 6. The ro-
tation caused by the cooling and mixing of the gas can be seen
clearly in the full sequence. In both of the valve cases massless
particles were introduced at an average rate of 2000=s.

Figure � �� � juj max m/s

4 0.005 0.05 0.4 0.15
5 0.002 0.1 1.0 0.35
6 0.002 0.1 1.0 0.50
7 0.01 1.0 3.5 3.4

Table 3: Parameters used to calculate each of the examples.
In each case the thermal expansion coe�cient, �, was 10�3.

(a) (b)

Figure 4: a) A voxel approximation of the SIGGRAPH 97
logo. b) Smoke owing smoothly around the approximation
following the contours of the original shape.

Smoke Stack

Figure 7 shows three frames from an animation of smoke ris-
ing from a chimney on a hot day. The boundary cells on the
left of the grid are set to model a light wind of about 2m=s
that occasionally gusts up to 3m=s. We set the wind velocity
to evolve according to the random-walk expression

u
n+1
w = 0:98 unw + 0:24 �t �(t);

where � is a random number generator in the range [-1,1].
The value of uw is clamped to lie in the range [2,3]. The con-
stant coe�cients have no physical signi�cance, they are just
parameters that have worked well for previous simulations.
This wind is allowed to exit freely from the other end of the
grid using the open window boundary condition from Table
2. The light wind sets up unstable conditions at the top of
the tower causing the looping and swirling of the smoke as
it moves. The smoke leaves the chimney at 0:8 m=s with a
boundary temperature of 46oC. From Table 2 it can be seen
that nearly twice as many iterations are required per frame.
This is because the gusting wind�eld has a large component
in every cell, so it takes longer for (11) to converge.

SIGGRAPH Logo

The �nal animation demonstrates that despite the low reso-
lution voxel approximation, ow around complex objects can
be accurately represented by our model. Figure 4a shows a
voxel representation of the SIGGRAPH 97 logo, and Fig.
4b shows a frame from a sequence depicting smoke rising
smoothly through it. The velocity along the boundary of the
logo is set to zero to prevent smoke drifting into the arti�-
cial corners created by the approximation. When the smoke
is released just beneath the symbol (with a temperature of
50oC) it ows over the object and conforms fairly closely to
the original boundary.

5. Discussion of Limitations

The technique described in this paper derives e�ciency by
solving accurate equations at a low resolution. This is a com-
promise to try and preserve realism, and as such, it comes

with some limitations. Primarily, the method can only re-
solve rotational motion at a resolution lower than or equal to
the grid resolution. From the examples shown, good e�ects
can be achieved, but this means that grid resolution has to
be increased to get �ner motion within an existing scene. If
we double the resolution and halve �� to get the same sized
environment, we also have to halve the timestep, �t, so that
the system remains stable (from (14) and (15)). This is an
inherent problem with �nite di�erences. It could be compen-
sated for by using a multi-resolution grid which would impose
less of an overhead than using a higher resolution everywhere,
but that is left as a topic for future work.

A second limitation of a �nite di�erence grid is that cell
orientation can a�ect the results. A gas jet oriented so that it
travels diagonally through the cubic cells will tend to exhibit
more di�usion than if it were moving parallel to an axis. In
general, di�erences due to such di�usion is not signi�cant
(see Fig. 6), but it is something that can often be avoided by
selecting grid orientation based on desired gas motion rather
than objects in the static environment.

It is also desirable to integrate the gas model with other
computer graphics techniques so that dynamic objects can
interact with a gas. There is some discussion about how an
iterative relaxation step like that described in Sec. 3.3 can be
used to incorporate moving objects into animations of liquids
in Foster and Metaxas [6] and Metaxas [9]. The methods used
there are also applicable to the algorithm described in this
paper, although that has not been explored in any detail.

6. Concluding Remarks

Numerous techniques exist for animating hot gases for com-
puter graphics. Nearly all of them concentrate on achieving
a visual approximation to the characteristic motion of a gas
while getting as high a frame rate as possible. This sacri-
�ces rotational and turbulent motion and often requires the
animator to micro-control the ow. In this paper we have
presented a new, alternative approach that models di�er-
ent scales of gas motion directly. This method accurately
animates gaseous phenomena involving hot and cold gases,
turbulent ow around solid obstacles, and thermal buoy-
ancy, while leaving enough freedom for the animator to pro-
duce many di�erent e�ects. The model is physics-based and
achieves e�cient computational speeds by using a combina-
tion of scene approximation and low resolution volume calcu-
lation. We have shown that even at these low resolutions, the
characteristics of complex motion in the model are retained,
and that exciting results can be obtained.

7. Acknowledgements

Thanks to Larry Gritz for his advice on volume rendering with
BMRT. This research is supported by ARPA DAMD17-94-J-
4486, an NSF Career Award, National Library of Medicine
N01LM-43551, and a 1997 ONR Young Investigator Award.

Appendix A: Finite Di�erence Form of the Motion
Equations

The full expansion of (4) into �rst and second order deriva-
tives is straightforward. Considering just the u velocity com-
ponent for brevity, results in the following expression.

@u

@t
= �(

@2u

@x2
+
@2u

@y2
+
@2u

@z2
) �

@u2

@x
�
@uv

@y
�
@uw

@z
�
@p

@x
(16)

The �nite di�erence scheme outlined in section 3.2 is then
applied, (replacing p with) giving the expression used to
update the ui+1=2;j;k face velocity for cell i,j,k,

u
n+1
i+1=2;j;k

= u
n
i+1=2;j;k +�tf(1=��)[(u

n
i;j;k)

2
� (u

n
i+1;j;k)

2

+(uv)
n
i+1=2;j�1=2;k � (uv)

n
i+1=2;j+1=2;k + (uw)

n
i+1=2;j;k�1=2

�(uw)
n
i+1=2;j;k+1=2] + (�=��

2
)(u

n
i+3=2;j;k � 2u

n
i+1=2;j;k

+u
n
i�1=2;j;k + u

n
i+1=2;j+1;k � 2u

n
i+1=2;j;k + u

n
i+1=2;j�1;k

+u
n
i+1=2;j;k+1 � 2u

n
i+1=2;j;k + u

n
i+1=2;j;k�1)

�
1

��
(

n
i;j;k �

n
i+1;j;k)g; (17)

where values that aren't de�ned on the grid are found by
averaging as before.

References

1. Chiba, N., Ohkawa, S., Muraoka, K., and Miura, M., \Two-
dimensional Simulation of Flames, Smoke and the Spread of
Fire", J. of Vis. and Comp. Animation, 5(1), 1994, pp. 37{54.

2. Ebert, D.S., and Parent, R.E., \Rendering and Animation of
Gaseous Phenomena by Combining Fast Volume and Scanline
A-bu�er Techniques", SIGGRAPH '90, Computer Graphics,
24(4), 1990, pp. 357{366.

3. Ebert, D.S., Carlson, W.E., and Parent, R.E., \Solid Spaces
and Inverse Particle Systems for Controlling the Animation of
Gases and Fluids", The Visual Comp., 10, 1994, pp. 179{190.

4. Fletcher, C.A.J., \Computational Techniques for Fluid Dynam-
ics," Springer Verlag, Sydney, 1990.

5. Foster, N., and Metaxas D., \Realistic Animation of Liquids,"
Graphical Models and Image Proc., 58(5), 1996, pp. 471{483.

6. Foster, N., and Metaxas D., \Controlling Fluid Animation,"
Proceedings of CGI '97, To appear, 1997.

7. Gritz, L., and Hahn, J.K., \BMRT: A Global Illumination
Implementation of the RenderMan Standard", J. of Graphics
Tools, to appear, 1997.

8. Harlow, F.H., and Welch, J.E., \Numerical Calculation of
Time-Dependent Viscous Incompressible Flow," Phys. Fluids,
8, 1965, pp. 2182{2189.

9. Metaxas, D., \Physics-Based Deformable Models: Applications
to Computer Vision, Graphics and Medical Imaging", Kluwer-
Academic Publishers, 1996.

10. Yaeger, L., Upson, C., and Myers, R., \Combining Physical and
Visual Simulation - Creation of the Planet Jupiter for the Film
\2010" ", SIGGRAPH '86, Computer Graphics 20(4), 1986, pp.
85{93.

11. Reeves, W.T., and Blau, R., \Approximate and Probabilistic
Algorithms for Shading and Rendering Structured Particle Sys-
tems", SIGGRAPH '85, Computer Graphics 19(3), 1985, pp.
313{322.

12. Sakas, G., \Modeling and Animating Turbulent Gaseous Phe-
nomena Using Spectral Synthesis", The Visual Computer, 9,
1993, pp. 200{212.

13. Sims, K., \Particle Animation and Rendering Using Data
Parallel Computation", SIGGRAPH '90, Computer Graphics
24(4), 1990, pp. 405{413.

14. Shaw, C.T., \Using Computational Fluid Dynamics", Prentice
Hall, London, 1992.

15. Shinya, M., and Fournier, A., \Stochastic Motion - Motion Un-
der the Inuence of Wind", Proceeding of Eurographics '92,
September 1992, pp. 119{128.

16. Stam, J., and Fiume, E., \Turbulent Wind Fields for Gaseous
Phenomena", SIGGRAPH '93, 1993, pp. 369{376.

17. Stam, J., and Fiume, E., \Depicting Fire and Other Gaseous
Phenomena Using Di�usion Processes", SIGGRAPH '95, 1995,
pp. 129{136.

18. Wejchert, J., and Haumann, D., \Animation Aerodynamics",
SIGGRAPH '91, Computer Graphics 25(3), 1991, pp. 19-22.

Figure 5: An animation of steam discharge into a boiler room.

Figure 6: Steam from three nozzles converges to cause vorticity and turbulence.

Figure 7: Turbulent smoke rolls out of a chimney into a light, gusting wind.

