
CS229 Project 1 Motion Capture and SplinesCS229 Project 1: Motion Capture and SplinesAssignment Out: Sept. 11th, 2000Assignment Due: Sept. 22nd, 2000 (11:59 pm)
1 IntroductionMotion capture is considered an essential tool in modern computer animation. Almost no videogamecompany today is without its own motion capture studio, and breathtaking scenes like the long cam-era
y-over across the deck of the Titanic would be impossible without a cast of virtual charactersdriven by motion capture data.Characteristics of the video game and movie domains are that the character's motion can betightly scripted, and that many animator hours can be invested in tailoring the captured data tothe needs of the game or movie. Animators can create believable transitions between motion clipsto be used in sequence in a video game, and motion capture data used in movies is painstakinglyedited before it hits the screen. The results are convincing, but the process is laborious.Much e�ort has been put into making motion capture data require less hand-tuning. Thereis speculation in the research community that motion capture data can be used as a database ofexamples from which a virtual character can draw to create a
uid and consistent personality. Thecanonical vision is to pipe a bunch of old Bogart movies into the computer overnight and comein the next morning to an animated Humphrey Bogart character with recognizable motion andmannerisms. 1In its raw format, however, motion capture data is voluminous and in
exible. Even simplemodi�cations like changing the direction in which a character is looking are tedious to make byhand when working with the data in its original form. Motion capture ("mocap") data consists of aset of parameters suÆcient to describe the pose of a skeleton at discrete points in time, typically 60frames per second. The same amount of data is created regardless of the nature of the motion. Onesecond of idle standing produces just as much data as one second of a complex ballet maneuver inSwan Lake. For this reason, editing raw motion capture data is just as painful as editing keyframesin traditional cel animation by erasing and recreating portions of each drawing (and here we have60 \drawings" per second of animation). Every single frame of the motion that is a�ected mustbe edited to smoothly work in the new motion. Given the unwieldy heft of mocap data, it is nowonder that companies like Pixar shun motion capture { an artist modifying mocap data with aparticular goal in mind might be better o� starting from scratch!1And possibly to a sit-in protest from a Screen Actor's Guild concerned that their jobs are about to becomeautomated.

CS229 Project 1 Motion Capture and SplinesA typical �rst step to making motion capture data easier to work with is to create a continuousrepresentation of the data, rather than working with the set of discrete snapshots that is provided asinput. A continuous representation can easily be scaled in time if necessary and segmented into highfrequency and low frequency components. Changing the direction of a gesture, for example, canthen be achieved by editing the low frequency components, leaving the high frequencies alone. Thelow frequency components, being slow-changing, can often be adjusted e�ectively by modifyingrelatively few parameters (e.g. moving a few control points in a spline). The high frequencycomponents, on the other hand, are often considered responsible for the perceived \naturalness"of a motion, so leaving those intact may lead to better results. Animation created wholly oncomputer from a set of keyframes often lacks these high frequency components, leading to motionthat is uncannily smooth and obviously arti�cial. Accurately capturing these subtle details of realmotion is part of the appeal of the motion capture process.2 Assignment OverviewFor this �rst assignment, you will create a continuous representation of a motion capture dataset by�tting a B-spline to that dataset and then modifying the motion slightly to produce a continuous,repeating motion. The data is of a human �gure running a few strides across a room.You are given the skeleton of a viewer, implemented using Java3D. To complete the assignment,you will need to:� Use data from the skeleton �le to display the skeleton.� Use data from a motion �le to play back the raw motion capture data.� Fit splines to the motion capture data.� Create a cycle from the data using the spline representation, and play back the resultingmotion. The cycle created from the running data should cause the character to continuouslyrun forward, not pop back to its starting point. You will have to specify the start frame andend frame for the cycle. The beginning and ending of a single stride mid-
ight (the "ballisticphase") will probably give the best results.Implementation details and �le locations are at the end of the handout. If you choose not to usea B-Spline as a continuous representation for your motion, explain the motivation for your choiceand describe brie
y how you implemented your solution. By the way, you will probably want toreuse this code in future assignments, and it might also make a great base for a �nal project.2.1 QuestionsPlease hand in the answers to the following questions in a README �le along with your completedassignment.1. Explain your approach to creating a repeatable cycle from the motion data. How did youmodify how you created the continuous representation?

CS229 Project 1 Motion Capture and Splines2. How would you implement a tracking camera that would follow the character and remainupright? Provide details about how you would compute the transform used to set the cameraposition at each frame.3. Try your algorithm on datasets other than running (e.g. some of the kicking motions) andtry to loop them. Pick one of the more disappointing results and describe how you mightimprove it.4. Compare motion from the correct skeleton �le (body.asf) to the that from the incorrectskeleton �le (bodyWrong.asf). In particular, notice that the foot slides forward while incontact with the ground when the incorrect skeleton �le is used. This artifact is not presentin the original motion. How would you �x the problem? (In this case, the only change thathas been made to the skeleton is to shrink the upper and lower legs to 60% of their originalsize.) Make your solution as general as possible (e.g. it should also work for a skeleton 10%the size of the original).2.2 Bonus ProjectIf you read the Introduction carefully, you may be asking \so, what happened to this cool frequencydecomposition idea?" You can do a version of frequency decomposition using a hierarachy of B-Splines instead of a single B-Spline to represent the motion. Impressive results for image blendinghave been achieved using frequency decomposition, and creating repeatable cycles using hierarchi-cal B-Splines may similarly improve the appearance of your �nal motion. See Lee, Wolberg, andShin '97 from the reading packet for information on hierarchical B-Splines, and see http://www-bcs.mit.edu/people/adelson/publications/abstracts/spline83.html for a blending application in vi-sion (using a Laplacian pyramid rather than a hierarchical B-Spline approach). De�nitely checkout the images in the latter paper. The results are amazing.Your handin should include some plots that convince us that your approach works. How didyou decide when to stop (i.e. how did you decide how many levels of hierarchy were needed for eachparameter)? Which joints required the largest and smallest numbers of B-Splines to adequatelyrepresent them?This project is worth up to 25 bonus points for an exceptional implementation and report. (Theproject is scored out of 100 points.)If you have other ideas for a worthy bonus project, run them by us!3 Technical BackgroundOne goal of this project is to give you a chance to work with the complex scene graphs that areused in animation. This section covers the technical background you will need to build the correctscene graph from the given skeleton and motion �les.

CS229 Project 1 Motion Capture and Splines3.1 Points and Transformation MatricesOne operation we will use constantly is that of transforming object geometry (e.g. vertices) fromone coordinate frame to another. This section de�nes some notation for points and transformationmatrices. For more detail on transformations and transformation hierarchies, refer to Watt andWatt or an introductory graphics text such as Foley, van Dam, Feiner, and Hughes.In this document, points will be represented with an upper-left superscript indicating theircurrent coordinate system. For example, point Op is a point expressed in coordinate frame O. Weuse homogeneous coordinates: p = 26664 xyz1 37775 ; v = 26664 xyz0 37775 (1)where p is a point, and v is a vector.A matrix transforming points from one coordinate frame to another is expressed with a sub-script indicating origin frame and a left superscript indicating destination frame. For example, thetransform WMO converts points in coordinate frame O to points in coordinate frame W :Wp =WMO Op (2)Transformation matrices include both translations and rotations. It will often be convenientto separate out pure translations and rotations about coordinate axes. We will use the followingnotation for translations: T (tx; ty; tz) = 26664 0 0 0 tx0 0 0 ty0 0 0 tz0 0 0 1 37775 (3)Rotations about the x, y, and z axes respectively are:Rx(�) = 26664 1 0 0 00 cos(�) � sin(�) 00 sin(�) cos(�) 00 0 0 1 37775 (4)
Ry(�) = 26664 cos(�) 0 sin(�) 00 1 0 0� sin(�) 0 cos(�) 00 0 0 1 37775 (5)
Rz(
) = 26664 cos(
) � sin(
) 0 0sin(
) cos(
) 0 00 0 1 00 0 0 1 37775 (6)

CS229 Project 1 Motion Capture and Splines

BASE

MIDDLEM
ARMR_DUMMY

MIDDLEM
ARML_DUMMY

ARML
MARML_DUMMY

ARML ARMR

ARMR_DUMMYM
ARMR

HEAD

MIDDLE

MMIDDLE
BASE

MW

BASE

M
HEAD

MIDDLE

HEAD

BASE

MIDDLE

ARMR

ARML

Figure 1: A simple character and scene graph.

CS229 Project 1 Motion Capture and SplinesFigure 1 shows a simple scene graph. Transformations are cumulative, so a point in localcoordinate frame HEAD can be converted to a point in world space as follows:Wp =WMBASE BASEMMIDDLE MIDDLEMHEAD HEADp (7)For a point in local coordinate frame MIDDLE, we have:Wp =WMBASE BASEMMIDDLE MIDDLEp (8)The viewer we provide will display a scenegraph and allow you to move and rotate the camerato view the world. Your mission is to parse the ASF �le and create a skeleton scene graph fromthe information contained in that �le.3.2 Interpreting the ASF FileASF stands for \Acclaim Skeletal File." This �le format was developed by Acclaim for use with itsown motion capture process, and was later placed in the public domain. It is one of a handful ofskeleton �le formats commonly used to distribute motion capture data.The information below will help you create a viewer that will read in all of the data we haveavailable for the class. It will not be suÆciently general to allow you to read in all valid ASF �les.23.2.1 The HierarchyAt the end of the ASF �le is the scene graph hierarchy. Each line of input lists either the root ora bone, followed by all of its immediate children. For the character in Figure 1, we would have::hierarchybeginroot BASEBASE MIDDLEMIDDLE HEAD ARML_DUMMY ARMR_DUMMYARML_DUMMY ARMLARMR_DUMMY ARMRendThe parent on a line must have been referred to as a child on a previous line. The only exception isthe root, which must come �rst. Bodies ARML DUMMY and ARMR DUMMY are not displayedin Figure 1. We'll see why they are useful later.2For hints on how to create a more general ASF �le reader, see the documentation �lefile:/course/cs229/info/Acclaim Skeleton Format.html.

CS229 Project 1 Motion Capture and Splines3.2.2 The RootAt the beginning of the �le is a section beginning with keyword :root. This section contains o�setinformation for the root of the system. The o�set information is zero in all of our datasets, and soyou can safely ignore it.The :root section also states the order in which data to translate and rotate the root will belisted in any AMC motion �le associated with this skeleton. The data order is the same in all ofour datasets: x, y, and z translations followed by x, y, and z rotations.3 You may assume this orderin your code.The bottom line is that you can completely ignore the :root section for all of our datasets.3.2.3 The BonesFollowing the :root section is a section labelled :bonedata. This section contains everything youneed to know to draw the skeleton of the system in a default pose, and to interpret the data in anAMC motion �le to drive each of the bones.Direction and Length. Every bone of the system has a local coordinate frame (Figure 2).The direction and length keywords together de�ne the vector from a bone's local coordinateorigin to that of child bones | in other words, a vector to the far tip of the bone, where otherbones can branch o�. Each bone has only this single point for child bones to be attached. Supposewe have the following bones::bonedatabeginid 1name BASEdirection 0 1 0length 3dof rx ry rzaxis 0 0 0endbeginid 2name MIDDLEdirection 0 1 0length 3dof rx ry rzaxis 0 0 0endbeginid 33Each of these transformations occurs along �xed, global axes.

CS229 Project 1 Motion Capture and Splines

x

y

x

y

ARMR

BASE

x

y

x

y

HEAD

d
BASE

dMIDDLE

d
ARMR

dARMR_DUMMY
MIDDLE

dHEAD

Figure 2: Bone placement: local coordinate frames and use of direction and length information todraw the `home' or default-pose skeleton.

CS229 Project 1 Motion Capture and Splinesname ARMR_DUMMYdirection -0.7 -0.7 0length 1.5endbeginid 4name ARMRdirection -1 0 0length 3dof rx ry rzaxis 0 0 90endbeginid 5name HEADdirection 0 1 0length 1dof rx ry rzaxis 0 90 0endFrom this data, we de�ne the following vectors by scaling direction by length for each of thebones: dBASE = [0 3 0 0] (9)dMIDDLE = [0 3 0 0] (10)dARMR DUMMY = [�1:05 � 1:05 0 0] (11)dARMR = [�3 0 0 0] (12)dHEAD = [0 1 0 0] (13)These vectors allow us to draw the skeleton in its home or zero pose, as shown in Figure 2. Notethat all direction vectors are speci�ed in the global reference frame with rotations about all thejoints set to zero. The reason for the ARMR DUMMY and ARML DUMMY bones should be clearfrom Figure 2. They allow the HEAD, ARMR, and ARML bones to appear to exit the MIDDLEbone at di�erent positions rather than simply all at the tip, addressing the restriction of having asingle attachment point for each bone.DOF. The next keyword to notice is the dof (degrees of freedom) keyword. Bones that havethis keyword can rotate about the origin of their local coordinate frame. Bones that do not havethis keyword are rigidly connected to their parent. In the dataset above, only the ARMR DUMMYbone is rigidly �xed to its parent, the MIDDLE bone.The dof keyword also speci�es the order in which joint rotations may be read from the AMCmotion �le. Any bone in our data set that is not rigidly �xed to its parent will have degrees of

CS229 Project 1 Motion Capture and Splines

x

y

ARMR

x’

y’Figure 3: The axis entry for bone ARMR is \axis 0 0 90," indicating a rotation of 90 degrees aboutz. This rotation produces the local rotation axes x' and y' shown. (z' is identical to z and points outof the page.) Rotations in the AMC motion �le specify rotations about these axes. For example, arotation \ARMR 90 0 0" is a rotation of 90 degrees about x', and will cause the arm to point outof the page, toward the reader.freedom in the following order: rx ry rz (or rotation about the x axis, followed by rotation aboutthe y axis, followed by rotation about the z axis). You may assume this ordering in your code.Axis. The last keyword of interest is the axis keyword. Rotations read from the AMC motion�le represent rotations about local axes. The parameters speci�ed on the axis line de�ne an o�setEuler rotation from a bone's coordinate frame to this local orientation, as described in Figure 3.Note that the axis o�set does not a�ect the coordinate frame of child bones; axis is simply usedfor specifying the axes about which subsequent motion speci�ed in the AMC �le will occur.3.2.4 Building the Scene GraphGiven the bone information outlined in the previous section, we need to de�ne the transformationmatrices used in the scene graph in Figure 1. In this section, we �rst break down one of thetransformation matrices, MIDDLEMHEAD and then show an expanded version of part of the scenegraph.Bone data for the MIDDLE and HEAD bones is given in the previous section. The stepsinvolved in connecting the HEAD to its parent MIDDLE are shown in Figure 4. The example inFigure 4 assumes that the HEAD rotation read from the AMC �le was a rotation of -90 degreesabout x:HEAD -90 0 0Note that the observed rotation in Figure 4 is not -90 degrees about HEAD's x axis, but is instead-90 degrees about HEAD's x0 axis. Axis x0 is obtained by observing that HEAD's axis entry inthe :bonedata section is `axis 0 90 0'. This entry speci�es an o�set rotation of 90 degrees abouty. Creating a new coordinate frame with axes x0, y0, and z0 by rotating the HEAD local frame 90degrees about y places x0 in the direction of �z. A -90 degree rotation about x0 therefore amountsto a 90 degree rotation about z, as shown in the center picture in Figure 4.

CS229 Project 1 Motion Capture and Splines
d

MIDDLE

HEAD

x

y

x

y

HEAD

x

HEAD

z’

y’

z’

y’
y

Figure 4: Steps in attaching the HEAD to its parent MIDDLE. (L) HEAD in its local coordinateframe. The axis keyword for head speci�es a rotation of 90 degrees about y, resulting in the localrotation axes y0 and z0 shown. (C) Rotate a speci�ed amount about the local axes. The givenrotation is -90 degrees about the x0 axis. Because x0 points into the page, we rotate HEAD 90degrees to the left. (R) Translate HEAD to attach it to its parent. The required translation is thedirection vector of the parent, or dMIDDLE .In a more general situation, given local axisaxis � �
and given the MIDDLE direction and length vectorsdirection dx dy dzlength land given rotation from the AMC �leHEAD rx ry rzwe create a cumulative transform as follows:L = Rz(
)Ry(�)Rx(�) (14)MIDDLEMHEAD = T (l � dx; l � dy; l � dz) L Rz(rz) Ry(ry) Rx(rx) L�1 (15)Note that the cumulative transform has the following steps (read right to left):� Undo the local axis rotation L (de�ned based on the HEAD axis entry).� Perform the rotation from the AMC �le Rz(rz)Ry(ry)Rx(rx).� Redo the local axis rotation L.� Translate HEAD T (l�dx; l�dy; l�dz) (de�ned based on MIDDLE distance and length entries).

CS229 Project 1 Motion Capture and Splines

MIDDLET (d)

L
MIDDLE

-1

MIDDLE

L
HEAD

HEADL
-1

HEAD

z HEAD
R (rz) R (ry) R (rx)

HEAD HEADxy

Figure 5: An expanded section of the scene graph depicting the portions of the transform fromHEAD to MIDDLE. Only parameters rzHEAD, ryHEAD, and rxHEAD are animated. All othertransformations in this �gure are �xed.

CS229 Project 1 Motion Capture and SplinesDepicted graphically, these transforms create the expanded portion of the scene graph shown inFigure 5. Note that most of the transforms are �xed. TransformRz(rzHEAD)Ry(ryHEAD)Rx(rxHEAD)is animated by varying parameters rxHEAD, ryHEAD, and rzHEAD to rotate HEAD with respectto MIDDLE. Parameters rxHEAD, ryHEAD, and rzHEAD are of course read frame by frame fromthe AMC �le.3.3 Interpreting the AMC FileOnce you understand the skeleton format, the AMC �le format should seem fairly straightfoward.The �le provides data specifying the character pose at each frame, by providing values for each ofthe degrees of freedom for each bone. The data for each frame is preceeded by the frame number.There is a line for the root that contains the root translation (tx, ty, tz) followed by the rootrotation (rx, ry, rz). There is also a line for each bone containing its local rotation (rx, ry, rz).Note that translations are in centimeters and rotations are in degrees.4 ImplementationThis being a CS class and all, the TA's have supplied you with a bit of support code to get youstarted o� and to save you some drudgery. This code is available in /course/cs229/asgn/mocap,and implements the beginning of a mocap viewer in Java3D. It has a basic Swing-based GUI forviewing animations, a groundplane, a trackball camera interface, and basic lexical support for theASF/AMC formats with stubs for you to insert your code. Given this start, you should be ableto focus your energies on creating a scenegraph of the skeleton, playing back the keyframes, andbuilding a continuous looping form from the data.4.1 Java3DAs mentioned, the support code uses Java3D. Many of the ideas in Java3D come from existingpackages (OpenGL, Inventor, Direct3D, World Toolkit), and will be familiar to anyone who hasused one of these. Coming from an OpenGL background, the TA's experienced a \mostly pleasant"learning process, thanks largely to the excellent documentation. The support code takes care ofmuch of the nitty-gritty, but there are two main aspects of Java3D (javax.media.j3d) which you'llneed to get familiar with: the vector math package (javax.vecmath) and the process of constructinga scenegraph.For a comprehensive introduction, the best place to get started is the Java3D API Speci�cation.There are a few printed copies
oating around the CIT, including one in the back of the Sun Laband probably a few in Graphics. It is also available as HTML online | look for the link at the endof the course webpage.4Additionally, there is the javadoc hypertext reference for Java3D 5 and for Java itself 6. These4http://java.sun.com/products/java-media/3D/forDevelopers/J3D 1 2 API/j3dguide/index.html5�le:/course/cs229/info/j3d.docs/index.html6�le:/pro/java/java/docs/api/index.html

CS229 Project 1 Motion Capture and Splinesare invaluable references while coding. Both of these links are available on the course webpage aswell.4.1.1 javax.vecmathThe vector math package has a comprehensive array of datatypes in varying precisions. If you'venot seen it before, start o� by taking a look at the Vector3d class in the javadoc reference. All thestandard vector operations are here (or inherited), including useful things like linear interpolationand in-place multiply-add. For eÆciency reasons, many of the vecmath methods operate on functionparameters (including this), rather than returning temporary objects. The javadocs have fulldetails on call semantics. Feel free to post to the 229 newsgroup if you are having diÆcultyachieving some result.You should be able to stick with keeping everything as doubles rather than
oats, which willsave your having to convert things back and forth.4.2 Scenegraphs in Java3DYou should only need a few Java3D node types in creating your scenegraph: TransformGroups,which apply a Transform3D to their children, and Shape3Ds, which represent instances of geometry.Adding scenegraph nodes is straightforward: just create the object and call parent.addChild(child).Say you have a node in your scenegraph, let's call it root. The following code creates a sphere andattaches it to the root, translated by the Vector3d \where":import com.sun.j3d.utils.geometry.*; // various useful geometry primitives...Vector3d where = new Vector3d(2, 3, 5);TransformGroup transGroup = new TransformGroup();Transform3D trans = new Transform3D();trans.setTranslation(where);transGroup.setTransform(trans);transGroup.addChild(new Sphere(4));root.addChild(transGroup);In creating your skeleton, feel free to use the primitives in com.sun.j3d.utils.geometry.*, orcreate your own geometry. The demo uses a combination of spheres at joint positions and cylindersoriented along the bone vectors.One important thing to note: the support code, after calling to create the skeleton, calls com-pile() on the entire scenegraph, to maximize display speed. After the scenegraph has been compiled,Java3D will balk and throw an exception if you try to modify any of the TransformGroup nodes inthe graph | unless you have marked them as modi�able:setCapability(TransformGroup.ALLOW TRANSFORM WRITE);Look at the Axes and Groundplane classes for more example code of creating Java3D scene-graphs.

CS229 Project 1 Motion Capture and Splines4.3 Debugging HintsIf something goes awry and Java throws an exception and dumps a stack trace, you may seereferences to \compiled code" where you would normally hope to see line numbers. All is not lost.This is just an artifact of the just-in-time compiling going on under the hood. Go back andsetenv JAVA COMPILER noneand re-run your program. It should give you a fully-detailed stack trace.4.4 OthernessThe trackball camera interface uses the right mouse button. Start a drag near the border of thewindow to rotate the view. Start a horizontal drag near the center to pan in the �lm plane; starta vertical drag near the center to dolly in/out.All data �les for this assignment are in /course/cs229/data/mocap. The skeleton is inbody.asf, and the motion �les are *.amc. The skeleton �le for question 4 is bodyWrong.asf.An index to the motion �les is in MotionIndex.txt.The �les `compile' and `run' are scripts to compile/run the program with the proper binariesand CLASSPATH. Feel free to switch to a Make�le or what-have-you.A demo viewer for the mocap data is in /course/cs229/demos/mocap. Go to that directoryand execute `run'.Finally, while there are many ways to approach the assignment, one possible course of actionsis as follows:1. Display a simple primitive in the viewer.2. Apply transformations to that primitive.3. Read in the skeleton �le. (Note that the load method of the Skeleton class already doesmost of the work of reading in the ASF �le.)4. Create the scenegraph and display the skeleton.5. Read in the motion �le. (Note that the load method of the SkeletonAnimation class alreadydoes most of the work of reading in the AMC �le.)6. Apply some frame of the motion directly to the skeleton.7. Animate the skeleton directly with the raw motion.8. Represent the motion with B-splines and create the repeating run cycle.5 Handing inRun \/course/cs229/bin/cs229 handin mocap" from your project directory.

