CS229 Project 1 Motion Capture and Splines

CS229 Project 1: Motion Capture and Splines

Assignment Qut: Sept. 11th, 2000
Assignment Due: Sept. 22nd, 2000 (11:59 pm)

1 Introduction

Motion capture is considered an essential tool in modern computer animation. Almost no videogame
company today is without its own motion capture studio, and breathtaking scenes like the long cam-
era fly-over across the deck of the Titanic would be impossible without a cast of virtual characters
driven by motion capture data.

Characteristics of the video game and movie domains are that the character’s motion can be
tightly scripted, and that many animator hours can be invested in tailoring the captured data to
the needs of the game or movie. Animators can create believable transitions between motion clips
to be used in sequence in a video game, and motion capture data used in movies is painstakingly
edited before it hits the screen. The results are convincing, but the process is laborious.

Much effort has been put into making motion capture data require less hand-tuning. There
is speculation in the research community that motion capture data can be used as a database of
examples from which a virtual character can draw to create a fluid and consistent personality. The
canonical vision is to pipe a bunch of old Bogart movies into the computer overnight and come
in the next morning to an animated Humphrey Bogart character with recognizable motion and
mannerisms. !

In its raw format, however, motion capture data is voluminous and inflexible. Even simple
modifications like changing the direction in which a character is looking are tedious to make by
hand when working with the data in its original form. Motion capture ("mocap”) data consists of a
set of parameters sufficient to describe the pose of a skeleton at discrete points in time, typically 60
frames per second. The same amount of data is created regardless of the nature of the motion. One
second of idle standing produces just as much data as one second of a complex ballet maneuver in
Swan Lake. For this reason, editing raw motion capture data is just as painful as editing keyframes
in traditional cel animation by erasing and recreating portions of each drawing (and here we have
60 “drawings” per second of animation). Every single frame of the motion that is affected must
be edited to smoothly work in the new motion. Given the unwieldy heft of mocap data, it is no
wonder that companies like Pixar shun motion capture — an artist modifying mocap data with a
particular goal in mind might be better off starting from scratch!

!And possibly to a sit-in protest from a Screen Actor’s Guild concerned that their jobs are about to become
automated.

CS229 Project 1 Motion Capture and Splines

A typical first step to making motion capture data easier to work with is to create a continuous
representation of the data, rather than working with the set of discrete snapshots that is provided as
input. A continuous representation can easily be scaled in time if necessary and segmented into high
frequency and low frequency components. Changing the direction of a gesture, for example, can
then be achieved by editing the low frequency components, leaving the high frequencies alone. The
low frequency components, being slow-changing, can often be adjusted effectively by modifying
relatively few parameters (e.g. moving a few control points in a spline). The high frequency
components, on the other hand, are often considered responsible for the perceived “naturalness”
of a motion, so leaving those intact may lead to better results. Animation created wholly on
computer from a set of keyframes often lacks these high frequency components, leading to motion
that is uncannily smooth and obviously artificial. Accurately capturing these subtle details of real
motion is part of the appeal of the motion capture process.

2 Assignment Overview

For this first assignment, you will create a continuous representation of a motion capture dataset by
fitting a B-spline to that dataset and then modifying the motion slightly to produce a continuous,
repeating motion. The data is of a human figure running a few strides across a room.

You are given the skeleton of a viewer, implemented using Java3dD. To complete the assignment,
you will need to:

e Use data from the skeleton file to display the skeleton.
e Use data from a motion file to play back the raw motion capture data.
e Fit splines to the motion capture data.

e Create a cycle from the data using the spline representation, and play back the resulting
motion. The cycle created from the running data should cause the character to continuously
run forward, not pop back to its starting point. You will have to specify the start frame and
end frame for the cycle. The beginning and ending of a single stride mid-flight (the "ballistic
phase”) will probably give the best results.

Implementation details and file locations are at the end of the handout. If you choose not to use
a B-Spline as a continuous representation for your motion, explain the motivation for your choice
and describe briefly how you implemented your solution. By the way, you will probably want to
reuse this code in future assignments, and it might also make a great base for a final project.

2.1 Questions

Please hand in the answers to the following questions in a README file along with your completed
assignment.

1. Explain your approach to creating a repeatable cycle from the motion data. How did you
modify how you created the continuous representation?

CS229 Project 1 Motion Capture and Splines

2. How would you implement a tracking camera that would follow the character and remain
upright? Provide details about how you would compute the transform used to set the camera
position at each frame.

3. Try your algorithm on datasets other than running (e.g. some of the kicking motions) and
try to loop them. Pick one of the more disappointing results and describe how you might
improve it.

4. Compare motion from the correct skeleton file (body.asf) to the that from the incorrect
skeleton file (bodyWrong.asf). In particular, notice that the foot slides forward while in
contact with the ground when the incorrect skeleton file is used. This artifact is not present
in the original motion. How would you fix the problem? (In this case, the only change that
has been made to the skeleton is to shrink the upper and lower legs to 60% of their original
size.) Make your solution as general as possible (e.g. it should also work for a skeleton 10%
the size of the original).

2.2 Bonus Project

If you read the Introduction carefully, you may be asking “so, what happened to this cool frequency
decomposition idea?” You can do a version of frequency decomposition using a hierarachy of B-
Splines instead of a single B-Spline to represent the motion. Impressive results for image blending
have been achieved using frequency decomposition, and creating repeatable cycles using hierarchi-
cal B-Splines may similarly improve the appearance of your final motion. See Lee, Wolberg, and
Shin 97 from the reading packet for information on hierarchical B-Splines, and see http://www-
bes.mit.edu/people/adelson/publications /abstracts/spline83.html for a blending application in vi-
sion (using a Laplacian pyramid rather than a hierarchical B-Spline approach). Definitely check
out the images in the latter paper. The results are amazing.

Your handin should include some plots that convince us that your approach works. How did
you decide when to stop (i.e. how did you decide how many levels of hierarchy were needed for each
parameter)? Which joints required the largest and smallest numbers of B-Splines to adequately
represent them?

This project is worth up to 25 bonus points for an exceptional implementation and report. (The
project is scored out of 100 points.)

If you have other ideas for a worthy bonus project, run them by us!

3 Technical Background

One goal of this project is to give you a chance to work with the complex scene graphs that are
used in animation. This section covers the technical background you will need to build the correct
scene graph from the given skeleton and motion files.

CS229 Project 1 Motion Capture and Splines

3.1 Points and Transformation Matrices

One operation we will use constantly is that of transforming object geometry (e.g. vertices) from
one coordinate frame to another. This section defines some notation for points and transformation
matrices. For more detail on transformations and transformation hierarchies, refer to Watt and
Watt or an introductory graphics text such as Foley, van Dam, Feiner, and Hughes.

In this document, points will be represented with an upper-left superscript indicating their
current coordinate system. For example, point “p is a point expressed in coordinate frame O. We
use homogeneous coordinates:

(1)

O N < X

where p is a point, and v is a vector.

A matrix transforming points from one coordinate frame to another is expressed with a sub-
script indicating origin frame and a left superscript indicating destination frame. For example, the
transform " Mo converts points in coordinate frame O to points in coordinate frame W:

"p="Mo % (2)

Transformation matrices include both translations and rotations. It will often be convenient
to separate out pure translations and rotations about coordinate axes. We will use the following
notation for translations:

0 0 0 tx
1o oo 0ty
T(tz, ty, tz) = 00 0 tr (3)
0 0 0 1
Rotations about the x, y, and z axes respectively are:
1 0 0 0]
| 0 cos(a) —sin(a) 0
Be() = 0 sin(a) cos(a) 0 (4)
0 0 1|
cos(B) 0 sin(B) 0]
0 1 0 0
By(B) =1 _gind) 0 cos(d) 0 (5)
0 0 0 1]
{ cos(y) —sin(y) 0 0 -|
_ | sin(y) cos(y) 0 O
0 0 0 1

CS229 Project 1 Motion Capture and Splines

w
BASE
BASE,
MMIDDLE
MIDDLEM MIDDLE MIDDLE
HEAD ARML_DUMMY ARMR_DUMMY

@ ARML_DUMMY, ARMR_DUMMY,
ARML ARMR
ARML ARMR

Figure 1: A simple character and scene graph.

CS229 Project 1 Motion Capture and Splines

Figure 1 shows a simple scene graph. Transformations are cumulative, so a point in local
coordinate frame HEAD can be converted to a point in world space as follows:

Wp ="Mpase P ™Myippre PP Mppap PP Pp (7)
For a point in local coordinate frame MIDDLE, we have:
Vp ="Mpase P "™Muyrppre PP Pp (8)

The viewer we provide will display a scenegraph and allow you to move and rotate the camera
to view the world. Your mission is to parse the ASF file and create a skeleton scene graph from
the information contained in that file.

3.2 Interpreting the ASF File

ASF stands for “Acclaim Skeletal File.” This file format was developed by Acclaim for use with its
own motion capture process, and was later placed in the public domain. It is one of a handful of
skeleton file formats commonly used to distribute motion capture data.

The information below will help you create a viewer that will read in all of the data we have
available for the class. It will not be sufficiently general to allow you to read in all valid ASF files.?

3.2.1 The Hierarchy

At the end of the ASF file is the scene graph hierarchy. Each line of input lists either the root or
a bone, followed by all of its immediate children. For the character in Figure 1, we would have:

:hierarchy
begin
root BASE
BASE MIDDLE
MIDDLE HEAD ARML_DUMMY ARMR_DUMMY
ARML_DUMMY ARML
ARMR_DUMMY ARMR
end

The parent on a line must have been referred to as a child on a previous line. The only exception is
the root, which must come first. Bodies ARML_DUMMY and ARMR_DUMMY are not displayed
in Figure 1. We'll see why they are useful later.

*For hints on how to create a more general ASF file reader, see the documentation file
file:/course/cs229/info/Acclaim_Skeleton_Format.html.

CS229 Project 1 Motion Capture and Splines

3.2.2 The Root

At the beginning of the file is a section beginning with keyword :root. This section contains offset
information for the root of the system. The offset information is zero in all of our datasets, and so
you can safely ignore it.

The :root section also states the order in which data to translate and rotate the root will be
listed in any AMC motion file associated with this skeleton. The data order is the same in all of
our datasets: x, y, and z translations followed by x, y, and z rotations.® You may assume this order
in your code.

The bottom line is that you can completely ignore the :root section for all of our datasets.

3.2.3 The Bones

Following the :root section is a section labelled :bonedata. This section contains everything you
need to know to draw the skeleton of the system in a default pose, and to interpret the data in an
AMC motion file to drive each of the bones.

Direction and Length. Every bone of the system has a local coordinate frame (Figure 2).
The direction and length keywords together define the vector from a bone’s local coordinate
origin to that of child bones — in other words, a vector to the far tip of the bone, where other
bones can branch off. Each bone has only this single point for child bones to be attached. Suppose
we have the following bones:

:bonedata

begin
id 1
name BASE
direction 0 1 O
length 3
dof rx ry rz
axis 0 0 O

end

begin
id 2
name MIDDLE
direction 0 1 O
length 3
dof rx ry rz
axis 0 0 O

end

begin
id 3

3Each of these transformations occurs along fixed, global axes.

CS229 Project 1 Motion Capture and Splines

AY y

HEAD

MIDDLE

X

AY

Figure 2: Bone placement: local coordinate frames and use of direction and length information to
draw the ‘home’ or default-pose skeleton.

CS229 Project 1 Motion Capture and Splines

name ARMR_DUMMY
direction -0.7 -0.7 O
length 1.5

end

begin
id 4
name ARMR
direction -1 0 O
length 3
dof rx ry rz
axis 0 0 90

end

begin
id 5
name HEAD
direction 0 1 O
length 1
dof rx ry rz
axis 0 90 O

end

From this data, we define the following vectors by scaling direction by length for each of the
bones:

dpase = [0 3 0 0] (9)
dvyippre = [0 3 0 0] (10)
darMR_DUMMY = | — —1.05 0 0] (11)
dapvr = [—3 0 0 0] (12)

dgpap = [0 1 0] (13)

These vectors allow us to draw the skeleton in its home or zero pose, as shown in Figure 2. Note
that all direction vectors are specified in the global reference frame with rotations about all the
joints set to zero. The reason for the ARMR_DUMMY and ARML_DUMMY bones should be clear
from Figure 2. They allow the HEAD, ARMR, and ARML bones to appear to exit the MIDDLE
bone at different positions rather than simply all at the tip, addressing the restriction of having a
single attachment point for each bone.

DOF. The next keyword to notice is the dof (degrees of freedom) keyword. Bones that have
this keyword can rotate about the origin of their local coordinate frame. Bones that do not have
this keyword are rigidly connected to their parent. In the dataset above, only the ARMR_DUMMY
bone is rigidly fixed to its parent, the MIDDLE bone.

The dof keyword also specifies the order in which joint rotations may be read from the AMC
motion file. Any bone in our data set that is not rigidly fixed to its parent will have degrees of

CS229 Project 1 Motion Capture and Splines

X AY

y, ARMR
-« o p- X

Figure 3: The axis entry for bone ARMR is “axis 0 0 90,” indicating a rotation of 90 degrees about
z. This rotation produces the local rotation axes x” and y’ shown. (z’ is identical to z and points out
of the page.) Rotations in the AMC motion file specify rotations about these axes. For example, a
rotation “ARMR 90 0 07 is a rotation of 90 degrees about x’, and will cause the arm to point out
of the page, toward the reader.

freedom in the following order: rx ry rz (or rotation about the x axis, followed by rotation about
the y axis, followed by rotation about the 7z axis). You may assume this ordering in your code.

Axis. The last keyword of interest is the axis keyword. Rotations read from the AMC motion
file represent rotations about local axes. The parameters specified on the axis line define an offset
Euler rotation from a bone’s coordinate frame to this local orientation, as described in Figure 3.
Note that the axis offset does not affect the coordinate frame of child bones; axis is simply used
for specifying the axes about which subsequent motion specified in the AMC file will occur.

3.2.4 Building the Scene Graph

Given the bone information outlined in the previous section, we need to define the transformation
matrices used in the scene graph in Figure 1. In this section, we first break down one of the
transformation matrices, MIDDLE nr e 4 and then show an expanded version of part of the scene
graph.

Bone data for the MIDDLE and HEAD bones is given in the previous section. The steps
involved in connecting the HEAD to its parent MIDDLE are shown in Figure 4. The example in
Figure 4 assumes that the HEAD rotation read from the AMC file was a rotation of -90 degrees
about x:

HEAD-9000

Note that the observed rotation in Figure 4 is not -90 degrees about HEAD’s x axis, but is instead
-90 degrees about HEAD’s 2’ axis. Axis 2’ is obtained by observing that HEAD’s axis entry in
the :bonedata section is ‘axis 0 90 0’. This entry specifies an offset rotation of 90 degrees about
y. Creating a new coordinate frame with axes 2/, 9/, and 2’ by rotating the HEAD local frame 90
degrees about y places z’ in the direction of —z. A -90 degree rotation about z’' therefore amounts
to a 90 degree rotation about z, as shown in the center picture in Figure 4.

CS229 Project 1 Motion Capture and Splines

HEAD

HEAD

Figure 4: Steps in attaching the HEAD to its parent MIDDLE. (L) HEAD in its local coordinate
frame. The axis keyword for head specifies a rotation of 90 degrees about y, resulting in the local
rotation axes y' and 2z’ shown. (C) Rotate a specified amount about the local axes. The given
rotation is -90 degrees about the z’ axis. Because z’' points into the page, we rotate HEAD 90
degrees to the left. (R) Translate HEAD to attach it to its parent. The required translation is the
direction vector of the parent, or dy;rpprLE-

In a more general situation, given local axis
axis a (8 vy

and given the MIDDLE direction and length vectors

direction dx dy dz
length 1

and given rotation from the AMC file
HEAD rx ry rz

we create a cumulative transform as follows:

L= Rz(V)Ry(B)Rm (O‘) (14)
MIDDLE Ntypap = T(1 % do, 1 dy,l + dz) L R,(rz) R,(ry) Ry(rz) L™ (15)

Note that the cumulative transform has the following steps (read right to left):

Undo the local axis rotation L (defined based on the HEAD axis entry).

Perform the rotation from the AMC file R, (rz) R, (ry)R,(rz).

Redo the local axis rotation L.

Translate HEAD T'(Ixdx, [xdy, xdz) (defined based on MIDDLE distance and length entries).

CS229 Project 1 Motion Capture and Splines

-1
MIDDLE

@ T @wiooie)

HEAD

RZ(rZHEAD) Ry (ryHEAD) R‘ (r)I({EAD)

-1
LHEAD

HEAD

Figure 5: An expanded section of the scene graph depicting the portions of the transform from
HEAD to MIDDLE. Only parameters rzggpap, "ygrap, and reggap are animated. All other
transformations in this figure are fixed.

CS229 Project 1 Motion Capture and Splines

Depicted graphically, these transforms create the expanded portion of the scene graph shown in
Figure 5. Note that most of the transforms are fixed. Transform R.(rzgpap)Ry(ryaeap)Re(regeaD)
is animated by varying parameters reggpap, rYgeAp, and rzggap to rotate HEAD with respect
to MIDDLE. Parameters reggap, "yaegap, and rzggap are of course read frame by frame from
the AMC file.

3.3 Interpreting the AMC File

Once you understand the skeleton format, the AMC file format should seem fairly straightfoward.
The file provides data specifying the character pose at each frame, by providing values for each of
the degrees of freedom for each bone. The data for each frame is preceeded by the frame number.
There is a line for the root that contains the root translation (tx, ty, tz) followed by the root
rotation (rx, ry, rz). There is also a line for each bone containing its local rotation (rx, ry, rz).
Note that translations are in centimeters and rotations are in degrees.

4 Implementation

This being a CS class and all, the TA’s have supplied you with a bit of support code to get you
started off and to save you some drudgery. This code is available in /course/cs229/asgn/mocap,
and implements the beginning of a mocap viewer in Java3D. It has a basic Swing-based GUI for
viewing animations, a groundplane, a trackball camera interface, and basic lexical support for the
ASF/AMC formats with stubs for you to insert your code. Given this start, you should be able
to focus your energies on creating a scenegraph of the skeleton, playing back the keyframes, and
building a continuous looping form from the data.

4.1 Java3D

As mentioned, the support code uses Java3D. Many of the ideas in Java3D come from existing
packages (OpenGL, Inventor, Direct3D, World Toolkit), and will be familiar to anyone who has
used one of these. Coming from an OpenGL background, the TA’s experienced a “mostly pleasant”
learning process, thanks largely to the excellent documentation. The support code takes care of
much of the nitty-gritty, but there are two main aspects of Java3D (javax.media.j3d) which you’ll
need to get familiar with: the vector math package (javax.vecmath) and the process of constructing
a scenegraph.

For a comprehensive introduction, the best place to get started is the Java3D A PI Specification.
There are a few printed copies floating around the CIT, including one in the back of the Sun Lab
and probably a few in Graphics. It is also available as HT'ML online look for the link at the end
of the course webpage.*

Additionally, there is the javadoc hypertext reference for Java3D 5 and for Java itself . These

*http://java.sun.com/products/java-media/3D /forDevelopers/J3D_1_2_API/j3dguide/index.html
Pfile: /course/cs229/info/j3d.docs /index.html
bfile: /pro/java/java/docs/api/index.html

CS229 Project 1 Motion Capture and Splines

are invaluable references while coding. Both of these links are available on the course webpage as
well.

4.1.1 javax.vecmath

The vector math package has a comprehensive array of datatypes in varying precisions. If you've
not seen it before, start off by taking a look at the Vector3d class in the javadoc reference. All the
standard vector operations are here (or inherited), including useful things like linear interpolation
and in-place multiply-add. For efficiency reasons, many of the vecmath methods operate on function
parameters (including this), rather than returning temporary objects. The javadocs have full
details on call semantics. Feel free to post to the 229 newsgroup if you are having difficulty
achieving some result.

You should be able to stick with keeping everything as doubles rather than floats, which will
save your having to convert things back and forth.

4.2 Scenegraphs in Java3D

You should only need a few Java3dD node types in creating your scenegraph: TransformGroups,
which apply a Transform3D to their children, and Shape3Ds, which represent instances of geometry.

Adding scenegraph nodes is straightforward: just create the object and call parent.addChild(child).
Say you have a node in your scenegraph, let’s call it root. The following code creates a sphere and
attaches it to the root, translated by the Vector3d “where”:

import com.sun.j3d.utils.geometry.*; // various useful geometry primitives

Vector3d where = new Vector3d(2, 3, 5);
TransformGroup transGroup = new TransformGroup() ;
Transform3D trans = new Transform3D();
trans.setTranslation(where);
transGroup.setTransform(trans) ;
transGroup.addChild(new Sphere(4));
root.addChild(transGroup);

In creating your skeleton, feel free to use the primitives in com.sun.j3d.utils.geometry.*, or
create your own geometry. The demo uses a combination of spheres at joint positions and cylinders
oriented along the bone vectors.

One important thing to note: the support code, after calling to create the skeleton, calls com-
pile() on the entire scenegraph, to maximize display speed. After the scenegraph has been compiled,
Java3dD will balk and throw an exception if you try to modify any of the TransformGroup nodes in
the graph — unless you have marked them as modifiable:

setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE) ;

Look at the Axes and Groundplane classes for more example code of creating Java3D scene-
graphs.

CS229 Project 1 Motion Capture and Splines

4.3 Debugging Hints

If something goes awry and Java throws an exception and dumps a stack trace, you may see
references to “compiled code” where you would normally hope to see line numbers. All is not lost.
This is just an artifact of the just-in-time compiling going on under the hood. Go back and
setenv JAVA_COMPILER none
and re-run your program. It should give you a fully-detailed stack trace.

4.4 Otherness

The trackball camera interface uses the right mouse button. Start a drag near the border of the
window to rotate the view. Start a horizontal drag near the center to pan in the film plane; start
a vertical drag near the center to dolly in/out.

All data files for this assignment are in /course/cs229/data/mocap. The skeleton is in
body.asf, and the motion files are *.amc. The skeleton file for question 4 is bodyWrong.asf.
An index to the motion files is in MotionIndex.txt.

The files ‘compile’ and ‘run’ are scripts to compile/run the program with the proper binaries
and CLASSPATH. Feel free to switch to a Makefile or what-have-you.

A demo viewer for the mocap data is in /course/cs229/demos/mocap. Go to that directory
and execute ‘run’.

Finally, while there are many ways to approach the assignment, one possible course of actions
is as follows:

1. Display a simple primitive in the viewer.
2. Apply transformations to that primitive.

3. Read in the skeleton file. (Note that the load method of the Skeleton class already does
most of the work of reading in the ASF file.)

4. Create the scenegraph and display the skeleton.

5. Read in the motion file. (Note that the load method of the SkeletonAnimation class already
does most of the work of reading in the AMC file.)

6. Apply some frame of the motion directly to the skeleton.
7. Animate the skeleton directly with the raw motion.

8. Represent the motion with B-splines and create the repeating run cycle.

5 Handing in

Run “/course/cs229/bin/cs229 handin mocap” from your project directory.

