
Perm
perso
not m
bear
repub
speci
© 19

Improv: A System for Scripting Interactive Actors in Virtual Worlds

Ken Perlin / Athomas Goldberg
Media Research Laboratory

Department of Computer Science
New York University
y
ed
a

se
ters
ach

.
ar,

e of

r,
he
are

g
er in
ng
s
an

ed
any
at

as
f
the
le"
le

ate
r

ve
to

ast
l
ive
to

a
to
re
dy
the

r
s
.

to
s

a
us
m
le
r
e
e
n
o
e

e
l
y,
in

.
e
t
t
o
y
i
l

ABSTRACT

Improv is a system for the creation of real−time
behavior−based animated actors. There have been seve
recent efforts to build network distributed autonomous agent
But in general these efforts do not focus on the author’s view
To create rich interactive worlds inhabited by believable
animated actors, authors need the proper tools. Improv
provides tools to create actors that respond to users and
each other in real−time, with personalities and mood
consistent with the author’s goals and intentions.

Improv consists of two subsystems. The first
subsystem is an Animation Engine that uses procedur
techniques to enable authors to create layered, continuo
non−repetitive motions and smooth transitions between the
The second subsystem is a Behavior Engine that enab
authors to create sophisticated rules governing how acto
communicate, change, and make decisions. The combin
system provides an integrated set of tools for authoring th
"minds" and "bodies" of interactive actors. The system uses a
english−style scripting language so that creative experts wh
are not primarily programmers can create powerful interactiv
applications.

INTRODUCTION

Believability And Interaction

Cinema is a medium that can suspend disbelief; th
audience enjoys the psychological illusion that fictiona
characters have an internal life. When this is done properl
these characters can take the audience on a compell
emotional journey. Yet cinema is a linear medium; for any
given film, the audience’s journey is always the same
Likewise, the experience is inevitably a passive one as th
audience’s reactions can have no effect on the course of even

This suspension of disbelief, or believability, does no
require realism. For example, millions of people relate t
Kermit the Frog and to Bugs Bunny as though they actuall
exist. Likewise, Bunraku puppet characters can create for the
audience a deeply profound and moving psychologica
experience.

NYU−MRL, 719 Broadway 12th Floor, New York, NY 10003
Fax: (212) 995−4122 Web: http://www.mrl.nyu.edu
Email: perlin@nyu.edu | athomas@mrl.nyu.edu
er
se
rts

ny

e
s
of
ral

ission to make digital or hard copies of part or all of this work or
nal or classroom use is granted without fee provided that copies are
ade or distributed for profit or commercial advantage and that copies

this notice and the full citation on the first page. To copy otherwise, to
lish, to post on servers, or to redistribute to lists, requires prior
fic permission and/or a fee.
96 ACM-0-89791-746-4/96/008...$3.50

2

All of these media have one thing in common. Ever
moment of the audience’s journey is being guided by talent
experts, whether an screenwriter and actor/director,
writer/animator, or a playwright and team of puppeteers. The
experts use their judgment to maintain a balance: charac
must be consistent and recognizable, and must respond to e
other appropriately at all times. Otherwise believability is lost

In contrast, current computer games are non−line
offering variation and interactivity. While it is possible to
create characters for these games that convey a sens
psychological engagement, it is extremely difficult with
existing tools.

One limitation is that there is no expert, no acto
director, animator or puppeteer, actually present during t
unfolding drama, and so authors using existing techniques
limited by what they can anticipate and produce in advance.

In this paper, we discuss the problem of buildin
believable characters that respond to users and to each oth
real−time, with consistent personalities, properly changi
moods and without mechanical repetition, while alway
maintaining an author’s goals and intentions. We describe
approach in which actors follow scripts, sets of
author−defined rules governing their behavior, which are us
to determine the appropriate animated actions to perform at
given time. We also describe a behavioral architecture th
supports author−directed multi−actor coordination as well
run−time control of actor behavior for the creation o
user−directed actors or avatars. Next, we describe how
system has been implemented using an "english−sty
scripting language and a network distribution model to enab
creative experts, who are not primarily programmers, to cre
powerful interactive applications. Finally, we discuss ou
experiences with the system and future work.

Related Work

The phrase "Desktop Theater" was coined by Ste
Strassman [Strassman91]. His philosophy was quite similar
ours. Yet because his work slightly predated the age of f
graphical workstations, it did not deal with real time visua
interaction. But there was already the emphasis on express
authoring tools for specifying how characters would respond
direction.
characters would respond to direction.
Stephenson also influenced this work. That novel posits
"Metaverse", a future version of the Internet which appears
its participants as a quasi−physical world. Participants a
represented by fully articulate human figures, or avatars. Bo
movements of avatars are computed automatically by
system.

Snow Crash specifically touches on the importance of prop
authoring tools for avatars, although it does not describe tho
tools. Our system takes these notions further, in that it suppo
autonomous figures that do not directly represent a
participant.

Most autonomous actor simulation systems follow th
parallel layered intelligence model of [Minsky86], which wa
partially implemented by the subsumption architecture
[Brooks86] as well as in [Bates92] and [Johnson94]. Seve

al
.

l
,

.
s
s
d

g

s.

r

05

.
n

,
s

l

d

y

is

ed

s
e

eir
s

],

re
ir
o
l

s
ed

e
n

e
s
o
re
y
se

e
s.

t
t

lk
e
s
a
to

an
e

s
te
figure 1. The basicarchitecture for an actor in the run−time
system.

ANIMATION ENGINE

The Animation Engine provides tools for generating
and interactively blending realistic gestures and motions. Th

systems have been developed which share this layer
architecture with Improv, yet which solve distinctly different
problems. TheJack system of [Badler93] focuses on proper
task planning and biomechanical simulation, as doe
[Hodgins95] The general goal is to produce accurat
simulations of biomechanical robots. Similarly, the
simulations of Terzopoulis et. al [Terzopoulos94] has
simulated autonomous animal behaviors that respond to th
environment according to biomechanical rules. Autonomou
figure animation has been studied by [Badler91], [Girard85
[Morawetz90] and [Sims94].

The Alive system of [Maes95] and [Blumberg95]
focuses on self−organizing embodied agents, which a
capable of making inferences and of learning from the
experiences. Instead of maximizing an authors ability t
express personality, the Alive system use ethologica
mechanisms to maximize the actor’s ability to reorganize it
own personality, based on its own perception and accumulat
experience.

APPROACH

Improv: An Expert System For Authors

As an authoring system, Improv must provide creativ
experts with tools for constructing the various aspects of a
interactive application. These must be intuitive to use, allow
for the creation of rich, compelling content, and produc
behavior at run−time which is consistent with the author’
vision and intentions. Animated actors must be able t
respond to a wide variety of user−interactions, in ways that a
both appropriate and non−repetitive. This is complicated b
the fact that in applications involving several characters, the
actors must be able to work together while faithfully carrying
out the author’s intentions. The author needs to control th
choices an actor makes and how the actors move their bodie

ARCHITECTURE

The behavior model used by Improv is similar to tha
proposed by [Blumberg95] in that it consists of geometry tha
is manipulated in real−time, an Animation Engine which
utilizes descriptions of atomic animated actions (such as Wa
or Wave) to manipulate the geometry, and a Behavior Engin
which is responsible for higher−level capabilities, (such a
going to the store, or engaging another actor in
conversation), and decisions about which animations
trigger. In addition, the Behavior Engine maintains the
internal model of the actor, representing various aspects of
actor’s moods, goals and personality. The Behavior Engin
constitutes the mind of the actor. An run−time, an actor’
movements and behavior are computed by iterating an upda
cycle that alternates between the Animation and Behavior
Engines.
2

figure 2. Flexing a deformable mesh.

Continuous Signal Generation

The author defines an action simply as a list of DOFs,
together with a range and a time varying expression for each
DOF. Most actions are constructed by varying a few DOFs
over time via combinations of sine, cosine and coherent noise
For example, sine and cosine signals are used together withi
actions to impart elliptical rotations.

One of the key ingredients to realism in Improv
characters is the ability to apply coherent noise. This
mechanism was originally developed for procedural textures
[Perlin85][Ebert94]. In the current work it is used in essentially
the same way. Using noise in limb movements allows authors
to give the impression of naturalistic motions without needing

is a generalization of the system presented in [Perlin 95].
Actors are able to move from one animated motion to another
in a smooth and natural fashion in real time. Motions can be
layered and blended to convey different moods and
personalities. The Animation Engine controls the body of the
actor.

Geometry

An animator can build any variety of articulated
character. Actors can be given the form of humans, animals
animate objects, or fantasy creatures. An actor consists part
that are connected by rotational joints. The model can be
deformable, which is useful for muscle flexing or facial
expressions as illustrated in [Chadwick89].

Degrees Of Freedom

Authors specify individual actions in terms of how
those actions cause changes over time to each individua
degreeof freedom (DOF) in the model. The system then
combines these DOF values to make smooth transitions an
layerings among actions.

There are various types of DOFs that an author can
control. The simplest are the three rotational axes between an
two connected parts. Examples of this are head turning and
knee bending. The author can also simply position a part, such
as a hand or a foot. The system automatically does the
necessary inverse kinematics to preserve the kinematic chain.
From the author’s point of view, the x,y,z coordinates of the
part are each directly available as a DOF.

The author can also specify part mesh deformations as
DOFs. To make a deformation, the author must
provide a "deformation target," a version version of the model
(or just some parts of the model) in which some vertices have
been moved. For each deformation target, theImprov system
detects which vertices have been moved, and builds a data
structure containing the x,y,z displacement for each such
vertex. For example, if the author has provided a smiling face
as a deformation target, then the (s)he can declare SMILE to be
a DOF. The author can then specify various values for SMILE
between 0. (no smile) and 1. (full smile). The system handles
the necessary interpolation between mesh vertices. In the
particular case of smiling, the author can also specify negative
values for SMILE, to make the face frown.
06

ore

r

e

e.

.
g
f

is

n

e
,
n
a
n
a

f
be
e

d
o
e

h
or
s

o

e

d
s,

re

e
e
e

he

the
e

a
ife
m

ey
n

ics

e.
t
f
er

e
re
es
ral
re

d
g
a

re
s
e,
ach

ltin
n

e
g
e
1.

,
e

ck
the
e
ll
en
cy
l.
er
to incorporate complex simulation models.
For example, coherent noise can be used to convey

small motions of a character trying to maintain balance, th
controlled randomness of eye blinking, or the way
character’s gaze wanders around a room. Although in real l
each of these examples has a different underlying mechanis
viewers do not perceive the mechanism itself. Instead th
perceive some statistics of the motion it produces. Whe
coherent noise is applied in a way that matches those statist
the actor’s movements are believable.

The author can also import keyframed animation from
commercial modeling systems, such as Alias or SoftImag
The Improv system internally converts these into actions tha
specify time varying values for various DOFs. To the rest o
the system, these imported actions look identical to any oth
action.

Defining Actions

The author uses DOF’s to build actions. Below ar
three different actions that define how an actor might gestu
with his arm while talking. Each one uses several frequenci
of noise to modulate arm movement. The first two are gene
hand waving gestures, while the third shakes the arm mo
emphatically, as though pointing at the listener.

On each line of an action, the part name is followe
first by three angular intervals, and then by three time−varyin
interpolants in braces. Each interpolant is used to compute
single angle in its corresponding interval. The results a
applied to the part as Pitch, Roll and Yaw rotation
respectively. The angle intervals are constant over tim
whereas the time varying interpolants are reevaluated at e
update cycle. For example, in the first line below, if N0
possesses the value 0.5 at some time step then the resu
Pitch rotation at that time step will be 0.5 of the way betwee
25 degrees and 55 degrees, or 40 degrees.

define ACTION "Talk Gesture1"
{
R_UP_ARM 25:55 0 −35:65 { N0 0 N0 }
R_LO_ARM 55:95 0 0 { N1 0 0 }
R_HAND −40:25 75:−25 120 { N1 N2 0 }
}

define ACTION "Talk Gesture2"
{
R_UP_ARM 10:47 0 −10:45 { N0 0 N0 }
R_LO_ARM 35:77 0 0 { N1 0 0 }
R_HAND −53:55 −40:15 120 { N1 N2 0 }
}

define ACTION "Talk_Gesture3"
{
R_UP_ARM 45 20:15 0 { 0 N0 N0 }
R_LO_ARM 70:120 0 0 { N1 0 0 }
R_HAND 40:15 0 120 { N2 0 0 }
}

The variables N0, N1 and N2 are shorthand that th
Improv system provides the author to denote time varyin
coherent noise signals of different frequencies. N1 is on
octave higher than N0, and N2 is one octave higher than N
The value of each signal varies between 0.0 and 1.0.

Note that the upper arm movement is controlled by N0
whereas the lower arm movement is controlled by N1. Th
result is that the upper arm will, on the average, swing ba
and forth about the shoulder once per second, whereas
lower arm will, on the average, swing back and forth about th
elbow twice per second. Meanwhile, the hand will make sma
rapid rotations about the wrist. These frequencies were chos
simply because they looked natural. In our tests, frequen
ratios that varied significantly from these did not look natura
Presumably this frequency ratio reflects the fact that the low
2

arm has about half as much mass as the total arm, and theref
tends to swing back and forth about twice as frequently.

Action Compositing

An Improv actor can be doing many things at once, and
these simultaneous activities can interact in different ways. Fo
example, an author may want an actor who is waving to
momentarily scratch his head with the same hand. It would b
incorrect for the waving movement to continue during the time
the actor is scratching his head. The result could be strang
For example, actor might try to feebly to wave while his arm
while making vague scratching motions about his cranium
Clearly in this case we want to decrease the amount of wavin
activity as we increase the scratching activity. Some sort o
ease−in/out transition is called for.

In contrast, suppose we want an actor to scratch h
head for a moment while walking downstage. It would be
incorrect if the Improv system were to force the actor to stop
walking every time he scratched his head. In this case, a
ease−in/out transition would be inappropriate.

The difference between these two examples is that th
former situation involves two actions which cannot coexist
whereas the latter situation involves two actions that ca
gracefully coexist. The authoring system should provide
mechanism to allow authors to make these distinctions in a
easy and unambiguous way. To do this, Improv contains
simple set of rules. The approach we take is borrowed from
image compositing methods. The Improv author thinks o
motion as being layered, just as composited images can
layered back to front. The difference is that whereas an imag
maps pixels to colors, an action maps DOFs to values.

The author can place actions in different groups, an
these groups are organized into a "back−to−front" order. Als
the author may "select" any action. Given this structure, th
two compositing rules are as follows:

(1) Actions which are in the same group compete with eac
other. At any moment, every action possesses some weight,
opacity. When an action is selected, its weight transition
smoothly from zero to one. Meanwhile, the weights of all
other actions in the same group transition smoothly down t
zero.

(2) Actions in groups which are further forward obscure thos
in groups which are further back.

Using this system, authors place actions which shoul
compete with each other in the same group. Some action
such as walking, are fairly global in that they involve many
DOFs through the body. Others, such as head scratching, a
fairly localized and involve relatively few DOFs. The author
places more global actions in the rear−most groups. Mor
localized actions are placed in front of these. Also, som
actions are relatively persistent. Others are generally don
fleetingly. Groups of very fleeting or temporary actions (like
scratching or coughing) are placed still further in front.

For the author, this makes it easy to specify intuitively
reasonable action relationships. For example, suppose t
author specifies the following action grouping:

GROUP Stances
ACTION Stand
ACTION Walk

GROUP Gestures
ACTION No_waving
ACTION Wave_left
ACTION Wave_right

GROUP Momentary
ACTION No_scratching
ACTION Scratch_head_left

,

,

g

07

s,
he
ith
e
be
e

es
ts
er
ed
on

f
lp

ls
ic
g,
of
on
s
e

m
n
ng
e

f
lel
y

f
the
he

g
to

r
s of
re

d
ll

ily
he
ot
to
ing

t
ve
s,
a
to
n
a
e

ly
al
is
,

e
ns
re
e
m
the
ch

a
or
an
rly
hi

y
on
e
his
e

n
r
ns
il
Then let’s say actions are selected in the following order:

Stand
Walk
Wave_left
Scratch_head_left
No_scratching
Wave_right

The actor will start to walk. While continuing to walk
he will wave with his left hand. Then he will scratch his hea
with his left hand, and resume waving again. Finally he wi
switch over to waving with his right hand.

Because of the grouping structure, the author has eas
imparted to the actor many convenient rules. For example, t
actor knows to wave with either one hand or the other (n
both at once), that he doesn’t need to stop walking in order
wave or to scratch his head, and that after he’s done scratch
he can resume whatever else he was doing with that arm.

Applying Actions To The Model

At any animation frame, the run time system mus
assign a unique value to each DOF for the model, then mo
the model into place and render it. To compute these DOF
the algorithm proceeds as follows. Within each group,
weighted sum is taken over the contribution of each action
each DOF. The values for all DOFs in every group are the
composited, proceeding from back to front. The result is
single value for each DOF, which is then used to move th
model into place.

There are subtleties in this algorithm, such as correct
compositing inverse kinematic DOFs over direct rotation
DOFs. But these are beyond the space limitations of th
paper. For a full treatment of the DOF compositing algorithm
the reader is referred to [Perlin96].

The author is given tools to easily synchroniz
movements of the same DOF across actions; transitio
between two actions that must have different tempos a
handled by a morphing approach: During the time of th
transition, speed of a master clock is continuously varied fro
the first tempo to the second tempo, so that the phases of
two actions are always aligned. This is similar to the approa
taken by [Bruderlin95] and [Witkin95].

Action Buffering

Sometimes it would be awkward for an actor to make
direct transition between two particular actions in a group. F
example, let’s say the actor has his hands behind his back,
then claps his hands. Because DOFs are combined linea
the result would be that the actor passes his hands through
body!

We allow the author to avoid such situations b
declaring that some action in a group can be a buffering acti
for another. The system implements this by building a finit
state machine that forces the actor to pass through t
buffering action when entering or leaving the troublesom
action.

For example, the author can declare that the actio
hands−at−the−sides is a buffering action fo
hands−behind−the−back. Then when the actor transitio
between hands−behind−the back and any other action, he w
always first move his hands around the sides of his body.
nt
nd

re
t

2

figure 3: Otto demonstrating action buffering.

BEHAVIOR ENGINE

Motivation

Improv authors cannot create deterministic scenario
because the user is a variable in the run−time system. T
user’s responses are always implicitly presenting the actor w
a choice of what to do next. Because of this variability, th
user’s experience of an actor’s personality and mood must
conveyed largely by that actor’s probability of selecting on
choice over another.

As a very simple example, suppose the user often go
away for awhile, keeping an actor waiting for various amoun
of time. If the actor usually sits down or naps before the us
returns, then the actor will appear to the user as a lazy or tir
character. The user is forming an impression based
probabilities.

The influence of the author lies in carefully tuning o
such probabilities. The goal of the behavior engine is to he
the author to do so in the most expressive way possible.

Mechanism

The behavior engine provides several authoring too
for guiding an actor’s behavioral choices. The most bas
tool is a simple parallel scripting system. Generally speakin
at any given moment an actor will be executing a number
scripts in parallel. In each of these scripts the most comm
operation is to select one item from a list of items. These item
are usually other scripts or actions for the actor (or for som
other actor) to perform.

The real power of the behavior engine comes fro
"probability shaping" tools we provide authors for guiding a
actor’s choices. The more expressive the tools for shapi
these probabilities, the more believable actors will be, in th
hands of a talented author.

In the following sections we describe the working o
the behavior engine. First we describe the basic paral
scripting structure. After that, we will describe the probabilit
shaping tools.

Scripts For an Interactive World

If actions are the mechanism for continuous control o
the movements made by an actor’s body, then scripts are
mechanism for discrete control of the decisions made by t
actor’s mind.

The author must assume that the user will be makin
unexpected responses. For this reason, it is not sufficient
provide the author with a tool for scripting long linea
sequences. Rather, the author must be able to create layer
choices, from more global and slowly changing plans, to mo
localized and rapidly changing activities, that take into accou
the continuously changing state of the actor’s environment, a
the unexpected behavior of the human participant.

In the next two sections, we first discuss how scripts a
organized into layers, and then how an individual scrip
operates.

d
,
s

l

08

ex
ng

r"
r"
e
rn

he
ript
the
ds

e"
re"

or
r the
then

ber
ior
or
of

as

ted
fect
ng

ting
ill
rs".

a

lso
tor’s
An
ber
re

.

u
ly

p
c
o

f
t

s
s
le
,

g

h
m

h

t
l
h
r
k

o
ts
d

Grouping Scripts

Like actions, scripts are organized into groups
However unlike actions, when a script within a group is
selected, any other script that was running in the same gro
immediately stops. In any group at any given moment, exact
one script is running.

Generally, the author organizes into the same grou
those scripts that represent alternative modes that an actor
be in at some level of abstraction. For example, the group
activities that an actor performs during his day might be:

ACTIVITIES Resting Working Dining Conversing
Performing

In general, the author first specifies those groups o
scripts that control longer term goals and plans. These tend
change slowly over time, and their effects are generally no
immediately felt by the user.

The last scripts are generally those that are mo
physical. They tend to choose actual body actions, in respon
to the user and to the state of higher level scripts. For examp
an actor might contain the following groups of scripts, in order
within a larger set of scripts:

. . .
DAY_PLANS Waking Morning Lunch Afternoon Dinner

Evening
. . .
ACTIVITIES Resting Working Dining Conversing

Performing
. . .
BEHAVIOR Sleeping Eating Talking Joking Arguing

Listening Dancing

We can think of the Animation Engine, with its groups
of continuous actions, as an extension of this groupin
structure to even lower semantic levels.

Individual Scripts

A script is organized as a sequence of clauses. A
run−time, the system runs these clauses sequentially for t
selected script in each group. At any update cycle, the syste
may run the same clause that it ran on the previous cycle, or
may move on to the next clause. The author is provided wit
tools to "hold" clauses in response to events or timeouts.

The two primary functions of a script clause are 1) to
trigger other actions or scripts and 2) to check, create o
modify the actor’s properties

Triggering Actions and Scripts

The simplest thing an author can do within a scrip
clause is trigger a specific action or script, which is usefu
when the author has a specific sequence of activities (s)
wants the actor to perform. In the following example, the acto
walks onstage, turns to the camera, bows, and then wal
offstage again.

define SCRIPT "Curtain Call"

{ "walk to center" }
{ continue until { my location equals center } }
{ "turn to camera" }
{ continue until { "turn to camera" is done } }
{ "bow" }
{ continue for 3 seconds }
{ "walk offstage" }

In this case, phrases in quotes represent scripts
actions. Each of these scripts might, in turn, call other scrip
and/or actions. The other information (continue, etc) is use
by Improv to control the timing of the scene.

Layered Behavior

Through layering, an author can create compl
behaviors from simpler scripts and actions. Take the followi
example:

define SCRIPT "greeting"

{
{ "enter" }
{ wait 4 seconds }
{ "turn to camera" }
{ wait 1 second }
{ "wave" for 2 seconds

"talk" for 6 seconds }
{ wait 3 seconds }
{ "sit" } { wait 5 seconds }
{ "bow" toward "Camera" }
{ wait 2 seconds }
{ "leave" }

}

In this example, the actor first activates the "ente
script (which instructs the actor to walk to center). The "ente
script and "greeting" script are now running in parallel. Th
"greeting" script waits four seconds before activating the "tu
to camera" script. This tells the actor to turn to face t
specified target, which in this case is the camera. The sc
then waits one second, before instructing the actor to begin
"wave" and "talk" actions. The script waits another 3 secon
before activating the "sit" action during which time the "wav
action has ended, returning to the default "No Hand Gestu
action in its group. Meanwhile, the "talk" action continues f
another three seconds after the actor sits. Two seconds late
actor bows to the camera, waits another two seconds and
leaves.

Non−Deterministic (Stochastic) Behavior

In addition to commands that explicitly
trigger specific actions and scripts, Improv provides a num
of tools for generating the more non−deterministic behav
required for interactive non−linear applications. An auth
may specify that an actor choose randomly from a set
actions or scripts. as in the following example:

SCRIPT "Rock Paper Scissors"

{ choose from { "Rock" "Paper" "Scissors" } }

Once an action or script is chosen it is executed
though it had been explicitly specified.

Alternately, the author can specify weights associa
with each item in the choice. These weights are used to af
the probability of each item being chosen, as in the followi
example:

define SCRIPT "Rock Paper Scissors2"

{ choose from { "Rock" .5 "Paper" .3 "Scissors" .1 } }

In this case, there is a 5/9 chance the actor execu
this script will choose the "Rock" action, 3/9 that the actor w
choose "Paper", and a 1/9 chance the actor will pick "Scisso
The decision is still random, but the author has specified
distinct preference for certain behaviors over others.

In order to create believable characters, the author a
needs to be able to have these decisions reflect an ac
mental state as well as the state of the actor’s environment.
actor’s decision about what to do may depend on any num
of factors, including mood, time of day, what other actors a

p

an
f

o
t

t
e
,

t
e

it

r

e

s

r

209

r
f
an

e
y
r

"
e
e
t
n
m,
"
in

cy

f

e
.
d,
r

al
s
ll
’s

d
is
e

ver

al
o
e

t
ai
is
s
n
ve

is
se
r’

rit
h

thy
s
is

ge
is

’s
’s

e
t,
n

tie
tic
ss

he
to
a

to
hi

d
s

of
n
e

to
n
an
around and what they’re doing, what the user is doing, etc.
In Improv, authors can create decisionrules

which take information about an actor and his environmen
and use this to determine the actor’s tendencies toward cert
choices over others. The author specifies what information
relevant to the decision and how this information influence
the weight associated with each choice. As this informatio
changes, the actor’s tendency to make certain choices o
others will change as well.

Decision Rules

Properties

The information about an actor and his relationship to h
environment are stored in an actor’s properties. The
properties may be used to describe aspects of an acto
personality, such as assertiveness, temperament or dexte
an actor’s current mood, such as happiness or alertness, or
relationship to other actors or objects, such as his sympa
toward the user or his attitude toward strained peas. The
properties are specified by the author either when the actor
created, or else within a clause of a script, to reflect a chan
in the actor due to some action or event. The latter case
shown in the following example:

define SCRIPT "Eat Dinner"

{ "Eat" }
{ set my "Appetite" to 0 }
{ "Belch" }

In this case, the author specifies how an actor
behavior is reflected in his personality by reducing the actor
appetite after eating.

An author can also use properties to provid
information about any aspect of an actor’s environmen
including inanimate props and scenery and even the scripts a
actions an actor chooses from. An author can assign proper
to actions and scripts describing the various seman
information associated with them, such as aggressivene
formality, etc

The author can then uses these values in t
construction of decision rules. Decision rules allow actors
make decisions that reflect the state of the world the author h
created.

What Decision Rules Do

When a decision rule is invoked, a list of objects is
passed to it. The system then uses the decision−rule
generate a weight between zero and one for each object. T
list can then be used to generate a weighted decision.

Each decision rule consists of a list of author−specifie
factors: pieces of information that will influence the actor’
decision. Each of these factors is assigned a weight which the
author uses to control how much influence that piece
information has upon the decision. This information ca
simply be the value of a property of an object as in th
following example:

{ choose from { "Steph" "Bob" "Sarah" }
based on "who’s interesting" }

define DECISION−RULE "who’s interesting"

factor { his/her "Charisma" } influence .8
factor { his/her "Intelligence" } influence .2

In this example, the decision rule will use the
"Charisma" and "Intelligence" properties of the three actors
generate a weight for each actor that will used in the decisio
In this case, the author has specified that the value of
2

actor’s "Charisma" will have the greatest influence in
determining that weight, with "Intelligence" having a lesse
role. The influence is optional and defaults to 1.0 i
unspecified. The equations for determining these weights c
be found in Appendix A:Decision Rule Equations.

An author can also use the relationship between th
actor and the various choices to influence a decision, b
making "fuzzy" comparisons between their properties. Fo
example:

{ choose from ("Fight" "Flee") based on "how courageous" }

define DECISION−RULE: "how courageous"
{

factor { my "Courage"
equals its "Courage Level" to within .5 }

}

Here, the author is comparing the actor’s "Courage
property with the "Courage Level" property associated with th
scripts "Fight" and "Flee". If the actor’s "Courage" equals th
script’s "Courage Level" the decision rule will assign a weigh
of 1 to that choice. If the values aren’t equal, a weight betwee
0 and 1 will be assigned based on the difference between the
dropping to 0 when the difference is greater than the "within
range. In this case, .5 . (The equations for this can be found
Appendix B: Fuzzy Logic Equations) As the actor’s
"Courage" increases or decreases, so will the actor’s tenden
toward one option or the other.

An author may want an actor to choose from a set o
options using differentfactors to judge different kinds of
items. A list of objects passed to the decision rule may b
divided into subsets using author−defined criteria for inclusion
The weights assigned to a given subset may be scale
reflecting a preference for an entire group of choices ove
another. For example:

{ choose from ("Steph" "Bob" "Sarah")
based on "who’s interesting2" }

define DECISION−RULE: "who’s interesting2"
{

subset "Those I’d be attracted to" scale 1
factor { his/her "Intelligence" equals

my "Confidence" to within .4 }

subset "Those I wouldn’t be attracted to" scale .8
factor { his/her "Intelligence" equals

my "Intelligence" to within .4 }
}

define SUBSET: "Those I’d be attracted to"
{ his/her "Gender" equals my "Preferred Gender" }

define SUBSET: "Those I wouldn’t be attracted to"
{ his/her "Gender" doesn’t equal my "Preferred Gender" }

Let’s assume the actor is considered a heterosexu
male (ie his "Gender" is "Male" and his "Preferred Gender" i
"Female"). The weight assigned to "Steph" and "Sarah" wi
depend on how closely their intelligence matches our actor
confidence (being put off by less intelligent women and
intimidated by more intelligent ones, perhaps). The factor use
to judge "Bob" reflects a sympathy toward men who are h
intellectual equal, unaffected by the actor’s confidence. Th
scale values reflect a general preference for one gender o
the other.

Coordination Of Multiple Actors

Ideally we would prefer to give an author the same
control over groups of actors that (s)he has over individu
actors. The proper model is that the author is a director wh
can direct the drama via pre−written behavior rules. To th

n

r

s
y,
is

e

d
s

,

s

s

.

10

e

ry

d
r

e

l

red

ed
ed,
le

ns
at

s of
ese
r’s
ual
or
ble

an

r
he
tem
is
trol
er
ss
in

ich
ave

’s
an
,

lly
hor
the
to
al
In

ng
nd
figure 4: Actors communicate with each other through a sha
blackboard.

This communication occurs through the use of a shar
blackboard. The blackboard allows actors to be coordinat
even when running on a single processor, on multip
processors or across a network.

USER−INTERACTION

Multi−Level Control Of Actor State

Creating and Modifying User Interface Elements

An author can also include user−interface specificatio
in a actor’s scripts, enabling widgets to be easily generated
run−time in response to actor behavior or to serve the need
the current scene or interaction. The user can employ th
widgets to trigger actions and scripts at any level of an acto
behavioral hierarchy. This enables users to enter the virt
environment, by allowing them to direct the actions of one (
more) animated actor(s). By making this interface a scripta
element, Improv enables authors to more easily choreograph
the interaction between the virtual actors and the hum
participant.

Controlling An Actor From Multiple Levels of
Abstraction

One important feature of Improv is ability for the use
to interaction with the system at different semantic levels. T
result of the user’s actions can cause changes in the sys
anywhere from high level scripts to low level actions. Th
means that the author can give the user the right kind of con
for every situation. If the user requires a very fine control ov
actors’ motor skills, then the author can provide direct acce
to the action level. On the other hand, if the user is involved

author, all of the actors constitute a coordinated "cast", wh
in some sense is a single actor that just happens to h
multiple bodies.

For this reason, we allow actors to modify each other
properties with the same freedom with which an actor c
modify his own properties. From the author’s point of view
this is part of a single larger problem of authoring dramatica
responsive group behavior. If one actor tells a joke, the aut
may want the other actors to respond, favorably or not, to
punchline. By having the joke teller cue the others actors
respond, proper timing is maintained, even if the individu
actors make their own decisions about how exactly to react.
this way, an actor can give the impression of always knowi
what other actors are doing and respond immediately a
appropriately in ways that fulfill the author’s goals.
21
figure 5: Users interact with both the Behavior Engine and the
Animation Engine through an author−defined user−interface.

IMPLEMENTATION

English−Style Scripting Language

Many of the authors and artists interested in creating
interactive content are not primarily programmers, and
therefore we have developed a number of "english−style"
scripting language extensions to Improv that make it easier for
authors and artists to begin scripting interactive scenarios. For
example, all of the code examples shown in this paper were
written in the current Improv syntax.

Because the scripting language is written as an
extension of the system language, as users become mor
experienced they can easily migrate from scripting entirely
using the high−level english−style syntax, to extending the
system through low−level algorithmic control.

Network Distribution

Improv is implemented as a set of distributed programs
in UNIX, connected by TCP/IP socket connections, multicast
protocols and UNIX pipes. The participating processes can be
running on any UNIX machines. This transport layer is hidden
from the author.

All communication between participant processes is
done by continually sending and receiving programs around the
network. These are immediately parsed into byte code and
executed. At the top of the communication structure are routing
processes. There must be at least one routing process on eve
participating Local Area Network. The router relays
information among actors and renderer processes. For Wide
Area Network communication, the router opens sockets to
routers at other LAN’s.

In our current implementation, each actor maintains a
complete copy of the blackboard information for all actors. If
an actor’s behavior state changes between the beginning an
end of a time step, then these changed are routed to all othe
actors.

a conversation, the author might let the user specify a set of
gestures for the actor to use, and have the actor decide on th
specific gestures from moment to moment. At an even higher
level, the author may want to have the user directing large
groups of actors, such as an acting company or an army, in
which case (s)he might have the user give the entire group
directions and leave it to the individual actors to carry out those
instructions. Since any level of the actor’s behavior can be
made accessible to the user, the author is free to vary the leve
of control, as necessary, at any point in the application.
1

,

.
e

f
is

h
s

e

t
o
t

rs

,
c
t
ir
c
e

,
e
,

h
e

l

r,
n
e

,
.

figure 6: Wide Area Network Distribution Model

This leads to an interesting and fundamental property
Let us suppose that our Improv actor Gregor is dancing whil
balancing a tray in an Improv scene. Further, suppose that th
scene is being watched at the same time by people in Sa
Paulo, Brazil, and in Manhattan, New York. Perhaps some o
these people are interacting with Gregor. The connection
through the Internet.

In this scene, Gregor’s Behavior Engine makes all the
choices about whether to dance, whether to keep balancing t
tray, how much joy and abandon versus self−consciou
restraint he puts into the dance. His Animation Engine must se
all the DOFs that determine how he moves when doing thes
things, so as to be responsive and coordinated.

If the people in NY and those in SP are talking on the
telephone, they will report seeing the same thing. Yet, if a high
speed dedicated video link were established, and participan
could see the two Gregors side by side, they would see tw
somewhat different animations. In one, Gregor’s hand migh

Virtual Simultaneity

Typical Wide Area Network (WAN) latencies can be
several seconds. This poses a problem for two virtual acto
interacting in a distributed system. From the viewpoint of
believability, some latency is acceptable for high level
decisions but not for low level physical actions. For example
when one character waves at another, the second character
get away with pausing for a moment before responding. Bu
two characters who are shaking hands cannot allow the
respective hands to move through space independently of ea
other. The hands must be synchronized to at least th
animation frame rate.

The blackboard model allows us to deal with this
situation gracefully. We can split the Behavior Engine and
Animation Engine for an actor across a Wide Area Network
and have these communicate with each other through th
blackboard. For the DOFs produced by the Animation Engine
we allow the blackboard to contain different values at eac
LAN. For the states produced by the Behavioral Engine, th
actor maintains a single global blackboard.

Computationally, each actor runs the Behaviora
Engine at only a single Local Area Network (LAN), but
duplicates Animation Engine calculations at each LAN. When
two characters must physically coordinate with each othe
then they use the local versions of their DOFs. In this way, a
actor is always in a single Behavioral State everywhere on th
WAN, even though at each LAN he might appear to be in a
slightly different position. In a sense, the actor has one mind
but multiple bodies, each inhabiting a parallel universe
Although these bodies may differ slightly in their position
within their own universe, they are all consistent with this one
mind.
2

figure 7: Two versions of Gregor dancing, each on different
networked computer.

In fact, if communication lag exceeds several seconds,
significant differences may have occurred between the various
Gregor instances. This can lead to problems. For example,
suppose two actors that are temporarily out of communication
each try to pick up some physical object.

This is a standard collaborative work dilemma. The
only reliable solution is to make the object itself an actor
(albeit a light weight one). As odd as it seems, the object itself
must agree to be picked up, since it too must maintain a
consistent physical reality. This was also independently
observed by [Karaul95].

Communicating with Improv Actors
From Outside The System

The blackboard protocol has a great advantage in terms
of flexibility. To take full advantage of this flexibility, we
provide a C support library that gives access to the blackboard.
This allows researchers who know nothing about the Improv
system, except for the names of actions and scripts, to begin
immediately to control Improv actors.

For example, a researcher can write a standalone C
program that links with the support library. The program can
pass string arguments such as "Gregor Sit" or "Otto
Walk_To_Door" to an output function. This is all that the
program needs to do, in order to modify actors’ behavior states.

Since the system treats the standalone program as just
another actor, the program can also listen for messages by
calling an input routine. These messages contain the
information that updates the blackboard, saying where various
actors are, what they are doing, what their moods are, etc.

In practice, this allows researchers and students at other
institutions who know nothing aboutImprov except its GUI
to immediately begin to use the system for their own
applications. In our research collaborations we find that this is
a highly successful way for our collaborators to bootstrap.

Improv also has several audio subsystems. These
subsystems are used for speech generation, music generation
allowing actors to follow musical cues, and generating ambient
background noise.

Extended Example

The following is an example of a scene involving
multiple actors involved in a social interaction with a user.

define SCRIPT "Tell Joke"

thrust up to balance the tray half a second sooner, in the other
he might have his other arm extended a bit further out. He
might be rocking right to left on one screen, while he is
rocking from left to right on the other.

Thus, everywhere in the world there is only one social
Gregor. He has a single mood, a single personality, he is only
engaged in one task. Yet Gregor can have many slightly
different physical realities, differing only up to the threshold
where they might disrupt the social unity of his Behavioral
State.

e
o

e

t

s

an

h

12

n
y
n

of

ld
e
ce

s
e

e

t
e
o

y
n
e
e
th

le

n
h
o
t

r
d

e
n
h
ch
es

t’
er
{
{ do "Turn to Face" to

choose from { others except player }
}
{ cue { others except player } to "Listen To Joke" to me }
{

do "No Soap, Radio"
do "Joke Gestures" }

{ wait until { current "Joke" is "completed" } }
{ do "Laugh" for 3 seconds }
{ cue { others except player } to "React To Joke" }
{ wait 3 seconds }
{ do "React To Player" }

}
In this example, the actor executing the script randoml

chooses one of the actors not being controlled by the user, a
turns to him or her. The actor then cues the other non−us
actors to execute the "Listen To Joke" script, in which th
actor chooses the appropriate gestures and body language
will give the appearance of listening attentively.

define SCRIPT "Listen To Joke"
{

{
choose from { entire set of "Stances" } based on

"appropriate listening gestures"
choose from { entire set of "Gestures" } based on

"appropriate listening gestures"
}
{ continue for between 3 and 12 seconds }
{ repeat }

}
Here, the actor chooses from the actions in

the of "Stances" and "Gestures" using the decision ru
"appropriate listening gestures"

define DECISION_RULE "appropriate listening gestures"
{

subset "Listening?" scale 1
factor {

my "confidence" is greater than
its "confidence" to within 0.3

} influence .5

factor {
my "self control" is less than
its "self control" to within 0.3
} influence .5

}

define SUBSET "Listening?"
{ it is "reactive" and "conversational" or "generic" }

In this rule, the actor narrows the list down to those
actions that are reactive and conversational, or generic actio
that can be used in any context. The rule than compares t
"confidence" and "self control" of the actor those assigned t
each action, creating a weighted list favoring actions tha
match the fuzzy criteria. After choosing from the list the acto
will wait from 3 to 12 seconds before repeating the script an
choosing another gesture.

Meanwhile, The actor telling the joke then executes th
"No Soap, Radio" script which contains a command to a
external speech system to generate the text of the joke. At t
same time, the actor executes the "Joke Gestures" script whi
like the "Listen To Joke" script chooses appropriate gestur
based on the actor’s personality.

The actor continues until the joke is finished (the
speech system sends a command to set the scrip
"completed" property to true) and then laughs, cuing the oth
actors to execute the "React To Joke" script.

define SCRIPT "React To Joke"
{

2

figure 8: Izzy tells Otto (the user) and Elli a joke. Elli is
amused, Otto isn’t.

EXPERIENCE

SIGGRAPH 95

At SIGGRAPH 95 we demonstrated an interactive
embodied actor named Sam who responded to spoke
statements and requests. Voice recognition was provided b
DialecTech, a company that has developed an interface for a
IBM continuous speech recognition program. In our
demonstration, untrained participants could conduct a game
"Simon Says". Sam would follow requests only if they were
preceded by the words "Simon Says". To make it more
interesting we programmed Sam so that sometimes he wou
also follow requests not preceded by "Simon Says", but then h
would act embarrassed at having been fooled. Our experien
was that the sense of psychological involvement by
participants was very great and compelling. Participant
appeared to completely "buy into" Sam’s presence. We believ
that this was due to several factors:

(i) participants could talk with Sam directly,
(ii) participants knew Sam was not being puppeteered (th
participant was the only human in the interaction loop), and
(iii) Sam’s motions were relatively lifelike and never
repeated themselves precisely.

We have also found that allowing the participant to

{
choose from { "Laugh" "Giggle" "Ignore" "Get Upset" }

based on "feelings toward player"
}

}

define DECISION_RULE "feelings toward player"
{

factor { my "sympathy toward" player
does not equal its "mood" to within .4 }

}

Simply put, the more sympathy actor have for the
player, the less likely they are to react positively to the joke.

Finally, the actor executes the "React To Player" scrip
in which the actor chooses an appropriate reaction to th
player, depending on whether or not the player tells his actor t
laugh. if he does, the joke teller laughs, maliciously if her
sympathy for the player is low, playfully if her sympathy for
the player is high. If the player’s actor doesn’t laugh the joke
teller executes the "Get It?" script, taunting the player until he
gets mad and/or leaves.

d
r

at

s
e

e
,

s

13

ily
is to
o
se
ng

ed
ape
lan
n.
n

o a
the
or
n

act
t the
ce
re

d
to
of
een

ts
,

ver
the
de:
lip

c
,
r
n
le

r
to

ft
ce
gy
lly
de
a
ve

lo
ck
nd
,

, a
the
t of

ject

re

ith

v

e

s
to
rs
n
,
a
o
d
n
l

t
’s

ns

e

s
d

ng

g
e

t
,
,

.

figure 9: Participant interacting with Improv actors as a bat.
From SIGGRAPH 95 Interactive Entertainment Exhibit.

Other Users

We have also provided a copy of Improvto a number of
researchers at other Universities. These researchers a
pursuing their own research on top of our actor embodiment
substrate. In at least one case, they plan to do comparisons w
their own existing agent embodiment system.

Feedback from these collaborators on the use of Impro
indicates that it is a useful tool for the embodiment of
intelligent actors, especially for study of social interaction. In
particular, it was suggested as a good tool for building
educational VR environments, when used in conjunction with
research software for virtual Interactive Theater. The
combination can be used to simulate behaviors that would b
likely to engage children to respond to, identify with and learn
from knowledge agents.

We have added extensions to Improv so that animator
can use commercial tools, such as Alias and SoftImage,
create small atomic animation components. Trained animato
can use these tools to build up content. Such content ca
include various walk cycles, sitting postures, head scratching
etc. The procedural animation subsystem is designed in such
way that such action styles can be blended. For example, tw
or three different styles of walks can be separately designe
from commercial key frame animation packages, and the
blended together, or else blended with various procedura
walks, to create continuously variable walk styles that reflec
the actor’s current mood and attitude, as well as the animator
style.

FUTURE DIRECTIONS

It is well known in traditional animation that human

appear as an embodied avatar enhances the participant’s se
of fun and play, and therefore involvement. We had positive
experience of this at SIGGRAPH 95. We presented th
participant with a large rear projection of a room full of
embodied conversational agents. The participant’s position, a
well as simple arm gestures, were tracked by an overhea
video camera. The participant appeared in the scene as a flyi
bat. As the participant walked around, the bat flew around
accordingly. The nearest agent would break out of conversin
with the other agents, and begin to play with the bat. When th
participant flapped his/her arms, the bat would fly higher in the
scene, and the camera would follow, which gave the participan
a sense of soaring high in the air. We found that participants
and children in particular, enjoyed this experience very much
and would spend long periods of time "being" the bat and
flying in turn around the heads of each of the embodied agents
21
motions are created from combinations of temporar
overlapping gestures and stances. One of our current goals
use Improv’s ability to tie into commercial animation tools t
build up a library of component motions, and to classify the
motions in a way that makes them most useful as buildi
blocks.

We have begun to embed Improv into a client−bas
application for a Java compatible browser (such as Netsc
version 2.0). For use in educational and home settings, we p
to augment the full 3D subsystem with a "nearly 3D" versio
This would run on a low end platform, such as a PC with a
Intel processor. The user would still be able to see a view int
three dimensional world, but the visual representations of
actors would be simpler and largely two dimensional. F
example, two participants to a graphical MUD, one with a
SGI Onyx, and one with an Intel/486 based PC, could inter
in the same scene. They would both see the same actors a
same locations, actions and personality. The only differen
would be that the first participant would see a much mo
realistic quality of rendering.

We plan to integrate Improv’s voice recognition an
english−like behavioral sub−systems. This will allow a user
fully exploit the object substrate, giving access to direction
goals, mood changes, attitudes and relationships betw
actors, all via spoken English sentences.

CONCLUSION

We have described an interactive system that le
authors of various abilities create remarkably lifelike
responsively animated character interactions that run o
networks in real time. We believe these techniques have
potential to have a large impact on many areas. These inclu
computer Role Playing Games, simulated conferences, "c
animation," graphical front ends for MUDs, syntheti
performance, shared virtual worlds, interactive fiction
high−level direction for animation, digital puppetry, compute
guides and companions, point to point communicatio
interfaces, true non−linear narrative TV, and large sca
deployment of bots for the Metaverse.

As Improv is a very large system, we could not cove
many of its details in this paper. We refer the reader
[Perlin96] for a more in−depth treatment.

ACKNOWLEDGEMENTS

We gratefully acknowledge the support of Microso
Corporation (and especially Dan Ling), the National Scien
Foundation, the New York State Science and Technolo
Foundation, and Silicon Graphics Incorporated (especia
Keith Seto). Daniel Wey and Jon Meyer have both ma
important contributions to the Improv substrate. Mauricio Ok
designed the flexible face model. Many other people ha
helped with this effort in many ways. In particular, we’d like
to thank Cynthia Allen, Clilly Castiglia, Troy Downing, Steve
Feiner, Laura Haralyi, Mehmet Karaul, Sabrina Liao, Marce
Tocci More, Ruggero Ruschioni, Eduardo Toledo Santos, Ja
Schwartz, Gerry Seidman, Eric Singer, Michael Wahrman, a
Marcelo Zuffo. Also everyone at the, CAT and MRL at NYU
and LSI at USP. E Emi, com beijos.

APPENDICES

A. Decision Rules Equation

When an object is passed through a decision rule
weighted sum is made of each of the values returned from
associated factors, modified by the scale assigned to the se
choices. This becomes the final weight assigned to the ob
that is used in making the decision.

The formula for this is as follows:

e

4

,

r

g

s

t
h

y

,

.

r

e

where:
y is the Fuzzy Value
· w is a bell curve weighting kernel (we use a raised co
function)

A high and low spread may be specified, in which case inpu
values greater than the target value (or range) will use the hig
spread in the calculation, while input values lower than the
target value (or range) will apply the low spread.

The returned value is then modified based on the type of fuzz
operation as follows:

equals y Value
not equals 1−y, its complement
greater than y, high spread defaults to infinity
not greater than 1−y, high spread defaults to infinity
less than y, low spread defaults to −infinity
not less than 1−y, low spread defaults to −infinity

REFERENCES

N. Badler, B. Barsky, D. Zeltzer, Making Them Move:
Mechanics, Control, and Animation of Articulated Figures
Morgan Kaufmann Publishers, San Mateo, CA, 1991.

N. Badler, C. Phillips, B. Webber, Simulating Humans:
Computer Graphics, Animation, and ControlOxford
University Press, 1993.

J. Bates, A. Loyall, W. Reilly, Integrating Reactivity, Goals
and Emotions in a Broad Agent, Proceedings of the 14th
Annual Conference of the Cognitive Science Society, Indiana
July 1992.

B. Blumberg, T. Galyean, Multi−Level Direction of
Autonomous Creatures for Real−Time Virtual Environments
Computer Graphics (SIGGRAPH ’95 Proceedings),
30(3):47−−54, 1995.

A. Bruderlin, L. Williams, Motion Signal Processing,
Computer Graphics (SIGGRAPH ’95 Proceedings),
30(3):97−−104, 1995.

R. Brooks. A RobustLayered Control for a Mobile Robot,
IEEE Journal of Robotics and Automation, 2(1):14−−23, 1986

J. Chadwick, D. Haumann, R. Parent, Layered construction for
deformable animated characters. Computer Graphics
(SIGGRAPH ’89 Proceedings), 23(3):243−−252, 1989.

D. Ebert and et. al., Texturing and Modeling, A Procedural
Approach AcademicPress, London, 1994.

M. Girard, A. Maciejewski, Computational modeling for the
computer animation of legged figures.Computer Graphics
(SIGGRAPH ’85 Proceedings), 20(3):263−−270, 1985.

FinalWeight=Scale(factor1influence1factor2influence2...facto
ninfluencen)

B. Fuzzy Logic Equations

The function compares how close the Input Value comes tothe
Target Value (or Target Range); returning a value of 1 at th
Target Value (or inside the Target Range), dropping to 0 at a
distance of Spread from the TargetValue. The fuzzy
comparison is implemented as follows:
215
J. Hodgins, W. Wooten, D. Brogan, J O’Brien, Animating
Human Athletics, Computer Graphics (SIGGRAPH ’95
Proceedings), 30(3):71−−78, 1995.

M. Johnson, WavesWorld: PhD Thesis, A Testbed for Three
Dimensional Semi−Autonomous Animated Characters, MIT
1994.

M. Karaul, personalcommunication

P. Maes, T. Darrell and B. Blumberg, The Alive System: Full
Body Interaction with Autonomous Agents in Compute
Animation’95 Conference, Switzerland, April 1995 .IEEE
Press, pages 11−18.

M. Minsky, Societyof Mind, MIT press,1986.

C. Morawetz, T. Calvert, Goal−directedhuman animation of
multiple movements. Proc. Graphics Interface}, pages 60−−67,
1990.

K. Perlin, An image synthesizer. Computer Graphics
(SIGGRAPH ’85 Proceedings)}, 19(3):287−−293, 1985.

K. Perlin, Danse interactif. SIGGRAPH’94 Electronic Theatre,
Orlando.

K. Perlin, Real Time Responsive Animation with Personality,
IEEE Transactions on Visualization and Computer Graphics,
1(1), 1995.

K. Perlin, A. Goldberg, The Improv System Technical Report
NYU Department of Computer Science, 1996.
(online at http://www.mrl.nyu.edu/improv)

K. Sims, Evolving virtual creatures. Computer Graphics
(SIGGRAPH ’94 Proceedings)}, 28(3):15−−22, 1994.

N. Stephenson, SnowCrash Bantam Doubleday, New York,
1992.

S. Strassman, Desktop Theater: Automatic Generation of
Expresssive Animation, PhD thesis, MIT Media Lab, June 1991
(online at http://www.method.com/straz/straz−phd.pdf)

D. Terzopoulos, X. Tu, and R. Grzesczuk Artificial Fishes:
Autonomous Locomotion, Perception, Behavior, and Learnin
in a Simulated Physical World, Artificial Life, 1(4):327−351,
1994.

A. Witkin, Z. Popovic, Motion Warping Computer Graphics
(SIGGRAPH ’95 Proceedings), 30(3):105−108, 1995.

