
b y J e f f L a n d e r G R A P H I C C O N T E N T

I thought I would start off by taking another look at that col-
umn and what I have learned since. There were a couple of
typographical errors that I missed. First off, there was a mis-
take in the forward kinematic definition for the position of
the origin of the second bone, Equation 1.

It was written as:

θ2 = (L1 * cos(θ1), L1 * sin(θ1))
(Eq. 1).

The use of the theta symbol implied that the result would
be an angle. That was an error. The equation should have
showed the origin of bone 2 or:

Ο2 = (L1 * cos(θ1), L1 * sin(θ1))
(Eq. 1).

The second typo was in equation 6. This is the inverse
kinematic solution for the angle θ1. The equation for that
angle should have matched what’s in the accompanying
source code, and read:

(Eq. 6)
The above formula matches what is actually being done in

the sample code. But wait, there’s still trouble with that equa-
tion — it turns out that it’s wrong. Eran Gottlieb wrote to me
to point out that he believed there was an error in the Watt
and Watt Advanced Animation and Rendering Techniques book
that I was using for a source. He believed that there was an
atan() missing from the equation, and offered a fairly compli-
cated algebraic proof to back it up. I looked at the geometric
solution I also had derived in September (but didn’t code up)
and it did seem as
though something
was wrong. So, try-
ing yet another
method, I took a
look at what was
happening. Start
off by looking at
Figure 1.

From this image,
I can determine
several things:

tan(θ3) = y/x

θ1=θ3– θ4

Now use the tan identity:

and do some substitution:

If I multiply out the x and the value for tan(θ4), I get:

θ
θ θ
θ θ1

2 2 1 2 2

2 2 1 2 2

=
+ −
+ +

arctan(
(*cos()) (* sin())
(*cos()) (* sin())

)
y L L x L
x L L y L

tan()
(*cos()) (* sin())
(*cos()) (* sin())

θ
θ θ
θ θ1

2 2 1 2 2

2 2 1 2 2

=
+ −
+ +

y L L x L
x L L y L

tan()

* sin()
*cos()

(*
* sin()

*cos()
)

θ

θ
θ

θ
θ

1

2 2

2 2 1

2 2

2 2 1

1
=

−
+

+
+

y
x

L
L L

y
x

L
L L

tan()
tan() tan()

tan() tan()
a b

a b
a b

− = −
+1

tan()
* sin()

*cos()
θ θ

θ4
2=

+
L

L L
2

2 2 1

θ
θ θ

θ θ1 =
− +

+
(+ (

(+ (
1 2 1 2

1 2 1 2

L x L L y
L y L L x

* sin()) *cos())
* sin()) *cos())

2

2

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

15

Making Kine More Flexible

T wo months ago (“Oh My God, I Inverted Kine!” September 1998) I left off

discussing methods for real-time inverse kinematics. That column was

meant to be an introduction to the idea of inverse kinematics, but mistakes

I made proved to be quite a lesson in trigonometry and optimization tricks.

When not stuck with his head in some geeky book, Jeff can be
found at the local brew-pub. Try to catch him before the lunch
special at jeffl@darwin3d.com.F I G U R E 1 .

F I G U R E 2 . Tangents vs. Radians.

So, now I have further proof that
there should have been an atan() in
my Eq. 6 from September. However,
part of the reason I create demo appli-
cations to go with each article is that I
want to make sure that everything is
working. The demo application from
September seemed to work fine — or
did it? When I played with it a bit
more, I noticed that the solution point
seemed to diverge from the
desired position as I
approached the bottom of the
screen. This clued me in on
what was happening. Measured
in degrees, the tangent of an
angle hardly resembles the
actual angle at all. But since, in
the program, all of the calcula-
tions are handled in radians, some-
thing interesting happens. Take a look
at Figure 2.

This is pretty interesting. For angles
less then 30 degrees or so, the tangent
of the angle is approximated by the
radian values for those angles. This is
the reason everything seemed to work
in my demo program. When the total
range of freedom is in the range of 0 to
90 degrees and the value of the tangent
of the angle is less then 0.5, the atan()
step can be eliminated. That could be
very helpful for a limited application
like mine. Because of the symmetrical
nature of the tangent, some additional
checks would be needed to handle a
joint with greater freedom. But for
game programmers looking to squeeze
out speed anywhere they can, this
could be a nice hack. Anyway, I fixed
the code and updated the source on
the Game Developer website
(www.gdmag.com), so you can play
around with it yourself. Now that I
finally have the analytical solution all
neatly worked out, we can tuck that
away until later.

Iterative Methods for Complex
Inverse Kinematics

A s I mentioned in the September
column, analytical solutions for

inverse kinematic problems are desir-
able because of their speed and exact-
ness of solution. However, for complex
kinematic problems, an analytical solu-
tion may not be possible. Simply
adding another joint to the system
greatly increases the complexity. Since

my goal is to be able to solve any
inverse kinematic problem I may cre-
ate, a more general solution is neces-
sary. To solve these more general prob-
lems, I need to turn to iterative
methods. In an iterative solution, small
adjustments are made to the joints to
solve the inverse kinematics in a series
of steps. This process is finished when
the end effector reaches the goal

within some tolerance.
The robotics community has estab-

lished methods for solving the inverse
kinematics of an arbitrary system. The
solutions are generally based on either
matrix inversion techniques or some
form of optimization. Matrix inversion
is a complicated process that is both
computationally very expensive, and
plagued by a variety of other problems
that stem from numerical instabilities.
Optimization-based methods avoid
matrix inversion completely. They also
attempt to minimize the error in the
system. In the case of inverse kinemat-
ics, one method would be to minimize
the distance between the goal point
and the end effector of the chain. This
can be accomplished by adjusting the
joint angles in a way that minimizes
this distance.

While there’s plenty of research on
approaches using both techniques, it
seemed to me that the optimization-
based methods might be more likely to
produce the real-time results I desired.

Cyclic-Coordinate Descent

I n his Masters Thesis on inverse kine-
matics (see For Further Info), Chris

Welman described a method for solv-
ing these problems using a technique
termed cyclic-coordinate descent
(CCD). This technique was first out-
lined by Li-Chun Tommy Wang and
Chih Cheng Chen in a paper in the
IEEE Transactions on Robotics and
Automation. CCD involves minimizing
the system error by adjusting each
joint angle one at a time. The method

he used starts at the last link in the
chain and works backwards, adjusting
each joint along the way. Take a look
at Figure 3A.

I start with the last link in the
chain. First, I create a vector from the
root of the current link, R, to the cur-
rent effector position, E. Another vec-
tor is created from R, to the desired
endpoint, D. I wish to determine what

the angle, A, is that I need to rotate
the vector RE by to become the vector
RD. This is where a technique that is
used quite a bit in 3D games comes in
handy. There are often times in a
game where you want to calculate the
angle by which a player needs to

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

17

F I G U R E 3 A .

F I G U R E 3 B .

Analytical solutions for inverse kinematic problems
are desirable because of their speed and exactness
of solution. However, for complex kinematic prob-
lems, an analytical solution may not be possible.

rotate to face an opponent. I can use
the same method to solve my IK prob-
lem. The dot product relationship
between two vectors is defined as
[this bit makes no sense. Defined
as what?]. By taking the inverse
cosine of the dot product, I get the
angle between the vectors.

However, since the dot product only
tells me the angle, I also need to know
the direction I need to rotate about R.
For this, I can turn to the cross prod-
uct. The cross product operation cre-
ates a vector that is perpendicular to
the two vectors. By checking the sign
of the Z element of the vector, I know
which way to rotate. This is the
amount by which I modify the joint.
You can see the results in Figure 3B. I
then move one link up the chain and
repeat the process as you can see in
Figures 3C and 3D.

This continues up the chain until the
base joint is reached, and then the
process is repeated, starting at the last
joint again. This process is repeated
until either the end effector is close
enough to the desired position or the
loop has repeated a set number of times.
This break count is needed to allow for
positions that are not reachable.

G R A P H I C C O N T E N T

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

18

#define EFFECTOR_POS 5 // THIS CHAIN HAS 5 LINKS
#define MAX_IK_TRIES 100 // TIMES THROUGH THE CCD LOOP
#define IK_POS_THRESH 1.0f // THRESHOLD FOR SUCCESS
///
// Procedure: ComputeCCDLink
// Purpose: Compute an IK Solution to an end effector position
// Arguments: End Target (x,y)
// Returns: TRUE if a solution exists, FALSE if the position isn't in reach
///
BOOL COGLView::ComputeCCDLink(CPoint endPos)
{
/// Local Variables ///
tVector rootPos,curEnd,desiredEnd,targetVector,curVector,crossResult;
double cosAngle,turnAngle,turnDeg;
int link,tries;
///
// START AT THE LAST LINK IN THE CHAIN
link = EFFECTOR_POS - 1;
tries = 0; // LOOP COUNTER SO I KNOW WHEN TO QUIT
do
{
// THE COORDS OF THE X,Y,Z POSITION OF THE ROOT OF THIS BONE IS IN THE MATRIX
// TRANSLATION PART WHICH IS IN THE 12,13,14 POSITION OF THE MATRIX

rootPos.x = m_Link[link].matrix.m[12];
rootPos.y = m_Link[link].matrix.m[13];
rootPos.z = m_Link[link].matrix.m[14];

// POSITION OF THE END EFFECTOR
curEnd.x = m_Link[EFFECTOR_POS].matrix.m[12];
curEnd.y = m_Link[EFFECTOR_POS].matrix.m[13];
curEnd.z = m_Link[EFFECTOR_POS].matrix.m[14];

// DESIRED END EFFECTOR POSITION
desiredEnd.x = endPos.x;
desiredEnd.y = endPos.y;
desiredEnd.z = 0.0f; // ONLY DOING 2D NOW

// SEE IF I AM ALREADY CLOSE ENOUGH
if (VectorSquaredDistance(&curEnd, &desiredEnd) > IK_POS_THRESH)

{
// CREATE THE VECTOR TO THE CURRENT EFFECTOR POS
curVector.x = curEnd.x - rootPos.x;
curVector.y = curEnd.y - rootPos.y;
curVector.z = curEnd.z - rootPos.z;

// CREATE THE DESIRED EFFECTOR POSITION VECTOR
targetVector.x = endPos.x - rootPos.x;
targetVector.y = endPos.y - rootPos.y;
targetVector.z = 0.0f; // ONLY DOING 2D NOW

// NORMALIZE THE VECTORS (EXPENSIVE, REQUIRES A SQRT)
NormalizeVector(&curVector);
NormalizeVector(&targetVector);

// THE DOT PRODUCT GIVES ME THE COSINE OF THE DESIRED ANGLE
cosAngle = DotProduct(&targetVector,&curVector);

// IF THE DOT PRODUCT RETURNS 1.0, I DON'T NEED TO ROTATE AS IT IS 0 DEGREES
if (cosAngle < 0.99999)
{
// USE THE CROSS PRODUCT TO CHECK WHICH WAY TO ROTATE
CrossProduct(&targetVector, &curVector, &crossResult);

L I S T I N G 1 . (continued on page 20).

F I G U R E 3 D .

F I G U R E 3 C .

Implementation

The algorithm outlined above is a
simple form of the CCD method. I only
was concerned with the position of the
final effector. A true IK system would
also allow you to give a target orienta-
tion for the end effector. This can be
added by changing the test for the error
in the system and the amount of adjust-
ment needed. For my simple needs, the
position goal was enough. To measure
the amount of error in the system, I
checked the squared distance between
the current end effector and the desired
position. By using the squared distance,
I avoid the added computational cost of
an extra square root.

It is very easy to get this algorithm up
and running in OpenGL. The matrix
stack makes it easy to keep track of indi-
vidual transformations at each joint in
the hierarchy. During the recursive
transformation routine, the matrix is

grabbed and stored. The translation por-
tion of that rotation matrix holds the
position of the root of that joint. So cre-
ating the vectors is pretty easy. I also
needed some special code to handle
when the dot product produced 1. This
meant that the angle between the two
vectors was zero degrees, so I don’t want
anything else to happen.

I turned off the drawing while the
algorithm was running, but if you leave
it on you can see the steps as they
progress. In an animation application,
only the final solution angles are used as
keyframes for a quaternion interpola-
tion. That way, the animation would be
quite smooth. The complete code for
the CCD algorithm is in Listing 1.

Improving the Method

RESTRICTIONS ON DEGREES OF FREEDOM. In
many character hierarchies you may

want to impose limits on the degrees of
freedom (DOF) of an individual joint.
This would keep an individual joint
from rotating into a position that is
physically impossible for a character to
achieve. In some other inverse kine-
matic methods, this can be a bit com-
plicated. However, in the CCD
method, such restrictions are easy.
Because of the way the method handles
each joint as a single analytical geome-
try problem, any limits on individual
joints are simply figured into the prob-
lem. When the routine goes to update
the joint rotation, a test determines if
the joint is outside the limits. If it is,
the joint is clamped to those limit
angles. The rest of the joints are then
used to satisfy the problem during later
steps.
DAMPING. The CCD method will rotate
an individual joint to any angle needed
to satisfy the problem at any step.
Since the routine starts from the last
joint and works in, the method tends
to favor later joints. This bias may not
always look natural. Further, since each
joint can swing wildly at each step,
kinks are sometimes present in the
resulting chain. By limiting the
amount a single joint angle can change
at each step, both of these effects can
be controlled somewhat.

You can see the effect both DOF
restrictions and damping have on the
algorithm in Figure 4A and 4B. Figure
4A shows the algorithm without any
restrictions and Figure 4B has both
restrictions turned on. However, you
really have to play with it interactively
to get a real feel for how these
improvements change things.

Conclusions

I now have a robust system for solv-
ing inverse kinematic problems of

any number of links. The iterative
nature of the algorithm makes it both
easy to control and simple to modify.
In fact, with the CCD algorithm,
adding extra links is no more difficult
to set up. It is simply an extra step in
the iteration. Restrictions on joints can
be easily added to enhance the realism.
The solver is currently still 2D. The
algorithm works just as well in 3D, but
the error correction would need to be
changed around to rotate about the
perpendicular angle.

G R A P H I C C O N T E N T

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

20

if (crossResult.z > 0.0f) // IF THE Z ELEMENT IS POSITIVE, ROTATE CLOCKWISE
{

turnAngle = acos((float)cosAngle); // GET THE ANGLE
turnDeg = RADTODEG(turnAngle); // COVERT TO DEGREES
// DAMPING
if (m_Damping && turnDeg > m_Link[link].damp_width)

turnDeg = m_Link[link].damp_width;
m_Link[link].rot.z -= (float)turnDeg; // ACTUALLY TURN THE LINK
// DOF RESTRICTIONS
if (m_DOF_Restrict &&

m_Link[link].rot.z < (float)m_Link[link].min_rz)
m_Link[link].rot.z = (float)m_Link[link].min_rz;
}

else if (crossResult.z < 0.0f) // ROTATE COUNTER CLOCKWISE
{

turnAngle = acos((float)cosAngle);
turnDeg = RADTODEG(turnAngle);
// DAMPING
if (m_Damping && turnDeg > m_Link[link].damp_width)
turnDeg = m_Link[link].damp_width;

m_Link[link].rot.z += (float)turnDeg; // ACTUALLY TURN THE LINK
// DOF RESTRICTIONS
if (m_DOF_Restrict &&
m_Link[link].rot.z > (float)m_Link[link].max_rz)
m_Link[link].rot.z = (float)m_Link[link].max_rz;
}

// RECALC ALL THE MATRICES WITHOUT DRAWING ANYTHING
drawScene(FALSE); // CHANGE THIS TO TRUE IF YOU WANT TO SEE THE ITERATION
}

if (--link < 0) link = EFFECTOR_POS - 1; // START OF THE CHAIN, RESTART
}

// QUIT IF I AM CLOSE ENOUGH OR BEEN RUNNING LONG ENOUGH
} while (tries++ < MAX_IK_TRIES &&
VectorSquaredDistance(&curEnd, &desiredEnd) > IK_POS_THRESH);

return TRUE;
}

L I S T I N G 1 C O N T . (continued from page 18).

By only optimizing for the final posi-
tion of the end effector, things are
much simpler. If you need to be con-
cerned with the orientation of the final
effector also, things would be more dif-
ficult. However, for many 3D real-time
applications, these simple methods
work great.

Sample Application

T he sample application this month
allows you to interact with the IK

solver. You click and drag on the
screen and the snake attempts to reach
your mouse. You can toggle the damp-
ing and DOF restrictions on and off as

well as adjust their settings. The more
ambitious of you may want to play
around with adding links, adding the
orientation optimization, and perhaps
converting the routine to 3D. I think
there are many possibilities for the use
of this technology in real-time gaming
that programmers are just beginning
to explore.

Acknowledgments

T hanks go out to Eran Gottlieb for
catching the error in the

September code and forcing me to take
a deeper look at it. Also, thanks to Dr.
Alan Watt for a prompt confirmation
of the bug in the book as well as a
deeper insight into what he intended.
Dr. Watt is currently working on a
book on 3D game programming. I am
sure everyone out there will eagerly
await that book. ■

G R A P H I C C O N T E N T

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

22

Welman, Chris. Inverse Kinematics and
Geometric Contraints for Articulated
Figure Manipulation. Masters Thesis,
Simon Fraser University, 1993.

This paper was a gold mine of refer-
ences for me as well as a very good
overview of the issue. Chris worked
on the well know Lifeforms animation
system with Thomas Calvert. He now
works on graphics software at
Mainframe Entertainment, the makers
of Reboot and Beast Wars. This paper
is available on the web at:
http://fas.sfu.ca/pub/cs/the-
ses/1993/ChrisWelmanMSc.ps.gz

Wang and Chen. “A Combined
Optimization Method for Solving the
Inverse Kinematics Problem of
Mechanical Manipulators.” IEEE
Transactions on Robotics and
Automation. Vol. 7, No. 4, August
1991, pp. 489-499.
Original outline of the CCD method.

Wright and Sweet. OpenGL Super Bible.
Corte Madera, Calif.: Waite Group
Press, 1996.

I used this for the basis for some of
the OpenGL code in the sample appli-
cation.

F O R F U R T H E R I N F O

F I G U R E 4 A . The effects of the algorithm employing both limitation on degrees of
freedom (DOF) and Damping.

F I G U R E 4 B . The effects of the algorithm without any restrictions (DOF or
Damping).

