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Abstract

We discuss a method for creating animations that allows the anima-
tor to sketch an animation by setting a small number of keyframes
on a fraction of the possible degrees of freedom. Motion capture
data is then used to enhance the animation. Detail is added to de-
grees of freedom that were keyframed, a process we call texturing.
Degrees of freedom that were not keyframed are synthesized. The
method takes advantage of the fact that joint motions of an artic-
ulated figure are often correlated, so that given an incomplete data
set, the missing degrees of freedom can be predicted from those that
are present.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; J.5 [Arts and Humantities]:
performing arts

Keywords: animation, motion capture, motion texture, motion
synthesis

1 Introduction

As the availability of motion capture data has increased, there has
been more and more interest in using it as a basis for creating com-
puter animations when life-like motion is desired. However, there
are still a number of difficulties to overcome concerning its use. As
a result, most high quality animations are still created by keyfram-
ing by skilled animators.

Animators usually prefer to use keyframes because they allow
precise control over the actions of the character. However, creating
a life-like animation by this method is extremely labor intensive. If
too few key frames are set, the motion may be lacking in the detail
we are used to seeing in live motion (figure 1). The curves that
are generated between key poses by computer are usually smooth
splines or other forms of interpolation, which may not represent the
way a live human or animal moves. The animator can put in as
much detail as he or she wants, even to the point of specifying the
position at every time, but more detail requires more time and effort.
A second reason keyframing can be extremely labor intensive is
that a typical model of an articulated figure has over 50 degrees of
freedom, each of which must be painstakingly keyframed.

Motion capture data, on the other hand, provides all the detail
and nuance of live motion for all the degrees of freedom of a char-
acter. However, it has the disadvantage of not providing for full
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Figure 1: Comparison of keyframed data and motion capture
data for root y translation for walking. (a) keyframed data, with
keyframes indicated by red dots (b) motion capture data. In this ex-
ample, the keyframed data has been created by setting the minimum
possible number of keys to describe the motion. Notice that while
it is very smooth and sinusoidal, the motion capture data shows ir-
regularities and variations. These natural fluctuations are inherent
to live motion. A professional animator would achieve such detail
by setting more keys.

control over the motion. Motion capture sessions are labor inten-
sive and costly, and if the actor does not do exactly what the anima-
tor had in mind or if plans change after the motion capture session,
it can be difficult and time consuming to adapt the motion capture
data to the desired application.

A more subtle problem with motion capture data is that it is not
an intuitive way to begin constructing an animation. Animators are
usually trained to use keyframes, and will often build an animation
by first making a rough animation with few keyframes to sketch out
the motion, and add complexity and detail on top of that. It is not
easy or convenient for an animator tostart creating an animation
with a detailed motion he or she did not create and know every
aspect of.

We propose a method for combining the strengths of keyframe
animation with those of using motion capture data. The animator
begins by creating a rough sketch of the scene he or she is creating
by setting a small number of keyframes on a few degrees of free-
dom. Our method will use the information in motion capture data
to add detail to the degrees of freedom that were animated if de-
sired, a process we call adding “texture” to the motion. Degrees of
freedom that were not keyframed at all are synthesized. The result
is an animation that does exactly what the animator wants it to, but
has the nuance of live motion.



2 Related Work

There has been a great deal of past research in a number of different
areas that are related to our project. We divide this work into four
main categories that are described below.

2.1 Variations in Animation

Many other researchers before us have made the observation that
part of what gives a texture its distinctive look, be it in cloth or in
motion, are variations within the texture. These variations are of-
ten referred to as noise, and one of the earliest papers to address
this topic was in image texture synthesis, where random variability
was added to textures with the Perlin-noise function [Perlin 1985].
These ideas were later applied to animations [Perlin and Goldberg
1996]. Other researchers have created motion of humans running
using dynamical simulations [Hodgins et al. 1995] and applied hand
crafted noise functions [Bodenheimer et al. 1999]. Statistical vari-
ations in motion were extracted directly from data by sampling
kernel-based probability distributions in [Pullen and Bregler 2000].
Here we also create animations that exhibit natural variations, in
this case because they are inherent to the fragments of motion cap-
ture data that we use in texturing and synthesis.

2.2 Signal Processing

There are a number of earlier studies in which researchers in both
texture synthesis and motion studies have found it to be useful to
look at their data in frequency space. In image texture synthesis,
one of the earliest such approaches divided the data into multi-level
Laplacian pyramids, and synthetic data were created by a histogram
matching technique [Heeger and Bergen 1995]. This work was fur-
ther developed by DeBonet [1997], in which the synthesis takes into
account the fact that the higher frequency bands tend to be condi-
tionally dependent upon the lower frequency bands.

We incorporate a similar approach, but applied to motion data. In
animation, Unuma et al. [1995] use fourier analysis to manipulate
motion data by performing interpolation, extrapolation, and transi-
tional tasks, as well as to alter the style. Bruderlin and Williams
[1995] apply a number of different signal processing techniques to
motion data to allow editing. Lee and Shin [2001] develop a mul-
tiresolution analysis method that guarantees coordinate invariance
for use in motion editing operations such as smoothing, blending,
and stitching. Our work relates to these animation papers in that we
also use frequency bands as a useful feature of the data, but we use
them to synthesize motion data.

2.3 Motion Editing

Many techniques have been proposed that start with existing mo-
tions, often obtained from motion capture data, and vary the mo-
tions to adapt to different constraints while preserving the style
of the original motion. Witkin and Popovic [1995] developed a
method in which the motion data is warped between keyframe-like
constraints set by the animator. The spacetime constraints method
originally created by Witkin and Kass [1988] was developed to al-
low the animator to specify constraints such as feet positions of a
character, and then solve for these constraints by minimizing the
difference from the original data [Gleicher 1997].

In further work, this method was applied to adapt a set of motion
data to characters of different sizes [Gleicher 1998], and combined
with a multiresolution approach for interactive control of the re-
sult [Lee and Shin 1999]. Physics were included in the method of
Popovic and Witkin [1999], in which the editing is performed in a
reduced dimensionality space.

We also are interested in adapting motion capture data to differ-
ent situations. However, rather than starting with the live data, we
start with a sketch created by the animator of what the final result
should be, and fit the motion capture data onto that framework. As
a result, it can be used to create motions substantially different from
what was in the original data.

2.4 Style and synthesis

Numerous other projects besides ours have addressed the problem
of synthesizing motions or altering pre-existing motions to have a
particular style. A Markov chain monte carlo algorithm was used to
sample multiple animations that satisfy constraints for the case of
multi-body collisions of inanimate objects [Chenney and Forsyth
2000]. In work with similar goals to ours but applied to image-
based graphics, other researchers [Schodl et al. 2000] develop the
concept of avideo texture, which enables a user to begin with a short
video clip and then generate an infinite amount of similar looking
video. Monte carlo techniques are used to address the stochastic
nature of the texture, and appropriate transitions are found in the
motion to create a loop. The method was applied to example mo-
tions that contain both a repetitive and stochastic component, such
as fire or a flag blowing in the wind.

In other projects, a common method of representing data has
been to use mixtures of Gaussians and hidden Markov models. Bre-
gler [1997] has used them to recognize full body motions in video
sequences, and Brand [1999] has used them to synthesize facial an-
imations from example sets of audio and video. Brand and Hertz-
mann [2000] have also used hidden Markov models along with an
entropy minimizations procedure to learn and synthesize motions
with particular styles. Our approach differs in that we strive to keep
as much of the information in the motion capture data intact as pos-
sible, by directly using fragments of real data rather than general-
izing it with representations that may cause some of the fine detail
to be lost. In other interesting work, Chi and her colleagues [Chi
et al. 2000] presented work with similar goals to ours, in that they
were seeking to create a method that allows animators to enhance
the style of pre-existing motions in an intuitive manner. They made
use of the principles of Laban Movement Analysis to create a new
interface for applying particular movement qualities to the motion.

More recently, there have been a number of projects aimed to-
ward allowing an animator to create new animations based on mo-
tion capture data. For example, in the work of Li et al. [2002],
the data was divided into motion textons, each of which could be
modelled by a linear dynamic system. Motions were synthesized
by considering the likelihood of switching from one texton to the
next. Other researchers developed a method for automatic motion
generation at interactive rates [Arikan and Forsyth 2002]. Here the
animator sets high level constraints and a random search algorithm
is used of find appropriate pieces of motion data to fill in between.
In closely related work, the concept of amotion graphis defined to
enable one to control a characters’s locomotion [Kovar et al. 2002].
The motion graph contains original motion and automatically gen-
erated translations, and allows a user to have high level control over
the motions of the character. In the work of [Lee et al. 2002], a new
technique is developed for controlling a character in real time using
several possible interfaces. The user can choose from from a set of
possible actions, sketch a path on the screen, or act out the motion
in front of a video camera. Animations are created by searching
through a motion data base using a clustering algorithm. Any of
the above techniques would be more appropriate to use than ours in
the case where the user has a large data base of motions and wants
high level control over the actions of the character. Our project
is geared more toward an animator who may have a limited set of
data of a particular style, and who wants to have fine control over
the motion using the familiar tools of keyframing.
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Figure 2: Correlation between joint angles. Shown is the ankle
angle versus the hip angle for human walking data. The fact that
this plot has a definite form demonstrates that the angles are related
to each other.

3 Methods

In human and animal motion, there are many correlations between
joint actions. These correlations are especially clear for a repetitive
motion like walking. For example as the right foot steps forward,
the left arm swings forward, or when the hip angle has a certain
value, the knee angle is most likely to fall within a certain range.
We can see those correlations graphically with a plot such as that
shown in figure 2, where we plot the ankle angle as a function of
hip angle for some human walking data. The fact that the plot has a
specific shape, a skewed horseshoe shape in this case, indicates that
there is a relationship between the angles.

These relationships hold true for more complex motions as well,
but may be more local in time, specific to a particular action within
a motion data set. In our method we take advantage of these rela-
tionships to synthesize degrees of freedom that have not been ani-
mated. Similarly, we can add detail to a degree of freedom that has
been animated by synthesizing only the higher frequency bands, a
process we refer to as texturing.

The animator must provide the following information: (1) which
joint angles should be textured (2) which joint angles should be
synthesized (3) which joint angles should be used to drive the mo-
tion in each case. For example, suppose an animator sketches out a
walk by animating only the legs and wants to synthesize the upper
body motions. A good choice for the angles to drive the animation
would be the hip and knee x angles (where we define the x axis as
horizontal, perpendicular to the direction of walking) because they
define the walking motion. These data are broken into fragments,
and used to find fragments of the motion capture data with hip and
knee x angles similar to what has been created by keyframing. The
corresponding fragments of motion capture data for the upper body
motion can then be used to animate the upper body of the computer
character.

To achieve this task, we require a method to determine what con-

Keyframed Data Motion Capture Data

Figure 3: Frequency analysis. Shown are bands 2-7 of a Laplacian
Pyramid decomposition of the left hip angle for dance motions from
both keyframing and motion capture. One band, shown with a red
dashed line, is chosen for the matching step

stitutes a matching region of data. The problem is complicated by
the fact that the keyframed data may be of a different time scale
from the real data. In addition, the ends of the fragments we choose
must join together smoothly to avoid high frequency glitches in the
motion. We address these issues in our method, which we divide
into the following steps: (1) frequency analysis (2) matching (3)
path finding and (4) joining.

In the following explanation, we will use the example of using
the left hip and left knee x angles to synthesize upper body mo-
tions. These degrees of freedom will be referred to as the matching
angles. Also note that we define “keyframed data” as the data at ev-
ery time point that has been generated in the animation after setting
the keyframes. An example of such data is in figure 1a.

3.1 Frequency Analysis

In order to separate different aspects of the motion, the first step is to
divide the data (both keyframed and motion capture) into frequency
bands (figure 3). For a joint that has already been animated, we
may only want to alter the mid to high frequency range, leaving the
overall motion intact. For a degree of freedom that has not been
animated, we may wish to synthesize all of the frequency bands.

3.2 Matching

Matching is at the heart of our method. It is the process by which
fragments of data from the keyframed animation are compared to
fragments of motion capture data to find similar regions. To begin
this step, a low frequency band of one of the joints is chosen, in our
example the left hip angle. The results are not highly dependent
upon which frequency band is chosen, as long as it is low enough
to provide information about the overall motion. For example in
figure 3 we illustrate chosing band 6 of the Laplacian pyramid, but
chosing band 4 or 5 also yields good results. Band 7 is too low, as
can be seen by the lack of structure in the curve, and band 3 is too
high, as it does not reflect the overall motion well enough.

We find the locations in time where the first derivative of the
chosen band of one of the matching angles changes sign. The real
and keyframed data of all of the matching angles of that band (the
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Figure 4: Breaking data in to fragments. The bands of the
keyframed data and motion capture data shown with red dashed
lines in figure 3 are broken into fragments where the sign of the
first derivative changes. (a) keyframed data. (b) motion capture
data. (c) keyframed data broken in to fragments. (d) motion cap-
ture data broken into fragments.

left hip and left knee x angles, in our example) are broken into frag-
ments at those locations (figure 4). Note that in the figures we il-
lustrate the process for just one of the matching angles, the hip, but
actually the process is applied to all of the matching angles simul-
taneously. We also match the first derivative of the chosen band of
each of these angles. Including the first derivatives in the matching
helps choose fragments of real data that are more closely matched
not only in value but in dynamics to the keyframed data. Note that
the sign change of the first derivative of onlyoneof the angles is
used to determine where to break all of the data corresponding to
the matching angles into fragments, so that all are broken at the
same locations.

All of the fragments of keyframed data in the chosen frequency
band and their first derivatives are stepped through one by one, and
for each we ask which fragment of real data is most similar (fig-
ure 5). To achieve this comparison, we stretch or compress the real
data fragments in time by linearly resampling them to make them
the same length as the keyframed fragment. In the motion capture
data, there are often unnatural poses held for relatively long periods
of time for calibration purposes. To avoid chosing these fragments,
any real fragment that was originally more than 4 times as long as
the fragment of keyframed data being matched is rejected. We find
the sum of squared differences between the keyframed fragment
being matched and each of the real data fragments, and keep the
K closest matches. As we save fragments of the matching angles,
we also save the corresponding fragments of original motion cap-
ture data (not just the frequency band being matched) for all of the
angles to be synthesized or textured (figure 6).

At this point, it is sometimes beneficial to include a simple scale
factor. LetA be them×n matrix of values in the keyframed data
being matched, wherem is the number of matching angles andn is
the length of those fragments. LetM be them×n matrix of one of
the K choices of matching fragments. Then to scale the data, we
look for the scale factors that minimizes‖Ms−A‖. The factors
is then multiplied by all of the data being synthesized. In practice
such a scale factor is useful only in a limited set of cases, because it
assumes a linear relationship between the magnitude of the match-
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Figure 5: Matching. Each keyframed fragment is compared to all of
the motion capture fragments, and the K closest matches are kept.
Shown is the process of matching the first fragment shown in fig-
ure 4 (c). (a) The keyframed fragment to be matched. (b) The
keyframed fragment, shown in a thick blue line, compared to all of
the motion capture fragments, shown in thin black lines. (c) Same
as (b), but the motion captured fragments have been stretched or
compressed to be the same length as the keyframed fragment. (d)
Same as (c), but only the 5 closest matches are shown.

ing angles and the magnitude of the rest of the angles, which is
not usually likely to be true. However, it can improve the resulting
animations for cases in which the keyframed data is similar to the
motion capture data, and the action is fairly constrained, such as
walking.

More fragments than just the closest match are saved because
there is more to consider than just how close the data fragment is
to the original. We must take into consideration which fragments
come before and after. We would like to encourage the use of con-
secutive chunks of data as described in the next section.

3.3 Path finding

Now that we have theK closest matches for each fragment, we must
choose a path through the possible choices to create a single data
set. The resulting animation is usually more pleasing if there are
sections in time where fragments that were consecutive in the data
are used consecutively to create the path. As a result, our algorithm
considers the neighbors of each fragment, and searches for paths
that maximize the use of consecutive fragments.

For each join between fragments, we create a cost matrix, the
i j th component of which gives the cost for joining fragmenti with
fragment j. A score of zero is given if the fragments were consec-
utive in the original data, and one if they were not. We find all of
the possible combinations of fragments that go through the points
of zero cost.

This technique is easiest to explain using an example, which is
diagrammed in figure 7. Suppose we had 4 fragments of synthetic
data to match, and saved 3 nearest matches. In the illustration we
show that for fragment 1 of the keyframed data, the best matches
were to fragments 4, 1, and 3 of the real data, and for fragment 2
of the keyframed data the closest matches were to fragments 5, 7,
and 2 of the real data, and so on. We have drawn lines between
fragments to indicate paths of zero cost. Here there are three best
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Figure 6: Matching and synthesis. (a) The five closest matches for
a series of fragments of keyframed data is shown. The keyframed
data is shown with a thick blue line, the matching motion capture
fragments are shown with thin black lines. (b) An example of one of
the angles being synthesized is shown, the lowest spine joint angle
rotation about the x axis. The five fragments for each section come
from the spine motion capture data from the same location in time
as the matching hip angle fragments shown in plot (a). (c) An ex-
ample of a possible path through the chosen spine angle fragments
is shown with a thick red line.

choices. One is fragment 4, 5, 6, and 2 from the real data. In this
case we choose fragment 2 of the real data to match the fourth frag-
ment of keyframed data rather than 8 or 5 because it was originally
the closest match. A second possible path would be 4, 5, 4, and 5,
and a third would be 1, 2, 4, 5. All three would yield two instances
of zero cost. An example of an actual path taken through fragments
chosen by matching is shown in figure 6c.

Note that forz instances of zero cost, there can be no greater than
z paths to consider, and in fact will usually be far less because the
instances can be linked up. In our example (figure 7) there were
four instances of zero cost, but only three possible paths that min-
imize the cost. TheP best paths (whereP is a parameter set by
the animator) are saved for the animator to look at. All are valid
choices and it is an artistic decision which is best.

In practice we found that saving roughly 1/10 the total number
of fragments produced good results. Saving too many matches re-
sulted in motions that were not coordinated with the rest of the
body, and saving too few did not allow for sufficient temporal co-
herence when seeking a path through the fragments.

3.4 Joining

Now that we have the best possible paths, the ends may still not
quite line up in cases where the fragments were not originally con-
secutive. For example, in figure 6c we show an example of data
after matching and choosing the paths. To take care of these dis-
continuities, we join the ends together by the following process.

For fragmenti, we define the new endpoints as follows. The new
first point will be the mean between the first point of fragmenti and
the last point of fragmenti−1. (Note that there is overlap between
the ends of the fragments; if the last point of fragmenti is placed at
time t, the first point of fragmenti + 1 is also at timet.) The new
last point of fragmenti will be the mean between the last point of
fragmenti and the first point of fragmenti +1.

Keyframed
Fragment 1 2 3 4

Matching Data
Fragments

4 5 9 2
1 7 4 8
3 2 6 5

Cost
Matricies

0
1
1

1
1
0

1
1
1

1
1
0

1
1
1

1
1
1

1
1
1

1
1
0

1
1
1

Figure 7: Choosing a path by maximizing the instances of con-
secutive fragments. In the table we show a hypothetical example
of a case where four keyframed fragments were matched, and the
K = 3 closest matches of motion capture fragments were kept for
each keyframed fragment. The matches at the tops of the columns
are the closest of the 3 matches. Blue lines are drawn between frag-
ments that were consecutive in the motion capture data, and the cost
matricies between each set of possible matches are shown below.

The next step is to skew the fragment to pass through the new
endpoints. To achieve this warping, we define two lines, one that
passes through the old endpoints, and one that passes through the
new endpoints. We subtract the line that passes through the old
endpoints and add the line that passes through the new endpoints to
yield the shifted fragment. The process is diagramed in figure 8.

In order to further smooth any remaining discontinuity, a
quadratic function is fit to the join region from N points away from
the joint point to within 2 points of the join point, where N is a
parameter. A smaller value of N keeps the data from being altered
too greatly from what was in the motion capture data, and a larger
value more effectively blends between different fragments. In prac-
tice we found a N from 5-20 to be effective, corresponding to 0.2
- 0.8 seconds. The resulting quadratic is blended with the original
joined data using a sine squared function as follows.

Define the blend function f as

f = (cos
πt
2N

+1)2 (1)

whereN is half the length of the shortest of the fragments that are
to be joined and t is the time, shifted to be zero at the join region. If
we defineq as the quadratic function we obtained from the fit, and
m as the data after matching, then the datas after smoothing is

s(t) = f (t)q(t)+(1− f (t))m(t). (2)

An example of this process is shown in figure 9.

4 Experiments

We tested our method on several different situations, three of which
are described below. All of these examples are presented on the
accompanying video tape.

4.1 Walking

A short animation of two characters walking toward each other,
slowing to a stop, stomping, and crouching was created using
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Figure 8: Joining the ends of selected fragments. (a) Four fragments
of spine angle data that were chosen in the matching step are shown.
Note this graph is a close up view of the first part of the path illus-
trated in figure 6c. There are significant discontinuities between the
first and second fragments, as well as between the third and fourth.
(b) The original endpoints of the fragments are marked with black
circles, the new endpoints are marked with blue stars. The second
and third fragments were consecutive in the motion capture data, so
the new and old endpoints are the same. (c) For each fragment, the
line between the old endpoints (black dashes) and the line between
the new endpoints (blue solid line) are shown. (d) For each frag-
ment, the line between the old endpoints is subtracted, and the line
between the new endpoints is added, to yield the curve of joined
fragments. The new endpoints are again marked with blue stars.
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Figure 9: Smoothing at the join point. A close up of the join be-
tween fragments 1 and 2 from figure 8 is shown with a red solid
line. (a) The quadratic fit using the points on either side of the join
point (as described in the text) is shown with a black dashed line.
(b) The data after blending with the quadratic fit is shown with a
blue dashed line.

Figure 10: Example frames from the walking animations. On the
top row are some frames from the keyframed sketch, and on the
bottom row are the corresponding frames after enhancement.

keyframes. Keyframes were set only on the positions of the root
(not the rotations) and feet. Inverse kinematics were used on the
feet at the ankle joint, as is customary in keyframe animation of ar-
ticulated figures. The joint angles for the hips and knees were read
out afterwards for use in texturing and synthesis.

Each character’s motion was enhanced using a different motion
capture data set of walking motion. The two data sets each con-
sisted of walking with roughly a single step size, but each exhibited
a very different style of walking. One was a relatively “normal”
walk, but rather bouncy, and the other was of a person imitating
a drag queen and was quite stylized, containing unusual arm and
head gestures. The length of each data set was 440 time points at
24 frames per second, or about 18 seconds worth of data. A Lapla-
cian pyramid was used for the frequency analysis. The 4th highest
band was used for matching. For texturing, bands 2-3 were synthe-
sized, and for synthesis, all bands 2 and lower. The very highest
frequency band tended to add only undesirable noise to the motion.

The upper body degrees of freedom could successfully be syn-
thesized using a number of different combinations for the matching
angles. For example, both hip x angles; the left hip x and left knee
x angle; or the right hip x and right knee x all gave good results.
The most pleasing results were obtained by using data from the left
hip and left knee x angles during the stomp (the character stomps
his left foot) and data from both hips for the rest of the animation.
Scaling after matching also improved the results in this case, for
example when the character slows down and comes to a stop, scal-
ing caused the motion of the body and arm motions to reduce in
coordination with the legs.

The method does not directly incorporate hard constraints, so
we used the following method to maintain the feet contact with the
floor. First the pelvis and upper body motions were synthesized.
Since altering the pelvis degrees of freedom causes large scale mo-
tions of the body, inverse kinematic constraints were subsequently
applied to keep the feet in place on the floor. This new motion was
used for texturing the lower body motion during times the feet were
not in contact with the floor.

The motion of the characters was much more life-like after en-
hancement. The upper body moved in a realistic way and responded
appropriately to the varying step sizes and the stomp, even though
these motions were not explicit in the motion capture data. In ad-
dition, the style of walking for each character clearly came from
the data set used for the enhancement. Some example frames are
shown in figure 10.



Figure 11: Example frames from animations of the otter charac-
ter. On the top row are some frames from the original keyframed
animation, while on the bottom are the corresponding frames after
texturing.

4.2 Otter Character

Although we have focussed on the idea of filling in missing degrees
of freedom by synthesis or adding detail by texturing, the method
can also be used to alter the style of an existing animation that al-
ready has a large amount of detail in it.

To test this possibility, we used an otter character that had been
animated by keyframe animation to run. Using the motion capture
sets of walking described above, we could affect the style of the
character’s run by texturing the upper body motions, using the hip
and knee angles as the matching angles. The effect was particularly
noticeable when using the drag queen walk for texturing, the otter
character picked up some of the head bobs and asymmetrical arm
usage of the motion capture data. Some example frames are shown
in figure 11.

4.3 Modern Dance

In order to investigate a wider range of motions than those related
to walking or running, we turned to modern dance. Unlike other
forms of dance such as ballet or other classical forms, modern does
not have a set vocabulary of motions, and yet it uses the whole body
at its full range of motion. Thus it provides a situation where the
correlations between joints will exist only extremely locally in time,
and a stringent test of our method.

A modern dance phrase was animated by sketching only the
lower body and root motions with keyframes. Motion capture data
of several phrases of modern dance was collected, and a total of
1097 time points (24 frames per second) from 4 phrases was used.
The upper body was synthesized, and the lower body textured. The
same method for maintaining feet contact with the floor that was
described above for the walking experiments was used here. The
frequency analysis was the same as for the walking, except that the
6th highest band was used for matching. A lower frequency band
was used because the large motions in the dance data set tended to
happen over longer times than the steps in walking.

The results were quite successful here, especially for synthesis
of the upper body motions. The motions were full and well coor-
dinated with the lower body, and looked like something the dancer
who performed for the motion capture sessioncouldhave done, but

Figure 12: Example frames from the dance animations. The blue
character, on the left in each image, represents the keyframed
sketch. The purple character, on the right in each image, shows
the motion after enhancement.

did not actually do. Some example frames are shown in figure 12.
The best results were obtained by using all of the hip and knee an-
gles as the matching angles, but some good animations could also
be created using fewer degrees of freedom. In these experiments,
the effects of choosing different paths through the matched data be-
came especially noticeable. Because of the wide variation within
the data, different paths yielded significantly different upper body
motions, all of which were well coordinated with the lower body.

5 Conclusion and Future Work

Presently the two main methods by which the motions for computer
animations are created are by using keyframes and by using motion
capture. The method of keyframes is labor intensive, but has the ad-
vantage of allowing the animator precise control over the actions of
the character. Motion capture data has the advantage of providing a
complete data set with all the detail of live motion, but the animator
does not have full control over the result. In this work we present a
method that combines the advantages of both methods, by allowing
the animator to control an initial rough animation with keyframes,
and then fill in missing degrees of freedom and detail using the in-
formation in motion capture data. The results are particularly strik-
ing for the case of synthesis. One can create an animation of only
the lower body, and given some motion capture data, automatically
create life-like upper body motions that are coordinated with the
lower body.

One drawback of the method as it currently stands is that it does
not directly incorporate hard constraints. As a result the textur-
ing cannot be applied to cases where the feet are meant to remain
in contact with the floor, unless it were combined with an inverse
kinematic solver in the animation package being used. Currently
we are working to remedy this deficiency.

Another active area of research is to determine a more funda-
mental method for breaking the data into fragments. In this work
we used the sign change of the derivative of one of the joint an-
gles used for matching, because it is simple to detect and often rep-
resents a change from one movement idea to another. The exact
choice of where to break the data into fragments is not as important
as it may seem. Whatis important is that both the keyframed and
real data are broken at analogous locations, which is clearly the case
with our method. The method could be made more efficient by de-
tecting more fundamental units of movement that may yield larger
fragments. However, due to the complexity of human motion, this



problem is a challenging one, and an ongoing topic of research.
On the surface, another drawback of the method may appear to

be the need to choose a particular frequency band for the matching
step. However, the choice is not difficult to make, and in fact the re-
sults are not highly dependent upon the choice. Any low frequency
band that provides information about the overall motion will pro-
vide good results. The resulting animations sometimes vary from
one another depending upon which frequency band is chosen as
slightly different regions of data are matched, but more often they
are quite similar. If too high a band is chosen, however, the result-
ing animation has an uncoordinated look to it, as the overall motion
is not accurately represented in the matching step.

Similarly, another drawback of the method may appear to be that
the animator must specify which degrees of freedom to use as the
matching angles. However, if one has spent some time keyframing
a character, it is quite easy in practice to specify this information.
The most simplistic approach is to simply use all of the degrees
of freedom that the animator has sketched out the motion for with
keyframes. In many cases, however, fewer degrees of freedom can
be specified, and equally good results can be obtained. If the motion
has less variation, such as walking, the results will still be pleasing
if fewer angles are chosen as the matching angles. In fact it is fas-
cinating how correlated the motions of the human body are. Given
only the data in two angles, such as the hip and knee x angles of
one leg, one can synthesize the rest of the body. However, for a
motion with more variation in it, such as dancing, it is better to
include more angles, to ensure good choices during matching. If
fewer joints are used for matching in this case, some of the result-
ing paths may still be good results, but others may appear somewhat
uncoordinated with the full body.

In fact, the goal of this project was not to create a completely
automatic method, but to give the animator another tool for incor-
porating the information in motion capture data into his or her cre-
ations. Different choices of the matching angles can yield different
results and provide the animator with different possibilities to use
in the final animation. Another source of different motions comes
from examining different paths through the best matches. The ani-
mator has the option of looking at several possibilities and making
an artistic decision which is best. Ultimately we hope that methods
such as this one will further allow animators to take advantage of
the benefits of motion capture data without sacrificing the control
they are used to having when keyframing.
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