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Abstract

This paper presents a novel physics-based representation of real-
istic character motion. The dynamical model incorporates several
factors of locomotion derived from the biomechanical literature, in-
cluding relative preferences for using some muscles more than oth-
ers, elastic mechanisms at joints due to the mechanical properties of
tendons, ligaments, and muscles, and variable stiffness at joints de-
pending on the task. When used in a spacetime optimization frame-
work, the parameters of this model define a wide range of styles of
natural human movement.

Due to the complexity of biological motion, these style parame-
ters are too difficult to design by hand. To address this, we introduce
Nonlinear Inverse Optimization, a novel algorithm for estimating
optimization parameters from motion capture data. Our method
can extract the physical parameters from a single short motion se-
quence. Once captured, this representation of style is extremely
flexible: motions can be generated in the same style but perform-
ing different tasks, and styles may be edited to change the physical
properties of the body.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: Character animation, motion style, physics-based ani-
mation, inverse optimization

1 Introduction

Creating expressive and realistic character motion remains one of
the main challenges in computer animation. Traditional keyfram-
ing techniques, while expressive, are not well-suited for achiev-
ing realism. Physics-based methods for locomotion synthesis show
promise for highly dynamic motions such as jumping, diving, and
gymnastics, but it remains very difficult to specify styles of motion.
Dynamic simulation of low-energy motions — such as walking,
jogging, and other common movements — are even more challeng-
ing, because these motions are not tightly constrained by physi-
cal requirements, and so physical style plays a significant role in
determining motion. Style itself is very difficult to parameterize,
especially in terms that can be applied to dynamic motion represen-
tation. More recent data-driven approaches to motion synthesis can
preserve the realism provided by example motion capture data, but
cannot produce new motions. Consequently, data-driven methods
require a large database of training motions in order to allow flexi-
bility. In this representation, the style and dynamics of motion are
tightly coupled, so there is no way to reason about how the style of
the motion would transfer to a motion with different dynamics.
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In this paper, we present a physics-based approach to creating
realistic, expressive motion. Our dynamic model includes an ab-
stracted representation of an actor’s muscles and tendons, sufficient
to capture the essential qualities of locomotion arising from mus-
culoskeletal structure. Furthermore, the model includes parameters
that encode an actor’s relative preference for applying torques at
some joints more than others. New motions are created by space-
time optimization, minimizing the total muscle torques according
to those preferences. The individual physics and style of an actor
are described by the complete set of musculoskeletal parameters
and muscle preferences, and modifying these parameters yields new
motion styles.

Due to the complexity of biological motion, these style parame-
ters are too difficult to design by hand. Moreover, it is controver-
sial whether optimization is even a good model for human motion
[Alexander 2001]. To address these questions, we introduce Non-
linear Inverse Optimization (NIO), a new algorithm for automatic
estimation of physics parameters from motion capture data. NIO as-
sumes that the motion capture is optimal for a spacetime optimiza-
tion problem with unknown parameters and known constraints, and
solves for physics parameters to make the observed motion optimal.
We can then generate new motion sequences as if performed by that
actor, in the same style as the real actor, but satisfying entirely new
constraints. Because our method learns a high-level description of
style, we do not require large training databases; the styles in this
paper are estimated from a single short motion sequence each. For
example, once we have extracted the style parameters of a specific
walk, we can determine how this same person would move with a
large briefcase in their hand.

Our physical model incorporates several hypotheses about loco-
motion from the biomechanics literature. First, there is a distinct
preference for using specific joints rather than others, due to varia-
tions in joint strength, stability, and other factors [Full et al. 2002].
Second, biological systems use passive elements in their muscu-
loskeletal structure, such as tendons and ligaments, to store and re-
lease energy, thereby reducing total power consumption [Alexander
1988]. Third, animals vary stiffness of their joints when perform-
ing different tasks. For example, leg stiffness is considerably higher
during running than during walking [Farley and Morgenroth 1999;
Ferris et al. 1999]. Incorporating these factors leads to increased re-
alism in our model. Although some of these factors have been used
in animation systems, they have not been used together in physics-
based animation. This is likely due to the difficulty of selecting
a large number of simulation parameters by hand, a problem we
address by learning these parameters from data. Moreover, we an-
ticipate that our approach can be used as a means to explore biome-
chanical theories; to this end, we show a preliminary experiment in
which our system accurately predicts the overall features of a new
motion, as compared to ground truth measurements.

In this paper, we focus on modeling human locomotion for two
reasons. First, locomotion is central to human movement. Sec-
ond, in contrast to high-energy motions such as high-jumping, it
is much more difficult to generate realistic walking and other low-
energy motions by optimization. Whereas high-energy motions are
determined primarily by a small number of dynamic and physical
constraints, low-energy motions require much more accurate, de-
tailed models of dynamics and style. In fact, it has not previously
been shown that full-body human walking is optimal with respect



to muscle-usage. Our learning and synthesis procedures are gen-
eral and we anticipate that they will enable analysis of more gen-
eral types of motions, as well as analysis of animals with different
kinematics or dynamics from humans.

All biomechanical models involve simplifications, and ours is
no exception. We use an abstracted representation of dynamics in
order to capture the most salient elements of motion. The most sig-
nificant simplification is that we treat joint stiffness as an element
of style that does not vary during a motion. Consequently, walking
and running — which normally entail different degrees of muscle
stiffness — are treated as two different styles. Additionally, we em-
ploy a minimal model of the musculoskeletal system that represents
aggregate forces at each joint, rather than the specific structure of
individual muscles, bones, and tendons.

2 Related Work

Robot controller simulation has been successfully applied to the do-
main of realistic computer animation, yielding a variety of types of
motions [Faloutsos et al. 2001; Hodgins et al. 1995; Hodgins and
Pollard 1997; Raibert and Hodgins 1991; Laszlo et al. 2000; Sun
and Metaxas 2001; Torkos and van de Panne 1998; van de Panne
et al. 1994; van de Panne and Fiume 1993]. These methods yield
physically valid motions, often in real-time. However, creating con-
trollers for a given task remains a difficult process, and it is even
more difficult to create a controller to represent a specific style of
motion.

The spacetime constraints framework, in contrast to simulation,
casts motion synthesis as a variational optimization problem of
minimizing some physical measure of energy, such as muscle ex-
ertion [Liu et al. 1994; Rose et al. 1996; Liu and Popović 2002;
Pandy 2001; Popović and Witkin 1999; Witkin and Kass 1988],
or joint angle acceleration [Fang and Pollard 2003]. Optimal en-
ergy movement and intuitive control give this method great ap-
peal. Unfortunately, for complex characters, Newtonian physics
constraints are highly nonlinear, often preventing the spacetime
optimization from converging to a good solution. This problem
prevents spacetime optimization from being used when the start-
ing guess for the optimization is far away from the desired solu-
tion. Because many aspects of the real-life physics are abstracted
away from the model, the optimization tends to produce reason-
able results only for high-energy motion (jumping, diving, acrobat-
ics, etc.), because these motions are largely constrained by what is
physically possible. Low-energy motions, such as walking and run-
ning, depend more on the fine details of the physical model, because
there are many ways to perform these motions while still satisfying
the physical constraints. Much of the motion style is determined by
musculoskeletal intricacies that are not usually modeled. For this
reason, when applied to low-energy motion, spacetime optimiza-
tion is highly sensitive to the starting position of the optimization
— the optimization often converges to a physically-valid but unre-
alistic solution. Safonova et al. [2004] obtain better convergence
and more realistic motions by parameterizing motion within a low-
dimensional subspace obtained from a collection of example mo-
tions. Our framework shows that realistic motions can be obtained
within a purely energy-based model without a subspace projection
or extra penalty terms. Additionally, our method requires only a
single example motion to define a style, rather than a database of
motions in the same style.

Because of the difficulties in directly modeling physics and style,
learning simple models of style from examples has recently been
an extremely active and productive area of research [Arikan and
Forsyth 2002; Arikan et al. 2003; Brand and Hertzmann 2000; Gro-
chow et al. 2004; Kovar et al. 2002; Kovar and Gleicher 2004; Lee
et al. 2002; Li et al. 2002; Pullen and Bregler 2002]. These meth-
ods modify existing motion clips to create new motions according

to some constraints, while maintaining the specific style and expres-
siveness of the original motions. However, since these methods do
not explicitly model physics, the output is limited to direct modifi-
cations to the available motions. For example, if we only have clips
of an actor walking, then we can only synthesize more walking, and
not, say, climbing or descending stairs. Consequently, extremely
large motion databases may be required for general-purpose syn-
thesis. Our work aims to infer the physical system that produced a
given motion, which provides the ability to generalize to many new
motions that were not included in the training data; the representa-
tion of style is much more compact. Our work has the disadvan-
tage that it is more computationally intensive, and can only capture
styles described by the physical model. Motion filtering, warping,
and retargetting methods [Gleicher 1998; Rose et al. 1998; Tak and
Ko 2005; Unuma et al. 1995; Vasilescu 2002; Witkin and Popović
1995] can be used to modify existing motions, but are limited to
small modifications of motion trajectories without changing con-
straints, such as the number of footsteps, and without maintaining
dynamic validity of the motion. In constrast, our system is not tied
to the particular events in the example motion, and can generate
new physically-correct motions with new sequences of constraints
and new lengths.

Neff and Fiume [2002] point out the importance of muscle and
spring tension in motion, and apply these observations to keyframe
animation. In their system, all parameters must be determined by
an animator.

Previous Inverse Optimization algorithms search for energy
functions in which the measured data is optimal; Heuberger [2004]
provides a detailed survey of inverse optimization. Existing meth-
ods apply only when the forward optimization problem has re-
stricted structure, such as linear programming and network-flow
problems. Approximate inverse optimization is an open problem
[Heuberger 2004]; we present NIO, a first attempt at addressing this
problem area. NIO does not require special structure in the energy
function, except that it be differentiable. NIO does not ensure that
an inverse is found, but we have found it to produce good results
nonetheless.

Alternatively, maximum likelihood and Bayesian learning meth-
ods can learn energy functions defined in terms of probabilities.
However, these methods lead to objective functions with intractable
integrals (Appendix C). Previous methods have used random sam-
pling techniques to optimize this integral [Geyer and Thompson
1992; Hinton and Sejnowski 1986; Hinton 2002]. However, no
existing algorithm is capable of efficient random sampling in our
case, where the problems have thousands of dimensions and are
subject to hard nonlinear constraints. However, NIO is inspired by
Contrastive Divergence [Hinton 2002], a probabilistic method. We
also show a connection between inverse optimization and maximum
likelihood. In concurrent work, LeCun and Huang [2005] describe
related energy learning methods for classification and regression.

Our work also relates to methods that learn dynamical systems
from data. NeuroAnimator [Grzeszczuk et al. 1998] fits a neural
network to a known dynamical system, whereas we focus on learn-
ing dynamics and a physical energy function from motion capture
data. Bhat et al. estimates the parameters of a 2D rigid-body sys-
tem [2002] or a cloth simulation [2003] from a video sequence.
These methods focus on passive systems or systems in which all
forces are known. In contrast, we address problems involving un-
known forces designed to minimize an unknown energy function.

3 Overview

We view realistic human locomotion as a result of an energy-
optimal process that achieves a given set of tasks represented by
environment and goal constraints C. To compute a new motion
X, we minimize the energy objective function E(X;θ) which com-



putes the total amount of torque due to muscle forces (Section 5).
The parameter vector θ encapsulates all elements of physical style:
muscle/tendon elastic properties, shoe elastic parameters, and rel-
ative preferences for muscle usage at each joint. In Section 4, we
describe our model of motion as a function of all external and in-
ternal forces: muscle torques, gravity, spring forces, internal elastic
forces, ground contact forces, and shoe elastic forces.

Given a motion capture sequence XT and constraints C, we can
estimate the parameter vector θ that gave rise to it. This is done
by finding a θ for which XT is the minimizer of E(X;θ). This
search is performed by Nonlinear Inverse Optimization (NIO), as
described in Section 6. The constraints C are estimated in a prepro-
cess described in Appendix A. Having extracted the physical style
θ , we can generate a wide range of motions in the same style as the
example motion, by minimizing the energy function with the same
θ but new constraints; examples are shown in Section 7.

4 Motion dynamics

The distinctive feature of our spacetime optimization framework is
a representation that accounts for key aspects of the musculoskele-
tal structure: relative strength of muscles, impedance, and neutral
position parameters of passive structures around each joint. We
represent the character skeleton as a transformation hierarchy that
comprises 18 body nodes, 29 joint DOFs and 6 root DOFs, and rota-
tional joints are parameterized by exponential maps [Grassia 1998].
We write the Lagrangian equations of motion1 so as to include the
effect of generalized forces associated with DOF q j:

∑
i∈N( j)

d
dt

∂Ti

∂ q̇ j
−

∂Ti

∂q j
= Q j (1)

where Ti denotes the kinetic energy of body node i and N( j) is the
set of body nodes in the subtree of joint DOF q j , and Q j is the
aggregate generalized forces acting on q j . The kinetic energy of
body node i can be computed as:

Ti =
1
2

tr
(

ẆiMiẆT
i

)

(2)

where Wi is the chain of the transformations from the root of the
skeleton to body node i and Mi is the mass tensor of the body node
i. The left-hand side terms of Equation 1 can be computed as:

d
dt

∂Ti

∂ q̇ j
−

∂Ti

∂q j
= tr

(

∂Wi

∂q j
MiẄT

i

)

(3)

The aggregate generalized force Q j acting on a DOF q j is a sum
of generalized forces:

Q j = Qm j +Qg j +Qp j +Qc j +Qs j (4)

The right-hand-side terms in this expression represent the aggre-
gate generalized forces due to muscles (Qm j ), gravity (Qg j ), passive
springs and dampers (Qm j ), ground contact (Qc j ), and shoe springs
(Qs j ). These equations represent the forces at a specific time instant
t; for brevity, the dependence on t is omitted from these equations.

We next describe the generalized forces in detail.

1The more common definition of the Lagrangian incorporates potential
energy. We include gravity in the aggregate joint forces instead (which is
equivalent to the more common form).

Qsj

Qcj

Qpj

Qmj

Qgj

Figure 1: The character consists of 18 body nodes and 35 DOFs.
The aggregate generalized forces acting on each joint j are :
muscles (Qm j ), gravity (Qg j ), passive springs and dampers (Qp j ),
ground contact (Qc j ), and shoe springs (Qs j ). The aggregate spring
force from the passive elements (Qp j ) is illustrated as a spring and a
damper, and the active muscle force (Qm j ) is illustrated as a motor.

Gravity. Gravity can be viewed as a constant force mig acting on
the center of mass of each body part i. The generalized force due to
gravity acting upon joint DOF q j is computed as:

Qg j = ∑
i∈N( j)

(

∂Wi

∂q j
ci

)

· (mig) (5)

where ci is the center of the body node i in its local coordinate
frame, mi is the mass of the body node i, and g is the gravitational
acceleration.

Passive Joint Forces. Our model accounts for the passive joint
forces due to the stretching of opposing muscles, tendons and liga-
ments. Tendons are stretchy tissue connecting muscles to the bones,
and ligaments are fibrous tissue that join one bone to another across
a joint, keeping the joint in place. Both tendons and ligaments act
as spring-like elements that dampen motion. It is worth noting that
these passive generalized forces are used extensively in natural lo-
comotion to reduce energy consumption, increase stability and sim-
plify the control. As the tissue around each joint stretches and con-
tracts, energy is temporarily stored and released, thus increasing the
efficiency of locomotion. In running, this mechanism of exchange
between kinetic and elastic potential energy appears to conserve
about 20-30% of the energy that would otherwise be supplied by
muscles [Alexander 1988]. Similarly, although opposing muscles
are the only real torque generators around each joint, they are also
quite elastic and contribute to the aggregate passive forces around
the joint. Our model separates the generalized force contribution
of all muscles around a joint into a passive and active portion. If
all muscle loads around a joint are kept constant, the entire joint
system can be viewed as passive, even though all muscles might be
actuated. Any variation of muscle loads away from this equilibrium
is considered an active component of the generalized force, and is
subsequently minimized with the objective function. Some studies
suggest that animals keep overall leg stiffness fixed during walk-
ing and running [He et al. 1991], but vary stiffness according to the
specific locomotion task, such as running on a surface of varying
stiffness [Farley and Morgenroth 1999]. These collective spring-
like effects are also significantly different for each joint. In the
absence of all muscle forces and gravity, each joint also has a de-
fault rest state at the equilibrium of all muscle, tendon and ligament
forces. NASA experiments have reported on these equilibrium joint
positions for humans in a relaxed state in outer space, and reported
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Figure 2: We use two different spring coefficients (ks1 and ks2) to
model the passive elements in stretching state and contracting state
respectively. q̄ j is the joint angle of q j at rest in absence of all
external forces.

that the values are different for different people [Mount et al. 2003].
Opposing muscles around each joint can easily set these neutral po-
sitions to different values depending on the locomotion task.

We write the force due to passive elements as a linear damped
spring force:

Qp j =−ks j (q j− q̄ j)− kd j q̇ j (6)

where ks j and kd j are the spring coefficient and damping coef-
ficient that model the spring force caused by the stretchy tissue
around joint DOF q j , and q̄ j is the joint angle of q j at rest in ab-
sence of all external forces. We use two different spring coeffi-
cients, ks1 j and ks2 j , to model the passive elements in stretching
state and contracting state respectively (Figure 2). Since our op-
timizer requires forces to be continuous, we use a sigmoid func-
tion, g(x) = (tanh(500x)+1)/2 to approximate the discontinuity at
q j = q̄ j:

ks j (q j) = g(q j− q̄ j)ks1 j +(1−g(q j− q̄ j))ks2 j (7)

Environment Constraint Forces. During ground contact, we
use Coulomb’s friction model as described by Pollard and Reitsma
[2001] to compute the force caused by the friction between the char-
acter and the environment. A friction cone is defined to be the range
of possible forces satisfying Coulomb’s friction model for an object
at rest. We ensure the contact forces stay within a basis that approx-
imates the cones, with nonnegative basis coefficients λp:

Qc j = ∑
p

λpV
∂Cp

∂q j
(8)

where V is a 4×3 matrix consisting of 4 basis vectors that approx-
imately span the friction cone. Finally, ∂Cp

∂q j
projects the contact

force into the space of q j , where Cp is a positional constraint that
fixes a point on the character to its environment.

Shoe Forces. The spring-like nature of shoes contribute to the
overall “bounciness” of locomotion. To simulate this elastic force,
we use a spring that only activates when the distance between the
foot and the floor is less than the rest length of the spring (Figure 3).
Again, we use a sigmoid to approximate a step function:

Qs j = g(h̄−h(q)) kshoe(h̄−h(q))
∂h(q)

∂q j
(9)

where h̄ denotes the rest length of the shoe spring, h(q) indicates the
vertical distance between the heel and the floor, and kshoe denotes
the spring constant for the shoe. As with the contact force, ∂h(q)

∂q j

projects the elastic force into the space of q j .

h
h(q)

Figure 3: The elastic force of the shoes is modeled by a spring that
only activates when the distance between the foot and the floor is
less than the rest length h̄ of the spring. h(q) indicates the vertical
distance between the heel and the floor.

4.1 Determining muscle forces

A complete motion is represented as a vector X containing joint
angle configurations q and coefficients of ground contact forces λ :
X = {q1,q2, . . . ,qL,λ1,λ2, . . . ,λP}, where L is the number of the
frames in the motion, and P is the number of footstep constraints.
For efficiency, we parameterize motions as cubic B-splines, with a
sufficient number of control points to allow detailed motion. The
muscle forces Qm j can easily be computed from Equations 1 and
4, as a function of a motion X, the physical parameters θ , and the
time instant t:

Qm j (t,X,θ) = ∑
i∈N( j)

d
dt

∂Ti

∂ q̇ j
−

∂Ti

∂q j
−Qg j −Qc j −Qs j −Qp j (10)

Since there are no muscles or tendons that apply forces directly
to the root DOFs, a separate equation applies at the root; this equa-
tion says that the global motion of the character is completely de-
termined by the aggregate external forces:

Q0k (t,X,θ) = ∑
i∈N(0)

d
dt

∂Ti

∂ q̇k
−

∂Ti

∂qk
−Qgk −Qck −Qsk = 0 (11)

where k indexes over the 6 global DOFs at the root and N(0) is the
set of all body nodes.

5 Motion synthesis by minimizing muscle

usage

The main functionality of muscles is to move bones around their
joints by contracting and relaxing. While minimizing muscle us-
age certainly makes sense, optimization methods often neglect the
large variability in muscle strength and usage preference for each
joint. For example, the muscles driving the hip joint can generate
significantly larger torque than the shoulder or elbow muscles. In
addition, animals prefer to use certain muscles and joints simply
because they may be more robust (less likely to sprain or tear) [Full
et al. 2002]. Different muscle preferences significantly change the
resulting style of the optimal motion. We will refer to the relative
preference of power usage for joint DOF q j by a corresponding
scalar α j . We specifically measure effort in terms of muscle force
usage by summing the squared magnitudes of the forces at all joint
DOFs j over all time steps t:

E∗(X;θ) = ∑
j
∑
t

α j (Qm j (t,X,θ))2 (12)

The weights α capture the relative preference for usage of dif-
ferent joint DOFs, and are normalized to sum to 1. The com-
plete physical style of a character is collected in a parameter vector



θ = {α,ks,kd, q̄,kshoe, h̄}. In our system, the parameter vector θ is
147-dimensional.

In order for a motion to be physically valid, it should satisfy
Q0 = 0. However, our simplified skeleton does not provide enough
accuracy to satisfy this constraint exactly. Instead, we add a soft
constraint:

E(X;θ) = ∑
j
∑
t

α j(Qm j (t,X,θ))2 +wr ∑
k

∑
t

(Q0k (t,X,θ))2 (13)

We use wr = 100, a large value compared to α .
The motion with the specific physical style θ is computed as a

solution to the following nonlinear optimization problem:

min
X

E(X;θ) subject to C(X) = 0 (14)

where C denotes the footstep constraints and the bounds on X. As
a short-hand, we will also write this minimization as:

min
X∈C

E(X;θ) (15)

For all examples in this paper, motion constraints were expressed
in the form of constraints on footsteps. Specifically, each constraint
fixes a point on one of the character’s feet to a specific point in
the environment for a specific period of time. These constraints
are either provided by the user using a simple sketching tool we
designed (see accompanying video), or extracted from a captured
motion sequence, as described in [Liu and Popović 2002]. In our
experience, manually creating footprints with reasonable positions,
durations, and the frequency is not easy. We use captured footprints
for those motions containing complex steps, such as for a sharp
180◦ turn.

6 Nonlinear Inverse Optimization

We now describe Nonlinear Inverse Optimization (NIO), a method
for determining optimization parameters from measured data.
Given an observed energy-optimal motion2 XT ; how can we deter-
mine the physical parameters θ that gave rise to it? One approach
would be to minimize the least-squares difference between the ob-
served motion and the result of spacetime optimization; however, as
discussed in Appendix B, this approach leads to many difficulties.

We begin with the assumption that the motion XT was generated
by spacetime optimization as in Section 5. Consequently, the true
motion parameters θ should satisfy

E(XT ;θ) = min
X∈C

E(X;θ) (16)

However, it is not immediately apparent how one would search for
a θ that satisfies Equation 16. Moreover, there is no guarantee that
such a θ exists, because of noise and inaccuracies in the model.

Instead, we propose the following Inverse Optimization Objec-
tive:

G(θ) = E(XT ;θ)−min
X∈C

E(X;θ) (17)

This objective function has the property that G(θ) = 0 only when
θ satisfies Equation 16; G(θ) > 0 otherwise. This means that any
parameters θ that satisfy Equation 16 are global minima of G(θ).
Even if we cannot find a θ that satisfies Equation 16, minimizing
G(θ) will try to get XT as “close” to being optimal as possible.
Hence, we use G(θ) as an objective function for estimating θ . Ad-
ditionally, in order to avoid degenerate solutions where α j ≡ 0, we
would like to ensure ∑ j α j = 1, and, in order for muscle preferences

2We extract motion parameters XT and constraints C from raw marker
data as described in Appendix A.

to be plausible, we also require α j ≥ 0 for all j. In practice, we use
soft constraints:

D(θ) = w||∑
j

α j−1||2 +w∑
j

S(α j) (18)

where w is a large weight (we use w = 104), and S(x) penalizes
negative values (S(x) = 0 for x ≥ 0; S(x) = x2 for x < 0). The
problem of determining θ from the observed motion is then

argmin
θ

G(θ)+D(θ) (19)

The second term in Equation 17 cannot be evaluated exactly, as
it would require global optimization. We evaluate it approximately
using SNOPT [Gill et al. 1996], a non-linear optimizer. Equiva-
lently, one may also modify the objective function to consider the
local minimum discovered by SNOPT, rather than the global mini-
mum. In this latter view, it is possible to design optimization algo-
rithms for G(θ) that are guaranteed never to increase the objective
function.

6.1 Learning algorithm

We now describe an algorithm for learning θ by minimizing G(θ).
Standard search techniques cannot be applied because the objec-
tive function is highly nonlinear and non-differentiable: evaluation
of G(θ) requires a solution to a complex non-linear minimization
problem. For example, since θ is 147-dimensional, and each eval-
uation of G(θ) in our examples takes 4-8 minutes, computing a
single gradient would take approximately 15 hours; even then there
is a question of whether the gradient would be accurate. However,
suppose, for a given estimate θ̂ , we compute the optimal motion
XS = argminX∈C E(X; θ̂). The key idea of our algorithm is to lo-
cally approximate G(θ) with

G̃(θ) = E(XT ;θ)−E(XS;θ) (20)

so that we may approximate the gradient of G(θ) at θ̂ as

d
dθ

G(θ)≈
d

dθ
G̃(θ) =

∂
∂θ

E(XT ;θ)−
∂

∂θ
E(XS;θ) (21)

This gives us an approximate gradient direction that can be used as
a search direction within an iterative numerical optimization proce-
dure: at each iteration, the algorithm computes a “counterexample
motion” XS, evaluates Equation 21, and then updates θ̂ by taking a
small step in the negative approximate gradient direction. We can
interpret this algorithm as follows. During optimization, the current
parameter estimate θ̂ views XS as a motion that has lower energy
than the observed motion XT (Figure 4). Taking a step in the nega-
tive approximate gradient direction causes XS to have higher energy
and XT to have lower energy, thus moving closer to a θ in which
XT has the lowest energy of all possible motions. The step-size is
determined by a line-search with respect to G(θ)+D(θ); this pre-
vents a step from inadvertently making some other motion much
better than XT . If θ̂ is optimal, then XT and XS have the same
energy, and the approximate gradient is zero.
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Figure 4: Intuition for NIO. The horizontal axis of each plot cor-
responds to a space of possible motions, and the vertical axis indi-
cates the energy of each motion. The plot at the right shows our
goal, namely, to find a θ for which XT is “at the bottom” of the
energy function. During optimization, however, we may have an
energy function more like the one on the left, in which XT is not at
the bottom. In each step of the optimization process, we generate
a motion XS that has lower energy than XT , and then adjust θ to
“push” XT slightly downward and to “push” XS slightly upward.

The entire algorithm may be summarized as follows:3

function NONLINEARINVERSEOPTIMIZATION(XT )
initialize θ̂
while not done do

XS← argminX∈C E(X; θ̂)

∆θ ← ∂
∂θ E(XT ;θ)− ∂

∂θ E(XS;θ)+ d
dθ D(θ)

β ← argminβ G(θ̂ −β∆θ)+D(θ̂ −β∆θ)

θ̂ ← θ̂ −β∆θ
end while
return θ̂

We initialize α j to be 1/M, where M is the number of joint
DOFs, for each DOF j. The rest pose q̄ is initialized as the av-
erage pose of XT . The shoe parameters kshoe and h̄ are initialized to
the values obtained during preprocessing (Appendix A). We select
initial values for ks1, j , ks2, j , and kd, j for each joint, by minimizing
the inferred muscle forces:

min
{ks1 j },{ks2 j },{kd j }

∑
j
(Qm j (t,X, θ̂))2 (22)

We ran the algorithm for exactly 50 iterations in each of our tests,
although convergence could also be detected automatically by com-
paring successive values of the objective function. We found that
the objective function typically decreased by several orders of mag-
nitude within the first 10 steps, and then made tiny improvements
after that (Figure 5), in a manner reminiscent of the linear conver-
gence of gradient descent.

The bottleneck in this algorithm is in computing XS; however,
this may be sped up by initializing SNOPT with XT , and by not
running it to convergence (so that XS is not necessarily optimal for
θ̂ , but is rather some motion which has lower energy than XT .)

7 Experiments

We tested our algorithm by learning the styles of several walking
and running motion capture sequences. Each style is learned from

3The line search procedure is:

β ← 1
while G(θ̂ −β∆θ)+D(θ̂ −β∆θ) > G(θ̂ −β∆θ/2)+D(θ̂ −β∆θ/2)

and β > 10−6 do β ← β/2 end while
return β
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Figure 5: NIO of the neutral walk. The horizontal axis shows the
iteration number n, and the vertical axis shows the value of G(θ̂).
NIO obtains a good solution in very few steps. After learning,
E(XT ; θ̂) = 8009.37, and E(XS; θ̂) = 7535.32, indicating that, for
the learned style θ̂ , the energy of the optimal motion is very close
to the energy of the observed motion.

a single motion sequence of 50-90 frames at 30 fps (2-3 seconds du-
ration). We then used these dynamic style parameters to synthesize
a wide range of different motions (Figure 6). We solve spacetime
optimization problems using SNOPT [Gill et al. 1996]. The learn-
ing process took on the order of 4 to 6 hours per style, on a 2Ghz
Pentium 4 machine. Synthesis took approximately 10 to 30 minutes
per motion. During synthesis, we obtained somewhat faster conver-
gence by optimizing explicit Qm j and Q0k variables together with
the motion, and introducing explicit dynamics constraints (Equa-
tions 10 and 11).

Our synthesis algorithm does require a reasonable initial state.
From our experiments, simple initializations, such as a default pose
translating through space, lead to poor local minima. The follow-
ing procedure was used for initialization in all of our experiments.
Given new footstep constraints (C) and the target motion (XT ), we
generate an appropriate initial sequence in the following three steps.
First, we fit a spline to the horizontal coordinates of the footstep
constraints, and initialize the horizontal coordinates of the root po-
sition to be the spline’s position at each time instant t. Second, we
initialize the global rotations with the spline tangents at each time
t. Third, for each time t, we find the pose in the example sequence
XT that has the most similar footstep constraints to the constraints
in time t, and copy the joint angles and root height to time t.

Estimating style parameters. We used NIO to learn the style
of a neutral, balanced walking sequence. To evaluate the style pa-
rameters learned from this input sequence, we generated a motion
with the learned style and with the same footprints as the input mo-
tion. As shown in the accompanying video, the synthesized motion
is visually identical to the input motion. To demonstrate the impor-
tance of muscle preferences and passive elements in synthesis of
natural motions, we designed following two experiments. First, we
synthesized a motion with the same footprints as the input motion,
but without considering muscle preferences (α = 1 for all the body
nodes) and without passive elements (ks1 j = ks2 j = kd j = kshoe = 0).
In the second experiment, we learned muscle preferences α in a
model without passive elements and used the learned α to syn-
thesize a motion constrained by the same footprints as the input
motion. Note that learning the muscle preferences alone produces
a motion reasonably close to the input motion. However, with-
out spring and damper forces, the movement of some joints appear
loose and unnatural.

Creating motions with new constraints. We can synthesize
new motions in the same style as the previous walking sequence by



Figure 6: Examples of synthesized motions in various walking and running styles. From top to bottom: 180-degree walking turn, limp walk,
descending an incline, walking with a suitcase, running with springy shoes, ascending an incline.



providing new footprint constraints. In the first example (shown in
the accompanying video), we show a new walking sequence on a
curved path. The new footprints caused the character to lean her
torso into the turn. We also show the same style applied to a sharp
180◦ turn, where the character leans even further towards the center
of rotation (Figure 6, first row). In addition to creating new foot-
prints, we can also modify the character’s skeleton. We show a
motion sequence where we “locked” the character’s left knee and
decreased the range of movement on the joint of the left hip (Fig-
ure 6, second row). To perform the same gait, the character has to
twist her torso more aggressively.

Capturing different styles. We have tested our style learning
algorithm on a range of phenomena, such as variations due to emo-
tional state, individual body shape, and functional activity such as
walking or running. We learned a “sad” style from a captured walk-
ing sequence and synthesized walking uphill and downhill in the
same “sad” style (Figure 6, third row). In another example, the ac-
tor was asked to act “happy” when we captured her walking motion.
We allowed the footprint constraints to slide on the floor to create a
skating motion in the “happy” style. Despite changes in constraints,
the resulting motions still exhibit the same styles as the examples.

Our learning algorithm can learn different styles for different in-
dividuals. We recorded motions of two subjects walking on a level
surface and synthesized walking uphill in their personal styles (Fig-
ure 6, sixth row). In our framework, running is considered a differ-
ent style from walking because of the difference in muscle stiffness
in these two actions. To illustrate this, we used the style parameters
learned from running and applied them to walking. The character
exhibits a lot of tension in her movements, since muscles are stiffer
in running; the resulting motion resembles power-walking.

Editing styles and dynamics. We can also edit the style pa-
rameters and the dynamic properties. To illustrate this, we changed
the mass of the character’s right hand corresponding to carrying
a 3 kilogram suitcase. As a result, the character leans to the left
to counteract the weight and swings her right arm much less than
before. Applying this change to different styles yields different op-
timal walking motions. For example, in the sad style, the character
carries the suitcase in front of her body, whereas, in the happy style,
she swings it back and forth (Figure 6, fourth row).

Our physics-based framework also models the elasticity of the
character’s shoes. By increasing the elasticity of the shoes, we cre-
ate a bouncier running motion (Figure 6, fifth row).

Comparison to ground truth and warping. In order to eval-
uate our method, we compared it to a ground truth motion and to
a motion warping method, in the case of walking uphill (Figure 7).
We performed motion capture of an actor walking up a ramp. Then,
using the neutral walking style learned from an actor walking on
level ground, we synthesized a new motion with the same footstep
constraints as the captured uphill motion. Note that our method
accurately predicts the overall features of the ground truth motion,
including leaning into the slope and applying larger forces at each
step, even though these features are not present in the example mo-
tion. For comparison, we also generated the motion using a motion
warping method that does not model dynamics; instead, it warps
the example motion to the new constraints, and uses this motion
as initialization in an optimization of the smoothness of the motion
subject to footstep constraints. The warped motion does not capture
the proper dynamics of the motion, e.g., the character does not lean
into the slope.

Figure 7: Comparison to motion warping and ground truth. Top:
Motion capture of a person walking up a ramp. Middle: Motion
predicted by our method, using a style learned from walking on a
level surface. Although the prediction is not identical to the motion
capture sequence, our method has accurately predicted the overall
dynamic nature of the motion, such as leaning into the slope, and
exerting more force at each step. Bottom: Motion predicted by
warping the level motion and smoothing the motion while satisfying
foot constraints. Many dynamic features of the ground truth are
absent from the warped motion.

8 Discussion and future work

We have described a model of human locomotion that incorporates
several important hypotheses of biological motion: optimality of
locomotion, relative preferences for applying torques at different
joints, the importance of spring and damper elements, and the im-
portance of variable tension to style. We have also described a novel
framework for learning biomechanical parameters from examples.
We have found each of these components to be essential to produc-
ing realistic motions. For example, without springs, the character is
unnaturally loose; without learning, it is too difficult to determine
reasonable model parameters. The ability of our system to create
realistic-looking motions, and, in the cases we have tested, to ac-
curately predict real motions, strongly suggests that the system has
accurately modeled the essential features of human locomotion.

Many open questions remain, as well as exciting avenues for fu-
ture work. We anticipate that generalizations of this model can be
used to model a very wide range of animal motion.

Musculoskeletal modeling. We have used a highly-abstracted
model of dynamics, in order to capture the essential features of mo-
tion. There are a number of ways to generalize the model, such
as detailed geometric models of bones, muscles, and tendons, and
detailed models of muscle activation. One important simplification
we have made is to keep muscle tension fixed, whereas humans
vary stiffness for different tasks. A more sophisticated model would
learn the energy cost due to varying muscle activations, although
this may require a larger training database. Hence, our present sys-
tem will not be able to accurately predict motions with different
stiffness characteristics, such as accurately predicting the nature of
a walking motion from running data.

We have found the learning process to be effective when given
different biomechanical models. For example, an early version of
our system used a poor model of ground contact forces; NIO was
able to learn a reasonable model of most aspects of motion, but



ground contact appeared unrealistic in synthesized motions. For
this reason, we are optimistic that NIO will work well with a biome-
chanical models of greater or lesser complexity, subject to the de-
scriptive power of the model. Determining the appropriate model
complexity for various specific problems remains an open question.

Other types of motions and characters. We anticipate that
our general approach can be applied to other types of motions and
other types of animals, although the details of the biomechanical
model may vary in different cases.

Model accuracy and uniqueness. The main assumption of our
approach is that the example motion is energy-optimal. It seems
reasonable to hypothesize that a “neutral” walking motion is opti-
mal with respect to, for example, metabolic energy consumption.
On the other hand, the energetic happy walk may not be the most
energy-efficient method for locomotion. Nonetheless, it may be op-
timal with respect to a different energy function, one that, for exam-
ple, reflects the happy person’s strong preference for more exagger-
ated gestures than necessary. Our approach models these cases by a
physical system that explains the motion and can generate new mo-
tions, but, in doing so, conflates emotional state with biomechanical
properties.

An open question is to determine in what cases are the model
parameters uniquely-defined by the motion capture data, and when
the estimation is stable. For purposes of animation, uniqueness of
the model parameters is not essential; what matters is the ability
of the system to accurately generate new motions. We suspect that
unique style of the model could be determined by learning θ pa-
rameters that fit a set of motions, rather than a single short motion.
Furthermore, it would be valuable to perform detailed biomechanic
analysis of locomotion variability by measuring the forces and ten-
sions from real subjects performing a set of tasks, and comparing
these measurements to those produced by our generative model.

Properties of NIO and extensions. We have found NIO to
work well in practice, and it has a number of appealing theoretical
properties, such as convergence when G(θ) = 0. Yet we have an
incomplete understanding of NIO’s properties, such as whether it is
guaranteed to solve G(θ) = 0 when a solution exists. One intrigu-
ing question is whether we can learn the structure of problems, i.e.,
to determine biomechanical models or determine the constraints
that were required to create motions.

There are a number of practical extensions, such as handling
nuisance parameters, non-trivial noise levels, and model selection.
These issues would be straightforward to model in a probabilistic
setting, but this would lead to substantial computational challenges.

Stylistic variation. Since our model of style represents physical
properties of motion, we anticipate that it can be used to generate
new styles; one possible application is to create a linear space of
styles that can be used to generate new motions or to recognize
existing styles.

Biomechanics research. An important and controversial ques-
tion in biomechanics is whether movements are “optimal” in any
sense [Alexander 2001]. Based on our preliminary tests, we believe
that NIO can be used in human motion research to create highly
predictive models of motion based on optimization, thereby lend-
ing support to the optimization theory of motion.
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A Motion preprocessing

We reconstruct a motion (X) and the mass tensors (M) directly from
the raw data acquired by a motion capture system. The motion se-
quences were captured at the rate of 120 frames/second and then
down-sampled to 30 frames/second. Reconstructing the motion en-
tails estimating the joint angles and the ground contact forces at
every time step. We have found that using standard inverse kine-
matics to estimate joint angles yields motions that appear accurate
visually, but that contain unrealistic levels of noise. These minute
variations correspond to very large derivatives, and thus to unre-
alistic forces. Instead, we formulated an spacetime optimization
that fits each handle hi(q) on the character to the corresponding
recorded marker pi, subject to a dynamic constraints on the global
DOFs:

min
X,kshoe,h̄

∑
i
||hi(q)− pi||

2 subject to Q0 = 0 (23)

Motions obtained this way have much smoother second deriva-
tives, while still matching the originally markers faithfully. Conse-
quently, style parameters θ extracted from these motions are more
robust for synthesizing motions with new constraints. Note that this
optimization also estimates ground contact forces for all time steps
(parameterized by λ coefficients) based solely on the motion of the
character’s center of mass. Inspecting measured motions suggests
that vertical translation due to the root DOFs dominates all that due
to all other DOFs, and so the above procedure should yield rea-
sonably accurate ground contact forces. Measurements could also
be performed on a force platform in order to obtain exact ground
contact forces.

In order to determine the mass tensor for each ellipsoidal body
node, we first set the major axis length to match the corresponding
limb length, and then scale the other axes equally in order for the
limb’s volume to match the mass distribution for humans described
in the biomechanics literature [de Leva 1996; Pearsall et al. 1994].

B Least squares learning

A tempting approach to learning θ is to solve for the θ that mini-
mizes the following least-squares objective function:

||XT − argmin
X∈C

E(X;θ)||2 (24)

Our early tests with this approach were entirely unsuccessful. This
approach is fraught with many difficulties. First, this objective
function presumes that the observed motion is the unique minimizer
of the energy function; if there is noise in the system, if there are
approximations in the model, or if the energy function does not
have a unique minimum, then the motion XT may be different from
that returned by an optimizer. Second, this objective function is
likely to have many spurious local minima, because adjustments
to θ may make very unpredictable changes to the optimal motion.
Third, there does not appear to be a reliable procedure for producing
search directions for this objective function; for example, gradient
descent cannot be applied because we cannot compute the gradi-
ent of the objective. As a result, expensive search methods such as
simulated annealing or finite differences would be required. These
methods are very expensive even for low-dimensional problems; in



our case, θ is 147-dimensional, which suggests that optimization
could take days or even weeks. In contrast, NIO suffers from none
of these problems: it is very fast, robust to initialization, and does
not require a user-designed mutation function.

C Relation to Maximum Likelihood

In this section, we discuss theoretical properties of Inverse Opti-
mization and how it relates to maximum likelihood (ML) learning.
A common way to define the probability of an energy-based system
is with a Gibbs distribution:

p(X|θ ,τ) =
e−E(X;θ)/τ

∫

X∈C e−E(X;θ)/τ dX
(25)

where τ is called the “temperature.” In ML, we would normally
remove the constraint that ∑i αi = 1, and remove the temperature;
we then search for the θ that maximizes p(XT |θ). However, sup-
pose we fix the value of τ; learning θ by maximizing p(X|θ ,τ) is
equivalent to minimizing

Lτ (θ) = −τ ln p(XT |θ ,τ) (26)

= E(XT ;θ)+ τ ln
∫

X∈C
e−E(X;θ)/τ dX (27)

= E(XT ;θ)−
∫

p(X|θ ,τ)E(X;θ)dX

−τ
∫

p(X|θ ,τ) ln p(X|θ ,τ)dX (28)

The equivalence of Equations 27 and 28 may be shown by substi-
tuting Equation 25 into the final instance of p(X|θ ,τ) in Equation
28.

Now, consider the behavior of this optimization in the limit
as τ → 0: p(X|θ ,τ) will become a delta-function around the
minimum-energy motion. Hence

lim
τ→0

Lτ (θ) = E(XT ;θ)−min
X∈C

E(X;θ) = G(θ) (29)

Hence, the Inverse Optimization Objective can be viewed as ML
learning in the zero-temperature limit. Furthermore, our optimiza-
tion algorithm can be viewed as a zero-temperature form of Con-
trastive Divergence [Hinton 2002], since sampling from the delta-
function is equivalent to finding the minimum-energy motion.

Developing algorithms for ML learning of θ is a promising but
challenging avenue for future work. We suspect that the ML esti-
mate of θ would be more useful than the one produced by our al-
gorithm, as it would likely handle noise more robustly, and provide
a proper probability distribution over motions. Moreover, consider
the following optimization scenarios with three possible choices of
θ that all assign the same energy to the target motion XT :

E
(X
;θ
1
)

XT

E
(X
;θ
2
)

XT

E
(X
;θ
3
)

XT

The Inverse Optimization Objective views both θ1 and θ2 as op-
timal, since G(θ1) = G(θ2) = 0. However, ML prefers θ2 to θ1,
since it assigns higher probability to the target motion XT . (This
follows from

∫

X∈C e−E(X;θ1)dX >
∫

X∈C e−E(X;θ2)dX). Similarly,
ML would usually prefer θ3 over θ1 and θ2, whereas Inverse Op-
timization would prefer θ1 or θ2. Intuitively, not only do we want
the observed motion to be at the bottom of a “bowl” in the energy
function, but the bowl should be as deep as possible.
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