
Permission
for persona
that copies
advantage,
its date app
of ACM, I
servers, or
permission
©1995 AC

A General Construction Scheme for Unit Quaternion Curves
with Simple High Order Derivatives1

Myoung-Jun Kim2, Myung-Soo Kim3, and Sung Yong Shin2

2Korea Advanced Institute of Science and Technology (KAIST)
3Pohang University of Science and Technology (POSTECH)
ABSTRACT

This paper proposes a new class of unit quaternion curves inSO(3).
A general method is developed that transforms a curve in R3 (de-
fined as a weighted sum of basis functions) into its unit quaternion
analogue in SO(3). Applying the method to well-known spline
curves (such as Bézier, Hermite, and B-spline curves), we are able
to construct various unit quaternion curves which share many im-
portant differential properties with their original curves.

Many of our naive common beliefs in geometry break down
even in the simple non-Euclidean space S3 or SO(3). For exam-
ple, the de Casteljau type construction of cubic B-spline quaternion
curves does not preserve C

2-continuity [10]. Through the use of
decomposition into simple primitive quaternion curves, our quater-
nion curves preserve most of the algebraic and differential properties
of the original spline curves.

CR Descriptors: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling – Curve, surface, solid, and object
representation, – Geometric algorithms. Keywords: Quaternion,
rotation, orientation, SO(3), Bézier, Hermite, B-spline

1 INTRODUCTION

In computer animation, it is very important to have appropriate
tools to produce smooth and natural motions of a rigid body. A
rigid motion inR3 can be represented by a Cartesian product of two
component curves: one in the Euclidean space R

3 and the other
in the rotation group SO(3) [3, 12]. The curve in R

3 represents
the center position of the rigid body, and the other curve in SO(3)
represents its orientation. Often, techniques for specifying a rigid
motion construct the two curves independently. It is relatively
easy to produce smooth curves in the Euclidean space. B-spline,
Hermite, and Bézier curves exemplify well-known techniques for
constructing position curves in R

3. However, smooth orientation
curves in SO(3) are much more difficult to construct.

1This research was partially supported by the Korean Ministry of Science and
Technology under the contract 94-S-05-A-03 of STEP 2000 and TGRC-KOSEF.

2Computer Science Department, KAIST, Taejeon 305-701, Korea.
3Dept. of Computer Science, POSTECH, Pohang 790-784, Korea.

E-mail: fmjkim, syshing@jupiter.kaist.ac.kr and mskim@vision.postech.ac.kr.
 to make digital/hard copy of part or all of this work
l or classroom use is granted without fee provided
 are not made or distributed for profit or commercial
 the copyright notice, the title of the publication and
ear, and notice is given that copying is by permission

nc. To copy otherwise, to republish, to post on
 to redistribute to lists, requires prior specific
 and/or a fee.
M-0-89791-701-4/95/008�$3.50

36
The spline curves in R3 are usually defined in two different but
equivalent ways: i.e., either as an algebraic construction using basis
functions or as a geometric construction based on recursive linear
interpolations [2]. This paper proposes a general framework which
extends the algebraic construction methods to SO(3). Most of the
previous methods are based on extending the linear interpolation in
R

3 to the slerp (spherical linear interpolation) inSO(3) [14, 16, 17,
18]. The two (i.e., algebraic and geometric) construction schemes
generate identical curves in R

3; however, this is not the case in
the non-Euclidean space SO(3) [10]. Many of our commonplace
beliefs in geometry break down in the non-Euclidean spaceSO(3).

When the recursive curve construction is not based on a simple
closed form algebraic equation, it becomes extremely difficult to
do any extensive analysis on the constructed curve. For example,
consider the problem of computing the first derivative of the cubic
Bézier quaternion curve or the squad curve generated by a recursive
slerp construction [17, 18]. Though Shoemake [17, 18] postulates
correct first derivatives, the quaternion calculus employed there
is incorrect (see [9] for more details). Kim, Kim, and Shin [9]
developed a correct quaternion calculus for the first derivatives
of unit quaternion curves; however, an extension to the second
derivatives becomes much more complex (also see [11] for a related
quaternion calculus on blending-type quaternion curves).

More seriously, the C2-continuity of a spline curve in R
3 may

not carry over to SO(3). Furthermore, the curve conversion be-
tween two different spline curves, e.g., from a cubic Bézier curve to
the corresponding cubic B-spline curve, may not work out inSO(3)
[10]. Kim, Kim, and Shin [10] show that there is no C2-continuity
guaranteed for the cubic B-spline quaternion curves which are gen-
erated by the recursive slerp construction of Schlag [16]. Similarly,
the B-spline quaternion curve of Nielson and Heiland [13] also fails
to have C2-continuity (see [10] for more details).

In this paper, we take an important step toward generalizing
the algebraic formulation of spline curves in R

3 to similar ones
in SO(3). In the new algebraic formulation, the computation of
high order derivatives becomes almost as easy as that of the spline
curves in R

3. We show that the quaternion curves generated in
this way preserve many important differential properties of their
original curves in R3. They are defined in simple closed algebraic
forms of quaternion equations, and they have the same degrees of
geometric continuity as their counterparts in R3.

As a demonstration of the feasibility of our proposed method,
we first construct a Bézier quaternion curve with n control unit
quaternions. Then, the cubic Bézier quaternion curve is used to
construct a Hermite quaternion curve. We also construct a k-th
order B-spline quaternion curve which is Ck�2-continuous and lo-
cally controllable. There are many other spline curves which can
be defined by weighted sums of control points; our construction
9

method is general in that all these spline curves are extendible to
their corresponding quaternion curves. Since it is possible to ma-
nipulate the position curve as well as the corresponding orientation
curve in a unified manner, the modeling and manipulation of rigid
motions can be managed more conveniently.

The key to the success of our construction method is that the
quaternion curve is formulated as a product of simple primitive
quaternion curves: qi(t) = exp(!ifi(t)), i = 1; : : : ; n, for some
fixed angular velocity !i 2 R

3 and real valued function fi(t),
where exp : R

3
! SO(3) is an exponential map [3]. Each

primitive curve, qi(t), represents a rotation about a fixed axis,
!i 2 R

3, for which the derivative formula has an extremely
simple form: q

0

i(t) = exp(!ifi(t))(!if
0

i(t)) = qi(t)(!if
0

i(t)).
Since the chain rule can be applied to the quaternion product:
q(t) = q1(t) � � � qn(t), the resulting differential formula has the
simplest expression that one can expect for unit quaternion curves.
Furthermore, a similar technique can be used to obtain high order
derivatives of our quaternion curves. There have been many other
methods suggested for the construction of quaternion curves, in-
cluding the CAGD approaches based on constructing rational curves
on the 3-sphere S3 [8, 20]. Nevertheless, no method has provided
such a simple derivative formula. The only exception is the method
of Pobegailo [15] which constructs aCk-continuous spherical curve
as a product of (k+1) rotation matrices: Rk+1Rk : : : R1. The gen-
erated curve is, however, essentially restricted to the Bézier type
quaternion curve of our method.

The development of closed form equations for the second order
derivatives provides an important step toward solving the important
problem of torque minimization for 3D rotations [1, 6, 7]. How-
ever, the torque minimization problem requires much more. The
optimal solution is given as a critical path in the problem of cal-
culus of variations among a set of quaternion paths which satisfy
the given conditions. For this purpose, we may need to extend
the quaternion curve construction scheme of this paper to that of
quaternion surfaces and volumes. This is currently a difficult open
problem. Therefore, the important problem of torque minimization
for 3D rotations has not been solved in this paper. Nevertheless, the
basic algebraic approach taken in this paper provides an important
conceptual framework for future research toward this goal.

The rest of this paper is organized as follows. In Section 2,
we briefly review some useful concepts and definitions related to
unit quaternions. Section 3 describes the main motivation of this
work. Section 4 outlines our basic idea for constructing unit quater-
nion curves. Section 5 constructs the Bézier, Hermite, and B-spline
quaternion curves and discusses their differential properties. Sec-
tion 6 shows some experimental results with discussions on possible
further extensions. Finally, in Section 7, we conclude this paper.

2 PRELIMINARIES

2.1 Quaternion and Rotation

Given a unit quaternion q 2 S
3, a 3D rotation Rq 2 SO(3) is

defined as follows:

Rq(p) = qpq
�1
; for p 2 R

3
; (1)

wherep = (x; y; z) is interpreted as a quaternion (0; x; y; z) and the
quaternion multiplication is assumed for the products [3, 17, 18].
Let q = (cos �; v̂ sin �) 2 S

3, for some angle � and unit vector
v̂ 2 S

2, then Rq is the rotation by angle 2� about the axis v̂. The
multiplicative constant, 2, in the angle of rotation, 2�, is due to the
fact that q appears twice in Equation (1). Also note thatRq � R�q;
that is, two antipodal points, q and �q in S

3, represent the same
rotation in SO(3).
37
The two spacesS3 and SO(3) have the same local topology and
geometry. The major difference is in the distance measures of the
two spacesSO(3) andS3. A rotation curveRq(t) 2 SO(3) is twice
as long as the corresponding unit quaternion curveq(t) 2 S

3. When
a smooth rotation curve Rq(t) has an angular velocity 2!(t) 2 R

3,
the unit quaternion curve q(t) 2 S

3 satisfies:

q
0(t) = q(t)!(t): (2)

In this paper, we construct the unit quaternion curves in S3, instead
of SO(3); therefore, we interpret the velocity component !(t) of
q
0(t) as the angular velocity, instead of 2!(t).

The unit quaternion multiplication is not commutative; the or-
der of multiplication is thus very important. Let q1; q2; � � � ; qn be
a sequence of successive rotations. When each qi is measured in
the global frame, the product qnqn�1 � � � q1 is the net rotation of
successive rotations. However, when each qi is measured in the
local frame, the final product q1q2 � � � qn represents the net rota-
tion. Note that the latter is the same as the successive rotations
of qn; qn�1; � � � ; q2; q1 in the global frame. Here, we assume each
rotation is specified in the local frame. This is simply for notational
convenience; in the local frame, we can write the multiplications in
the same order as the rotations. By reversing the order of quaternion
multiplications, the same construction schemes can be applied to
the quaternion curves defined in the global frame.

2.2 Exponential and Logarithmic Maps

Given a vector v = �v̂ 2 R
3, with v̂ 2 S

2, the exponential:

exp(v) =
1X
i=0

v
i = (cos �; v̂ sin �) 2 S

3
;

becomes the unit quaternion which represent the rotation by angle
2� about the axis v̂, where vi is computed using the quaternion mul-
tiplication [3, 11, 18]. The exponential map exp can be interpreted
as a mapping from the angular velocity vector (measured inS3) into
the unit quaternion which represents the rotation. When we limit
the domain of exp so that j�j < �, the map exp becomes 1-to-1 and
its inverse map log can be defined for unit quaternions. (See [9]
for more details on exp and log.) The power of a unit quaternion
q with respect to a real valued exponent � is defined to be a unit
quaternion: q� = exp(� log q).

Given two unit quaternionsq1 and q2, the geodesic curve
q1 ;q2 2

S
3 (which connects q1 and q2) has constant tangential velocity

log(q�1
1 q2). The geodesic curve equation is given by:

q1;q2(t) = q1 exp(t � log(q�1
1 q2)) = q1(q

�1
1 q2)

t
: (3)

The geodesic
q1;q2 is also called the slerp (spherical linear inter-
polation) between q1 and q2.

3 MOTIVATION

For a translational motion in R
3, the position curve p(t) is repre-

sented by:

p(t) =

Z
v(t)dt+ p0; (4)

where v(t) is the velocity and p0 is the initial position. This relation
can also be represented by the following linear differential equation:

p
0(t) = v(t) : (5)

However, as shown in Equation (1), the relation between q(t) and
!(t) is non-linear: q0(t) = q(t)!(t).
0

One of the most important problems in aero-space engineering
is how to find a torque optimal rotational path which connects the
start and target orientations [7]. Many numerical methods have
been suggested to find the optimal path, in which Equation (1)
plays an important role as governing equation [6]. Barr et al. [1]
also raised torque optimization as a significant problem in computer
animation, and they constructed a torque optimal piecewise slerp
quaternion path (i.e., as a sequence of discrete unit quaternions) by
using a non-linear optimization technique. There still remains the
important open problem of how to construct such a torque optimal
path with piecewise spline quaternion curves which have simple
closed form equations. An immediate open problem concerns the
computation of high order derivatives of a unit quaternion curve. In
this paper, we resolve the crucial problem of how to formulate the
quaternion curves and their high order derivatives as closed form
equations.

For a unit quaternion curve q(t) 2 S
3, we may reformulate the

curve in the following equivalent form:

q(t) = exp(log(q(t))):

By applying the chain rule to this equation, we obtain the first
derivative formula:

q
0(t) = d(exp)log(q(t))

�
d

dt
log(q(t))

�
;

where d(exp)log(q(t)) is the differential (i.e., Jacobian matrix) of
exp. Kim, Kim, and Shin [9] used this formula to provide simple
C

1-continuity proofs for various previous methods [11, 17, 18].
The second and high order derivative formulas, however, become
extremely complex even with this representation. Moreover, for
general quaternion curves q(t), their logarithmic curves, log(q(t)),
also have very complex formulas. In this paper, we exploit simple
primitive quaternion curves q(t) which allow simple formulas for
both the high order derivatives and the logarithmic curves.

Shoemake [18] used the formula:

dq
� = q

� log(q)d�+ �q
��1

dq: (6)

In general, this formula is incorrect. For example, Equation (6)
claims that: dq2 = 2q dq. However, we have:

dq
2 = d(qq) = dq q + q dq 6= 2q dq

since the quaternion multiplication is not commutative (also see [9]
for more details). Nevertheless, there is a special case where this
formula works. When the quaternion curve q(t) is restricted to the
rotation around a fixed axis ! 2 R

3: i.e.,

q(t) = exp(!�(t));

for a real-valued function �(t), q0(t) has a simple form:

q
0(t) = exp(!�(t))(!�0(t)) = q(t)(!�0(t));

which is equivalent to the formula of Equation (6) in this special
case. Higher order derivatives of q(t) are also easy to compute by
the chain rule.

To make good use of this simple differential property, all the unit
quaternion curves of this paper will be constructed as the products of
primitive quaternion curves: qi(t) = exp(!i�i(t)), i = 1; : : : ; n,
for a fixed angular velocity !i 2 R

3 and a real valued function
�i(t). Since the chain rule can be applied to the quaternion prod-
uct: q(t) = q1(t) � � � qn(t), the quaternion curve derivative can
be obtained in an extremely simple form. Furthermore, applying
a similar technique recursively, high order derivatives can also be
obtained in simple forms. In this paper, we construct each com-
ponent quaternion curve qi(t) to be C

k-continuous by choosing
C

k-continuous basis function �i(t). Therefore, their quaternion
product q(t) = q1(t) � � � qn(t) becomes Ck-continuous.
37
q
0

ω 1

q
1

ω
2

q2

ω n

qn

Figure 1: Piecewise Slerp Interpolation of f!ig.

4 BASIC IDEA

4.1 Cumulative Form

Given a sequence of points p0; p1; � � � ; pn 2 R
3, the simplest C0-

continuous curve p(t) 2 R
3, which interpolates each point pi at

t = i, is given by the following linear interpolation:

p(t) = p0 + �1(t)∆p1 + �2(t)∆p2 + � � � + �n(t)∆pn
= p0 +

Pn

i=1 �i(t)∆pi;

where
∆pi = pi � pi�1

�i(t) =

(
0 if t < i

t� i if i � t < i+ 1
1 if t � i+ 1

Similarly, given a sequence of unit quaternionsq0 ; � � � ; qn 2 S
3,

we can construct aC0-continuous unit quaternion curve q(t) 2 S
3,

which interpolates each unit quaternion qi at t = i, as follows:

q(t) = q0 exp(!1�1(t)) exp(!2�2(t)) � � � exp(!n�n(t))
= q0

Qn

i=1 exp(!i�i(t)) ;

where
!i = log(q�1

i�1qi):

This is a piecewise slerp (spherical linear interpolation) of fqig (see
Figure 1). In the rotational space, a slerp implies a rotation with a
constant angular velocity (around a fixed rotation axis). The slerp
curve segment joining qi and qi+1 is the geodesic interpolation,
which is given by: qi exp(!i�i(t)), based on Euler’s theorem of
principal rotation.

At this point, we may generalize f�ig to other functions, rather
than a piecewise linear function, so that the resulting quaternion
curve becomes C

k-continuous while interpolating the given se-
quence of unit quaternions. The two sequences f�ig and f!ig can
be viewed as basis functions and their coefficients, respectively.
We call q0

Q
exp(!i�i) the cumulative form of q(t) with their co-

efficients f!ig. The cumulative form has several advantages over
other quaternion curve representations:

1. It has a simple closed form equation, which simplifies the
evaluation of curve points and reduces the numerical errors.

2. It facilitates straight-forward computations of high order deriva-
tives.

3. Using C
k-continuous basis functions f�ig, we can easily

constructCk-continuous quaternion curves, which are further
controlled by the coefficients f!ig.

4. A well-chosen set of basis functions makes the constructed
quaternion curves locally controllable.

5. Since k exp(�!)k = 1, the quaternion curves are in S3.
1

4.2 Cumulative Basis

In the Euclidean spaceR3, there are many well-known spline curve
construction schemes such as Bézier and B-spline curves. Most
of the spline curves are represented as the sums of basis functions
with their control points as the coefficients. Let fBig be the basis
functions and fpig be the control points. Then, the spline curve
p(t), determined by fpig, is given by:

p(t) =

nX
i=0

piBi(t) ;

which is called the basis form of p(t). We present a general scheme
that converts the basis form to the cumulative form of the quaternion
curve. Using this method, we can easily construct various unit
quaternion curves from their analogues in the Euclidean space R3.
The basis form can be first converted into the following form:

p(t) = p0 eB0(t) +

nX
i=1

∆pi eBi(t) ;

where
∆pi = pi � pi�1 ;eBi(t) =

Pn

j=i
Bi(t) :

Then, the corresponding quaternion curve is obtained as follows:

q(t) = q
eB0(t)

0

nY
i=1

exp(!i
eBi(t)) ; (7)

by converting p(t) to q(t), p0 to q0, ∆pi to !i = log(q�1
i�1qi),

and vector addition to quaternion multiplication. Equation (7) is
given in a cumulative form. One needs to be extremely careful in
the order of multiplication: q

�1
i�1qi. If the angular velocities are

given in the global frame, the quaternion multiplication: qiq
�1
i�1

should be used, instead of q�1
i�1qi. The new basis f eBig is called

the cumulative basis of fBig. The cumulative form is the basic
tool for our quaternion curve construction in SO(3). Simply by
deriving a cumulative basis f eBig, we can easily obtain a quaternion
curve which shares many important differential properties with its
counterpart in the Euclidean space R3.

5 A NEW CLASS OF QUATERNION CURVES

5.1 Bézier Quaternion Curve

We can represent an n-th order Bézier curve with Bernstein basis
�i;n(t) =

�
n

i

�
(1 � t)n�i

t
i as follows:

p(t) =

nX
i=0

pi�i;n(t) ; (8)

where pi’s are the control points. For the Bézier curve given in a
basis form, we can apply our quaternion curve construction method.
We first reformulate Equation (8) as follows:

p(t) = p0�̃0;n(t) +

nX
i=1

∆pi�̃i;n(t) ;

where the cumulative basis functions are given by:

�̃i;n(t) =

nX
j=i

�i;n(t) : (9)
37
Then, by converting it to the cumulative form, we can obtain then-th
order Bézier quaternion curve with control points fqig as follows:

q(t) = q0

nY
i=1

exp(!i�̃i;n(t)) ; (10)

where
!i = log(q�1

i�1qi) :

Note that �̃0;n(t) = 1. This Bézier quaternion curve has a different
shape from the Bézier quaternion curve of Shoemake [17].

5.2 Hermite Quaternion Curve

A cubic Hermite curve is defined by two end points, pa and pb, and
two end velocities, va and vb. Alternatively, the Hermite curve can
be represented by a cubic Bézier curve:

p(t) =

3X
i=0

pi�i(t) ; (11)

with the condition:

p0 = pa; p1 = pa + va=3; p2 = pb � vb=3; p3 = pb; (12)

where �i(t) = �i;3(t) for i = 0; 1; 2; 3.
Similarly, a cubic Bézier quaternion curve can be used to define

a Hermite quaternion curve which interpolates two end unit quater-
nions, qa and qb, and two end angular velocities, !a and !b. From
Equation (10), the cubic Bézier quaternion curve is given by:

q(t) = q0

3Y
i=1

exp(!i�̃i(t)) ; (13)

where �̃i(t) = �̃i;3(t) for i = 1; 2; 3. The quaternion counterpart
of Equations (12) is given by:

q0 = qa; q1 = qa exp(!a=3); q2 = qb exp(!b=3)�1
; q3 = qb:

These four identities determine the three coefficients!i of the cubic
Bézier quaternion curve in Equation (13) as follows:

!1 = log(q�1
0 q1) = log(q�1

a qa exp(!a=3)) = !a=3
!2 = log(q�1

1 q2) = log(exp(!a=3)�1
q
�1
a qb exp(!b=3)�1)

!3 = log(q�1
2 q3) = log(exp(!b=3)q�1

b
qb) = !b=3:

Using these three angular velocities, we can construct a cubic Her-
mite quaternion curve from Equation (13). Note that we can assign
arbitrarily large angular velocities at the curve end points. The
angular velocity !2 provides an extra degree of freedom in choos-
ing the number n of revolutions while not losing the end point
interpolation property. That is, instead of !2, we may use

!2 + b!2 � n� for an integer n;

where b!2 = !2=k!2k. The curve shape changes, depending on the
number of revolutions. (Note that the angular velocity is measured
here in S

3; therefore, the magnitude is half the rotation in the
physical space.) Figure 2 shows the graphs of basis functions �̃i’s.
Figure 3 shows Hermite quaternion curves with the same control
points, but with different angular velocities!b’s. Since it is difficult
to visualize the quaternion curves in S

3, they are projected onto a
unit sphere in R3.

Now, we will show that the cubic Hermite quaternion curve
interpolates the two orientations, qa and qb, and the two angular
2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

~�1(t)

~�2(t)

~�3(t)

Figure 2: Graphs of �̃i.

qa

qb

Figure 3: Examples of Hermite Quaternion Curves.

velocities, !a and !b, at the curve end points. It is easy to show
that:

q(0) = q0 exp(0) exp(0) exp(0)
= q0 = qa;

q(1) = q0 exp(!1) exp(!2) exp(!3)
= q0(q

�1
0 q1)(q

�1
1 q2)(q

�1
2 q3)

= q3 = qb

The first derivative of q(t) is given by:

q
0(t) = q0 exp(!1�̃1(t))(!1

˙̃
�1(t)) exp(!2�̃2(t)) exp(!3�̃3(t))

+ q0 exp(!1�̃1(t)) exp(!2�̃2(t))(!2
˙̃
�2(t)) exp(!3�̃3(t))

+ q0 exp(!1�̃1(t)) exp(!2�̃2(t)) exp(!3�̃3(t))(!3
˙̃
�3(t))

where

�̃1(t) = 1� (1 � t)3
; �̃2(t) = 3t2

� 2t3
; �̃3(t) = t

3
;

˙̃
�1(t) = 3(1� t)2

;
˙̃
�2(t) = 6t(1� t); ˙̃

�3(t) = 3t2
:

Thus, we have:

q
0(0) = q0 exp(0)(!13) exp(0) exp(0)

+q0 exp(!1�̃1(t)) exp(0)(!20) exp(!3�̃3(t))
+q0 exp(!1�̃1(t)) exp(!2�̃2(t)) exp(0)(!30)

= q0!a = qa!a

q
0(1) = q0 exp(!1)(!10) exp(!2) exp(!3)

+q0 exp(!1) exp(!2)(!20) exp(!3)
+q0 exp(!1) exp(!2) exp(!3)(!33)

= q0q
�1
0 q1q

�1
1 q2q

�1
2 q3(3!3)

= q3!b = qb!b;

which means that the quaternion curve q(t) has its angular velocities
!a = q

�1
a q

0(0) = q(0)�1
q
0(0) and !b = q

�1
b q

0(1) = q(1)�1
q
0(1)

at the curve end points.
3

5.3 B-spline Quaternion Curve

The B-spline curve is very popular in computer graphics because
of its extreme smoothness and local controllability. By moving a
control point, we can selectively modify the B-spline curve without
losing its geometric continuity. In this section, we consider how
to convert a B-spline curve in R3 into its quaternion analogue with
a cumulative form. Then, we investigate the properties such as
C

k-continuity and local controllability.
A B-spline curve is defined by a weighted sum of B-spline

basis functions Bi;k(t), which are C
k�2-continuous (k � 1)-th

order piecewise polynomials. Given a set of control points fpig, a
B-spline curve p(t) is given by:

p(t) =

nX
i=0

piBi;k(t):

The B-spline basis functions Bi;k(t) are defined by the following
recurrence relation [4]:

Bi;1(t) =

�
1 if ti < t < ti+1

0 otherwise

and

Bi;k(t) =
t� ti

ti+k�1 � ti
Bi;k�1(t) +

ti+k � t

ti+k � ti+1
Bi+1;k�1(t) :

It is easy to show that Bi;k’s are Ck�2-continuous piecewise poly-
nomials of degree (k � 1). They are C

k�2-continuous every-
where, and may not be C

k�1-continuous only at the knots ftig.
Each Bi;k(t) has a non-zero support on the interval [ti; ti+k], i.e.,
Bi;k(t) = 0 for t < ti or t > ti+k.

The B-spline curve may be reformulated in the following cu-
mulative form:

p(t) = p0 eB0;k(t) +

nX
i=1

∆pi eBi;k(t) ;

where
∆pi = pi � pi�1

and eBi;k(t) =
Pn

j=i
Bj;k(t)

=

8<:
Pi+k

j=i
Bj;k(t) if ti < t < ti+k�1

1 if t � ti+k�1

0 if t � ti

By converting p(t) to q(t), p0 to q0, ∆pi to !i, and summation
to quaternion multiplication, the corresponding quaternion curve is
obtained in a cumulative form as follows:

q(t) = q
eB0;k(t)

0

nY
i=1

exp(!i
eBi;k(t)) ;

where !i = log(q�1
i�1qi). This gives our B-spline quaternion curve,

which is Ck�2-continuous and locally controllable with the control
points fqig and the angular velocities f!ig. The B-spline quater-
nion curve also allows arbitrarily large angular velocities between
two consecutive control points fqig. Figures 4 and 5 show the
graphs of basis functions Bi;4(t) and eBi;4(t), respectively. Note
that eBi;k(t) is non-constant only in the interval [ti; ti+k�1], whereas
Bi;k(t) is non-constant in [ti; ti+k]. Figure 6 shows examples of B-
spline quaternion curves. The local shape controllability is shown
with dashed curves.
73

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6

B0;4(t)
B1;4(t)
B2;4(t)

Figure 4: B-spline Basis Functions.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

eB0;4(t)

eB1;4(t)

eB2;4(t)

Figure 5: Cumulative B-spline Basis Functions.

Now, we can investigate some interesting differential and ge-
ometric properties of the B-spline quaternion curve: i.e., C

k-
continuity and local controllability. It is easy to show that eBi;k(t)
is Ck�2-continuous since it is a weighted sum of Ck�2-continuous
functions fBi;kg. Therefore, the k-th order B-spline quaternion
curve isCk�2-continuous as well. Since the cumulative basis func-
tion eBi;k(t) is non-constant in the interval [ti; ti+k�1], the quater-
nion curve q(t) on the interval tl � t < tl+1 can be represented
by:

q(t) = q0

�Ql�k+1
i=1 exp(!i � 1)

��Ql

i=l�k+2 exp(!i
eBi;k(t))

��Qn

i=l+1 exp(!i � 0)
�

= ql�k+1
Ql

i=l�k+2 exp(!i
eBi;k(t)):

This equation shows that the quaternion curve q(t) depends only
on the quantities: ql�k+1, !l�k+1, � � � ; !l, that is, only on the k

control points: ql�k+1; ql�k; � � � ; ql. In other words, by moving the
control point ql, the curve shape is influenced only on the interval
[tl; tl+k].

Furthermore, the derivation of q0(t) is extremely simple due to
the B-spline differentiation formula [4]:

d

dt

X
�iBi;k(t) =

X
(k � 1)

�i � �i�1

ti+k�1 � ti
Bi;k�1(t);

where �i’s are constants. Therefore, we have:eB0i;k(t) = k�1
ti+k�1�ti

Bi;k�1(t):

In the case of a uniform B-spline, there is a further reduction to:eB0i;k(t) = Bi;k�1(t).
37
q1

q2

q4

q5
q6

q3

Figure 6: B-spline Quaternion Curve with Six Control Points.

6 EXPERIMENTAL RESULTS

6.1 Torque Computation

The spline interpolation in R
3 produces a path p which minimizes

the energy: Z
kp̈k

2
dt;

while satisfying given constraints. Thus, the spline interpolation
path does not generate unnecessary force (or acceleration). The
energy minimization property makes the spline interpolation very
useful. As far as rotational motion is concerned, it is important to
minimize torque (or angular acceleration). Most of the previous
results on quaternion interpolation have concentrated on improving
the computational efficiency rather than attacking the more chal-
lenging problem of energy minimization.

Barr et al. [1] took an important step toward the energy min-
imization. The quaternion path is approximated by discrete unit
quaternions and a time-consuming non-linear optimization is em-
ployed in the algorithm. There still remains an important open prob-
lem concerning how to construct an energy minimization quaternion
path, ideally with a closed form equation and without using a time-
consuming optimization technique. In this paper, we have provided
a useful step toward the resolution of this problem by introducing a
new class of spline quaternion curves for which high order deriva-
tives can be obtained in simple closed form equations. Although
the problem of how to deal with these closed form equations is still
unsolved, our quaternion curves exhibit promising behaviors by
generating relatively small torque compared with those generated
by the previous methods.

Our cubic quaternion curves generate a similar amount of torque
(in the range of�5%) to that of Shoemake [17] when the control unit
quaternions have small angular variations. However, our curves
perform much better when the variations are large. The meth-
ods based on recursive slerp constructions may generate twisted
curves when the spherical control polygon on S3 has edges of rel-
atively large lengths. This effect can be explained as follows. The
slerp-based methods generate a sequence of intermediate quaternion
curves qi;k(t)’s, and blend each pair of two consecutive curves
qi;k(t) and qi+1;k(t) to generate another sequence of quaternion
curves qi;k+1(t)’s:

qi;k+1(t) = qi;k(t) exp(fi(t) log(qi;k(t)
�1
qi+1;k(t)));

for some blending function fi(t). When the variations of con-
trol quaternions are large, the two quaternion curves qi;k(t) and
qi+1;k(t) have large curve lengths. They may have complex wind-
ing shapes in the compact spaceS3 . The difference quaternion curve
4

qi;k(t)
�1
qi+1;k(t) would also wind many times. However, the

measure, log(qi;k(t)�1
qi+1;k(t)), is always bounded by �, which

totally ignores the large amount of winding. As a result, the blend-
ing curve qi;k+1(t) experiences large bending, which produces large
torque. As the intermediate curves with bending shapes are blended
recursively, the resulting quaternion curve has a twisting shape.

Our quaternion curves do not suffer from such a degener-
acy. This is because our primitive quaternion curve qi(t) =
exp(!i�i(t)) may accommodate arbitrarily large angular velocity
!i. The resulting curve has a large number of winding; however,
the curve does not produce extraordinary bending and/or twisting.
Therefore, our curves perform much better when the angular varia-
tions are large. Furthermore, our curves have C2-continuity, which
means that there is no torque jump at the curve joint. The piecewise
cubic quaternion curves (based on the de Casteljau type construc-
tion) are not C2-continuous; they have torque jump at each curve
joint. High degree rational spherical curves have C

2-continuity
[19]; however, their speeds are less uniform than the curves based
on the de Casteljau type construction. Therefore, the rational curves
generate redundant tangential accelerations, which has undesirable
effect.

6.2 Animation Examples

We present some examples to demonstrate the feasibility of our
quaternion curves. Figure 7 shows an animation of a flying boomerang.
In this example, the motion path is composed of a Hermite curve
for the translation and a Hermite quaternion curve for the rotation.
Using the Hermite quaternion curve, we can specify arbitrary ori-
entations and angular velocities of the boomerang at the start and
end of the animated motion. Note that the boomerang experiences
many revolutions. This effect is obtained by assigning large angular
velocities at both ends.

Our cubic B-spline quaternion curve produces extremely smooth
motions. Figure 8 shows a motion path, which is specified by a
B-spline curve with six control points. A rigid motion path can
be used to specify the sweeping of a 2D cross section. Figure 9
shows a sweep object generated from the same motion path given
in Figure 8. Figure 10 shows an example of B-spline quaternion
interpolation for a rigid body, where the position and orientation
interpolation curves are constructed by the B-spline interpolation
curves in R

3 and SO(3), respectively. Six keyframes are used in
this example, and they are shown in dark tints.

7 CONCLUSIONS

A general construction method is proposed for unit quaternion
curves. Given a spline curve inR3, the spline curve is reformulated
in a cumulative basis form and the corresponding quaternion curve
is constructed by converting each vector addition into the quater-
nion multiplication. The quaternion curve is formulated as a finite
product of simple quaternion curves, which makes the evaluation
of high order derivatives quite straightforward. The constructed
quaternion curves preserve many important differential properties
of their counterparts in R

3. Furthermore, the quaternion curves
and their high order derivatives are given by simple closed form
equations.

Experimental results are quite promising in that our quaternion
curves use small torque compared with the previous quaternion
curves, especially when the control quaternions have large varia-
tions. Although the important torque minimization problem has
not been solved in this paper, our approach provides an important
initial step toward this goal.
37
Figure 7: Boomerang Animation using one Hermite Quaternion
Curve.

Figure 8: Rigid Motion by a Cubic B-spline Quaternion Curve.

Figure 9: Sweeping with Cubic B-spline Quaternion Curves.

Figure 10: Example of B-spline Quaternion Interpolation.
5

REFERENCES

[1] BARR, A., CURRIN, B., GABRIEL, S., AND HUGHES, J. Smooth
interpolation of orientations with angular velocity constraints
using quaternions. Computer Graphics (Proc. of SIGGRAPH
’92) (1992), pp. 313–320.

[2] BARRY, P., AND GOLDMANN, R. A recursive evaluation algo-
rithm for a class of Catmull-Rom splines. Computer Graphics
(Proc. of SIGGRAPH ’88) (1988), pp. 199–204.

[3] CURTIS, M. Matrix Groups, Springer-Verlag, 1972.

[4] DE BOOR, C. A Practical Guide to Splines, Springer-Verlag,
1978.

[5] HAMILTON, W. Elements of Quaternions (Volume I, II),
Chelsea Publishing Company, 1969.

[6] JUNKINS, J., AND TURNER, J. Optimal continuous torque
attitude maneuvers. J. Guidance and Control 3, 3 (1980),
pp. 210–217.

[7] JUNKINS, J., AND TURNER, J. Optimal Spacecraft Rotational
Maneuvers, Elsevier, 1986.

[8] JUTTLER, B. Visualization of moving objects using dual
quaternion curves. Computers & Graphics 18, 3 (1994),
pp. 315–326.

[9] KIM, M.-J., KIM, M.-S., AND SHIN, S. A compact differential
formula for the first derivative of a unit quaternion curve. To
appear in J. of Visualization and Computer Animation (1995).

[10] KIM, M.-J., KIM, M.-S., AND SHIN, S. A C
2-continuous B-

spline quaternion curve interpolating a given sequence of solid
orientations. Proc. of Computer Animation ’95 (1995), pp. 72–
81.

[11] KIM, M.-S., AND NAM, K.-W. Interpolating solid orienta-
tions with circular blending quaternion curves. To appear in
Computer-Aided Design (1995).

[12] NIELSON, G. Smooth interpolation of orientation. Models
and Techniques in Computer Animation (Proc. of Computer
Animation ’93) (1993), N. Thalmann and D. T. (Eds.), Eds.,
Springer-Verlag, pp. 75–93.

[13] NIELSON, G., AND HEILAND, R. Animated rotations
using quaternions and splines on a 4D sphere. Pro-
grammirovanie(Russia) (July-August 1992), Springer-Verlag,
pp. 17–27. English edition, Programming and Computer Soft-
ware, Plenum Pub., New York.

[14] PLETINCKS, D. Quaternion calculus as a basic tool in computer
graphics. The Visual Computer 5, 1 (1989), pp. 2–13.

[15] POBEGAILO, A. Modeling of Cn spherical and orientation
splines. To appear in Proc. of Pacific Graphics ’95 (1995).

[16] SCHLAG, J. Using geometric constructions to interpolate orien-
tation with quaternions. Graphics GEMS II, Academic Press,
1992, pp. 377–380.

[17] SHOEMAKE, K. Animating rotation with quaternion curves.
Computer Graphics (Proc. of SIGGRAPH ’85) (1985),
pp. 245–254.

[18] SHOEMAKE, K. Quaternion calculus for animation. Math for
SIGGRAPH (ACM SIGGRAPH ’91 Course Notes #2) (1991).

[19] WANG, W. Rational spherical curves. Presented at
Int’l. Conf. on CAGD, Penang, Malaysia (July 4-8, 1994).

[20] WANG, W., AND JOE, B. Orientation interpolation in quater-
nion space using spherical biarcs. Proc. of Graphics Interface
’93 (1993), pp. 24–32.
37
APPENDIX

In this appendix, we provide the pseudo codes for the construction
of quaternion curves presented in Section 5.

Bézier Quaternion Curve

// q0; : : : ; qn: control points

double �̃i;n(t) =
Pn

j=i

�
n

i

�
(1� t)n�i

t
i

quaternion Bezier(q0; q1; :::qn)(t)

return (q0
Qn

i=1 exp(log(q�1
i�1qi)�̃i;n(t)));

end

Hermite Quaternion Curve

// qa; qb: the start and end orientations
// !a; !b: the start and end angular velocities

double �̃1(t) = 1� (1� t)3, �̃2(t) = 3t2
� 2t3, �̃3(t) = t

3

quaternion Hermite(qa; qb; !a; !b)(t)

q0 = qa;
!1 = !a=3;
!2 = log(exp(!1)

�1
q
�1
a qb exp(!3));

!3 = !b=3;
return (q0 exp(!1�̃1(t)) exp(!2�̃2(t)) exp(!3�̃3(t)));

end

B-spline Quaternion Curve

// ti : knot sequence

double Bi;k(t) = B-spline basis of order k
double eBi;k(t) =

Pi+k

j=i
Bj;k(t)

quaternion B-spline(q0; q1; :::qn)(t)

l = maxf i jti+k�1 � tg;
if (l < 0) then

fl = 0; q = q
eB0;k(t)

0 g

else
q = ql;

for (i = l+ 1; i � n && ti < t; i++)
q = q exp(log(q�1

i�1qi) eBi;k(t));
return (q);

end

Uniform B-spline Quaternion Curve

// ti = i� 2: uniform knots
// 0 � t � n

// uniform-B-spline(0) = q0

// uniform-B-spline(n) = qn
// uniform-B-spline(i) � qi

quaternion uniform-B-spline(q0; q1; :::qn)(t)

q�1 = q0q
�1
1 q0; //phantom

qn+1 = qnq
�1
n�1qn;// control points

l = bt� 1c;
q = ql;
for (i = l+ 1; i < t+ 2; i++)

q = q exp(log(q�1
i�1qi) eBi;k(t));

return (q);
end
6

