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A pirouette and promenade in five synthetic styles drawn from a space that contains ballet, modern dance, and different body
types. The choreography is also synthetic. Streamers show the trajectory of the left hand and foot.

Abstract

We approach the problem of stylistic motion synthesis by learn-
ing motion patterns from a highly varied set of motion capture se-
quences. Each sequence may have a distinct choreography, per-
formed in a distinct style. Learning identifies common choreo-
graphic elements across sequences, the different styles in which
each element is performed, and a small number of stylistic degrees
of freedom which span the many variations in the dataset. The
learned model can synthesize novel motion data in any interpolation
or extrapolation of styles. For example, it can convert novice bal-
let motions into the more graceful modern dance of an expert. The
model can also be driven by video, by scripts, or even by noise to
generate new choreography and synthesize virtual motion-capture
in many styles.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.2.9 [Artificial Intelligence]:
Robotics—Kinematics and Dynamics; G.3 [Mathematics of Com-
puting]: Probability and Statistics—Time series analysis; E.4
[Data]: Coding and Information Theory—Data compaction and
compression; J.5 [Computer Applications]: Arts and Humanities—
Performing Arts
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1 Introduction

It is natural to think of walking, running, strutting, trudging, sashay-
ing, etc., as stylistic variations on a basic motor theme. From a di-
rectorial point of view, the style of a motion often conveys more
meaning than the underlying motion itself. Yet existing animation
tools provide little or no high-level control over the style of an ani-
mation.

In this paper we introduce the style machine—a statistical model
that can generate new motion sequences in a broad range of styles,
just by adjusting a small number of stylistic knobs (parameters).
Style machines support synthesis and resynthesis in new styles, as
well as style identification of existing data. They can be driven by
many kinds of inputs, including computer vision, scripts, and noise.
Our key result is a method for learning a style machine, including
the number and nature of its stylistic knobs, from data. We use style
machines to model highly nonlinear and nontrivial behaviors such
as ballet and modern dance, working with very long unsegmented
motion-capture sequences and using the learned model to generate
new choreography and to improve a novice’s dancing.

Style machines make it easy to generate long motion sequences
containing many different actions and transitions. They can of-
fer a broad range of stylistic degrees of freedom; in this paper we
show early results manipulating gender, weight distribution, grace,
energy, and formal dance styles. Moreover, style machines can
be learned from relatively modest collections of existing motion-
capture; as such they present a highly generative and flexible alter-
native to motion libraries.

Potential uses include:Generation: Beginning with a modest
amount of motion capture, an animator can train and use the result-
ing style machine to generate large amounts of motion data with
new orderings of actions.Casts of thousands:Random walks in
the machine can produce thousands of unique, plausible motion
choreographies, each of which can be synthesized as motion data
in a unique style.Improvement: Motion capture from unskilled
performers can be resynthesized in the style of an expert athlete or
dancer. Retargetting: Motion capture data can be resynthesized
in a new mood, gender, energy level, body type, etc.Acquisition:
Style machines can be driven by computer vision, data-gloves, even
impoverished sensors such as the computer mouse, and thus offer a
low-cost, low-expertise alternative to motion-capture.

2 Related work
Much recent effort has addressed the problem of editing and reuse
of existing animation. A common approach is to provide interac-
tive animation tools for motion editing, with the goal of capturing
the style of the existing motion, while editing the content. Gle-
icher [11] provides a low-level interactive motion editing tool that
searches for a new motion that meets some new constraints while
minimizing the distance to the old motion. A related optimization
method method is also used to adapt a motion to new characters
[12]. Lee et al. [15] provide an interactive multiresolution mo-
tion editor for fast, fine-scale control of the motion. Most editing
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Figure 1: Schematic illustrating the effects of cross-entropy minimization.[A]. Three simple walk cycles projected onto 2-space. Each
data point represents the body pose observed at a given time.[B]. In conventional learning, one fits a single model to all the data (ellipses
indicate state-specific isoprobability contours; arcs indicate allowable transitions). But here learning is overwhelmed by variation among the
sequences, and fails to discover the essential structure of the walk cycle.[C]. Individually estimated models are hopelessly overfit to their
individual sequences, and will not generalize to new data. In addition, they divide up the cycle differently, and thus cannot be blended or
compared.[D]. Cross-entropy minimized models are constrained to have similar qualitative structure and to identify similar phases of the
cycle. [E]. The generic model abstracts all the information in the style-specific models; various settings of the style variablev will recover all
the specific models plus any interpolation or extrapolation of them.

systems produce results that may violate the laws of mechanics;
Popovíc and Witkin [16] describe a method for editing motion in a
reduced-dimensionality space in order to edit motions while main-
taining physical validity. Such a method would be a useful comple-
ment to the techniques presented here.

An alternative approach is to provide more global animation con-
trols. Signal processing systems, such as described by Bruderlin
and Williams [7] and Unuma et al. [20], provide frequency-domain
controls for editing the style of a motion. Witkin and Popović [22]
blend between existing motions to provide a combination of mo-
tion styles. Rose et al. [18] use radial basis functions to interpolate
between and extrapolate around a set of aligned and labeled exam-
ple motions (e.g., happy/sad and young/old walk cycles), then use
kinematic solvers to smoothly string together these motions. Simi-
lar functionality falls out of our framework.

Although such interactive systems provide fine control, they rely
on the labors of skilled animators to produce compelling and con-
vincing results. Furthermore, it is generally difficult to produce a
new motion that is substantially different from the existing motions,
in style or in content (e.g., to convert by hand a ponderous walk to
a jaunty dance, etc.)

The above signal-processing methods also require that the exam-
ple motions be time-warped; in other words, that sequential corre-
spondences can be found between each component of each motion.
Unfortunately, it is rarely the case that any set of complex motions
will have this property. Style machines automatically compute flex-
ible many-to-many correspondences between sequences using fast
dynamic programming algorithms.

Our work unites two themes that have separate research histories
in motion analysis: estimation of dynamical (in the sense of time-
evolving) models from examples, and style and content separation.
Howe et al. [14] analyze motion from video using a mixture-of-
Gaussians model. Grzeszczuk et al. [13] learn control and phys-
ical systems from physical simulation. Several authors have used
hidden Markov Models to analyze and synthesize motion. Bregler
[6] and Brand [5] useHMMs to recognize and analyze motion from
video sequences. Brand [4] analyzes and resynthesizes animation
of human speech from example audio and video. With regard to
styles, Wilson and Bobick [21] use parametricHMMs, in which
motion recognition models are learned from user-labeled styles.
Tenenbaum and Freeman [19, 10] separate style from content in
general domains under a bilinear model, thereby modeling factors
that have individually linear but cooperatively multiplicative effects
on the output, e.g., the effects of lighting and pose in images of
faces.

These style/content models depend on large sets of hand-labeled
and hand-aligned samples (often exponential in the number of
stylistic degrees of freedomDOFs) plus an explicit statement of what

the stylisticDOFs are. We now introduce methods for extracting
this information directly and automatically from modest amounts
of data.

3 Learning stylistic state-space models
We seek a model of human motion from which we can generate
novel choreography in a variety of styles. Rather than attempt to
engineer such a model, we will attempt to learn it—to extract from
data a function that approximates the data-generating mechanism.

We cast this as an unsupervised learning problem, in which the
goal is to acquire a generative model that captures the data’s es-
sential structure (traces of the data-generating mechanism) and dis-
cards its accidental properties (particulars of the specific sample).
Accidental properties include noise and the bias of the sample. Es-
sential structure can also be divided into two components, which
we will call structure and style. For example, walking, running,
strutting, etc., are all stylistic variations on bipedal locomotion, a
dynamical system with particularly simple temporal structure—a
deterministic loop.

It is up to the modeler to make the structure/style distinction.
State-space representations are very useful here: We take the
structureof bipedal locomotion to be a small set of dynamically-
significant qualitative states along with the rules that govern
changes of state. We takestyleto be variations in the mapping from
qualitative states to quantitative observations. For example, shift-
ing one’s weight load onto the right leg is a dynamically-significant
state common to all forms of bipedal locomotion, but it will look
quite different in running, trudging, etc.

An appropriate state-space model for time-series data is the hid-
den Markov model (HMM). An HMM is a probabilistic finite-state
machine consisting of a set of discrete states, state-to-state tran-
sition probabilities, and state-to-signal emission probabilities—in
this paper, each state has a Gaussian distribution over a small space
of full-body poses and motions. (See§A for a conciseHMM tutorial;
see [17] for a detailed tutorial.) We will add to theHMM a multidi-
mensional style variablev that can be used to vary its parameters,
and call the result astylisticHMM (SHMM), or time-seriesstyle ma-
chine. (See§B for formal definitions.) TheSHMM defines a space
of HMMs; fixing the parameterv yields a uniqueHMM.

Here we show how to separate structure, style, and accidental
properties in a dataset by minimizing entropies in theSHMM. The
main advantages of separating style from structure is that we wind
up with simpler, more generative models for both, and we can do
so with significantly less data than required for the general learn-
ing setting. Our framework is fully unsupervised and automatically
identifies the number and nature of the stylistic degrees of freedom
(often much fewer than the number of variations in the dataset).
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The discovered degrees of freedom lend themselves to some intu-
itive operations that are very useful for synthesis: style mixtures,
exaggerations, extrapolations, and even analogies.

3.1 Generic and style-specific models

We begin with a family of training samples. By “family” we mean
that all the samples have some generic data-generating mechanism
in common, e.g., the motor program for dancing. Each sample may
instantiate a different variation. The samples need not be aligned,
e.g., the ordering, timing, and appearance of actions may vary from
sample to sample. Our modeling goal is to extract a single parame-
terized model which covers the generic behavior in the entire family
of training samples, and which can easily be made to model an in-
dividual style, combination of styles, or extrapolation of styles, just
by choosing an appropriate setting of the style variablev.

Learning involves the simultaneous estimation of a generic
model and a set of style-specific models with three objectives: (1)
each model should fit its sample(s) well; (2) each specific model
should be close to the generic model; and (3) the generic model
should be as simple as possible, thereby maximizing probability
of correct generalization to new data. These constraints have an
information-theoretic expression in eqn. 1. In the next section we
will explain how the last two constraints interact to produce a third
desirable property: The style-specific models can be expressed as
small variations on the generic model, and the space of such varia-
tions can be captured with just a few parameters.

We first describe the use of style machines as applied to pure
signal data. Details specific to working with motion-capture data
are described in§4.

3.2 Estimation by entropy minimization

In learning we minimize a sum of entropies—which measure
the ambiguity in a probability distribution—and cross-entropies—
which measure the divergence between distributions. The principle
of minimum entropy, advocated in various forms by [23, 2, 8], seeks
the simplest model that explains the data, or, equivalently, the most
complex model whose parameter estimates are fully supported by
the data. This maximizes the information extracted from the train-
ing data and boosts the odds of generalizing correctly beyond it.

The learning objective has three components, corresponding to
the constraints listed above:

1. The cross-entropy between the model distribution and statis-
tics extracted from the data measures the model’s misfit of the
data.

2. The cross-entropy between the generic and a specific model
measures inconsistencies in their analysis of the data.

3. The entropy of the generic model measures ambiguity and
lack of structure in its analysis of the data.

Minimizing #1 makes the model faithful to the data. Minimizing #2
essentially maximizes the overlap between the generic and specific
models and congruence (similarity of support) between their hid-
den states. This means that the models “behave” similarly and their
hidden states have similar “meanings.” For example, in a dataset of
bipedal motion sequences, all the style-specificHMMs should con-
verge to similar finite-state machine models of the locomotion cy-
cle, and corresponding states in eachHMM to refer to qualitatively
similar poses and motions in the locomotion cycle. E.g., thenth
state in each model is tuned to the poses in which the body’s weight
shifts onto the right leg, regardless of the style of motion (see fig-
ure 1). Minimizing #3 optimizes the predictiveness of the model
by making sure that it gives the clearest and most concise picture
of the data, with each hidden state explaining a clearly delineated
phenomenon in the data.

Figure 2: Flattening and alignment of Gaussians by minimization
of entropy and cross-entropy, respectively. Gaussian distributions
are visualized as ellipsoid iso-probability contours.

Putting this all together gives the following learning objective
function

θ∗ = arg min
θ

-log posterior︷ ︸︸ ︷
1:-log likelihood︷ ︸︸ ︷

H(ω)︸ ︷︷ ︸
data entropy

+D(ω‖θ)︸ ︷︷ ︸
misfit

+

-log prior︷ ︸︸ ︷
H(θ)︸ ︷︷ ︸

3:model entropy

+D(θ•‖θ)︸ ︷︷ ︸
2:incongruence

+ . . .

(1)
whereθ is a vector of model parameters;ω is a vector of expected
sufficient statistics describing the dataX; θ• parameterizes a ref-
erence model (e.g., the generic);H(·) is an entropy measure; and
D(·) is a cross entropy measure.

Eqn. 1 can also be formulated as a Bayesian posterior
P (θ|ω) ∝ P (ω|θ)P (θ) with likelihood functionP (X|θ) ∝
e−H(ω)−D(ω‖θ) and a priorP (θ) ∝ e−H(θ)−D(θ•‖θ). The
data entropy term, not mentioned above, arises in the normaliza-
tion of the likelihood function; it measures ambiguity in the data-
descriptive statistics that are calculatedvis-à visthe model.

3.3 Effects of the prior

It is worth examining the prior because this is what will give the
final modelθ∗ its special style-spanning and generative properties.

The prior terme−H(θ) expresses our belief in the parsimony
principle—a model should give a maximally concise and minimally
uncertain explanation of the structure in its training set. This is an
optimal bias for extracting as much information as possible from
the data [3]. We apply this prior to the generic model. The prior
has an interesting effect on theSHMM’s emission distributions over
pose and velocity: It gradually removes dimensions of variation,
because flattening a distribution is the most effective way to reduce
its volume and therefore its entropy (see figure 2).

The prior terme−D(θ•‖θ) keeps style models close and con-
gruent to the generic model, so that corresponding hidden states in
two models have similar behavior. In practice we assess this prior
only on the emission distributions of the specific models, where it
has the effect of keeping the variation-dependent emission distri-
butions clustered tightly around the generic emission distribution.
Consequently it minimizes distance between corresponding states
in the models, not between the entire models. We also add a term
−T ′ · D(θ•‖θ) that allows us to vary the strength of the cross-
entropy prior in the course of optimization.

By constraining generic and style-specific Gaussians to overlap,
and constraining both to be narrow, we cause the distribution of
state-specific Gaussians across styles to have a small number of
degrees of freedom. Intuitively, if two Gaussians are narrow and
overlap, then they must be aligned in the directions of their nar-
rowness (e.g., two overlapping disks in 3-space must be co-planar).
Figure 2 illustrates. The more dimensions in which the overlap-
ping Gaussians are flat, the fewer degrees of freedom they have
relative to each other. Consequently, as style-specific models are
drawn toward the generic model during training, all the models set-
tle into a parameter subspace (see figure 3). Within this subspace,
all the variation between the style-specific models can be described
with just a few parameters. We can then identify those degrees of
freedom by solving for a smooth low-dimensional manifold that
contains the parameterizations of all the style-specific models. Our
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Figure 3: Schematic of styleDOF discovery. LEFT: Without cross-
entropy constraints, style-specific models (pentagons) are drawn to
their data (clouds), and typically span all dimensions of parameter
space.RIGHT: When also drawn to a generic model, they settle into
a parameter subspace (indicated by the dashed plane).

experiments showed that a linear subspace usually provides a good
low-dimensional parameterization of the dataset’s stylistic degrees
of freedom. The subspace is easily obtained from a principal com-
ponents analysis (PCA) of a set of vectors, each representing one
model’s parameters.

It is often useful to extend the prior with additional functions of
θ. For example, adding−T ·H(θ) and varyingT gives determin-
istic annealing, an optimization strategy that forces the system to
explore the error surface at many scales asT ↓ 0 instead of my-
opically converging to the nearest local optimum (see§C for equa-
tions).

3.4 Optimization

In learning we hope to simultaneously segment the data into motion
primitives, match similar primitives executed in different styles,
and estimate the structure and parameters for minimally ambigu-
ous, maximally generative models. Entropic estimation [2] gives us
a framework for solving this partially discrete optimization prob-
lem by embedding it in a high-dimensional continuous space via
entropies. It also gives us numerical methods in the form of max-
imum a posteriori (MAP) entropy-optimizing parameter estimators.
These attempt to find a best data-generating model, by gradually
extinguishing excess model parameters that are not well-supported
by the data. This solves the discrete optimization problem by caus-
ing a diffuse distribution over all possible segmentations to collapse
onto a single segmentation.

Optimization proceeds via Expectation-Maximization (EM) [1,
17], a fast and powerful fixpoint algorithm that guarantees con-
vergence to a local likelihood optimum from any initialization.
The estimators we give in§D modify EM to do cross-entropy op-
timization and annealing. Annealing strengthensEM’s guarantee
to quasi-global optimality—globalMAP optimality with probabil-
ity approaching 1 as the annealing shedule lengthens—a necessary
assurance due to the number of combinatorial optimization prob-
lems that are being solved simultaneously: segmentation, labeling,
alignment, model selection, and parameter estimation.
The full algorithm is:

1. Initialize a generic model and one style-specific model for
each motion sequence.

2. EM loop until convergence:

(a) E step: Compute expected sufficient statisticsω of each
motion sequence relative to its model.

(b) M step: (generic): Calculate maximuma posterioripa-
rameter valueŝθ• with the minimum-entropy prior, us-
ing E-step statistics from the entire training set.

(c) M step: (specific): Calculate maximuma posteriori
parameter valueŝθ with the minimum-cross-entropy
prior, only using E-step statistics from the current se-
quence.

(d) Adjust the temperature (see below for schedules).

3. Find a subspace that spans the parameter variations between
models. E.g., calculate aPCA of the differences between the
generic and each style-specific model.

Initialization can be random because full annealing will obliterate
initial conditions. If one can encode useful hints in the initial model,
then theEM loop should use partial annealing by starting at a lower
temperature.

HMMs have a useful property that saves us the trouble of hand-
segmenting and/or labelling the training data: The actions in any
particular training sequence may be squashed and stretched in time,
oddly ordered, and repeated; in the course of learning, the ba-
sic HMM dynamic programming algorithms will find an optimal
segmentation and labelling of each sequence. Our cross-entropy
prior simply adds the constraint that similarly-labeled frames ex-
hibit similar behavior (but not necessarily appearance) across se-
quences. Figure 4 illustrates with the induced state machine and
labelling of four similar but incongruent sequences, and an induced
state machine that captures all their choreographic elements and
transitions.

4 Working with Motion Capture

As in any machine-learning application, one can make the problem
harder or easier depending on how the data is represented to the al-
gorithm. Learning algorithms look for the moststatisticallysalient
patterns of variation the data. For motion capture, these may not be
the patterns that humans findperceptuallyandexpressivelysalient.
Thus we want to preprocess the data to highlight sources of varia-
tion that “tell the story” of a dance, such as leg-motions and com-
pensatory body motions, and suppress irrelevant sources of varia-
tion, such as inconsistent marker placements and world coordinates
between sequences (which would otherwise be modeled as stylistic
variations). Other sources of variation, such as inter-sequence vari-
ations in body shapes, need to be scaled down so that they do not
dominate style space. We now describe methods for converting raw
marker data into a suitable representation for learning motion.

4.1 Data Gathering and Preprocessing

We first gathered human motion capture data from a variety of
sources (see acknowledgements in§8). The data consists of the
3D positions of physical markers placed on human actors, acquired
over short intervals in motion capture studios. Each data source pro-
vided data with a different arrangement of markers over the body.
We defined a reduced 20 marker arrangement, such that all of the
markers in the input sequences could be converted by combining
and deleting extra markers. (Note that the missing markers can be
recovered from synthesized data later by remapping the style ma-
chines to the original input marker data.) We also doubled the size
of the data set by mirroring, and resampled all sequences to 60Hz.

Captured and synthetic motion capture data in the figures and
animations show the motions of markers connected by a fake skele-
ton. The “bones” of this skeleton have no algorithmic value; they
are added for illustration purposes only to make the markers easier
to follow.

The next step is to convert marker data into joint angles plus
limb lengths, global position and global orientation. The coccyx
(near the base of the back) is used as the root of the kinematic tree.
Joint angles alone are used for training. Joint angles are by nature
periodic (for example, ranging from0 to 2π); because training as-
sumes that the input signal lies in the infinite domain ofRn, we
took some pain to choose a joint angle parameterization without
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discontinuities (such as a jump from2π to 0) in the training data.1

However, we were not able to fully eliminate all discontinuities.
(This is partially due to some perversities in the input data such as
inverted knee bends.)

Conversion to joint angles removes information about which ar-
ticulations cause greatest changes in body pose. To restore this in-
formation, we scale joint angle variables to make statistically salient
those articulations that most vary the pose, measured in the data set
by a procedure similar to that described by Gleicher [11]. To re-
duce the dependence on individual body shape, the mean pose is
subtracted from each sequence, Finally, noise and dimensionality
are reduced viaPCA; we typically use ten or fewer significant di-
mensions of data variation for training.

4.2 Training

Models are initialized with a state transition matrixPj→i that has
probabilities declining exponentially off the diagonal; the Gaus-
sians are initialized randomly or centered on everynth frame of
the sequence. These initial conditions save the learning algorithm
the gratuitous trouble of selecting from among a factorial number
of permutationally equivalent models, differing only in the ordering
of their states.

We train with annealing, setting the temperatureT high and mak-
ing it decay exponentially toward zero. This forces the estimators to
explore the error surface at many scales before committing to a par-
ticular region of parameter space. In the high-temperature phase,
we set the cross-entropy temperatureT ′ to zero, to force the varia-
tion models to stay near the generic model. At high temperatures,
any accidental commitments made in the initialization are largely
obliterated. As the generic temperature declines, we briefly heat up
the cross-entropy temperature, allowing the style-specific models
to venture off to find datapoints not well explained by the generic
model. We then drive both temperatures to zero and let the estima-
tors converge to an entropy minimum.

These temperature schedules are hints that guide the optimiza-
tion: (1) Find global structure; (2) offload local variation to the
specific models; (3) then simplify (compress) all models as much
as possible.

The result of training is a collection of models and for each
model, a distributionγ over its hidden states, whereγt,i(y) =
p(statei explains framet, given all the information in the sequence
y). Typically this distribution has zero or near-zero entropy, mean-
ing thatγ has collapsed to a single state sequence that explains
the data.γ (or the sequence of most probable states) encodes the
contentof the data; as we show below, applying either one to a dif-
ferent style-specific model causes that content to be resynthesized
in a different style.

We useγ to remap each model’s emission distributions to joint
angles and angular velocities, scaled according the importance of
each joint. This information is needed for synthesis. Remapping
means re-estimating emission parameters to observe a time-series
that is synchronous with the training data.

4.3 Making New Styles

We encode a style-specificHMM in a vector by concatentating its
state meansµi, square-root covariances (Kij/

√
|Kij |, for i ≤ j),

and state dwell times (on average, how long a model stays in one
state before transitioning out). New styles can be created by inter-
polation and extrapolation within this space. The dimensionality
of the space is reduced byPCA, treating eachHMM as a single ob-
servation and the genericHMM as the origin. ThePCA gives us a

1For cyclic domains, one would ideally use von Mises’ distribution, es-
sentially a Gaussian wrapped around a circle, but we cannot because no
analytic variance estimator is known.

subspace of models whose axes are intrinsic degrees of variation
across the styles in the training set. Typically, only a few stylistic
DOFs are needed to span the many variations in a training set, and
these become the dimensions of the style variablev. One interpo-
lates between any styles in the training set by varyingv between
the coordinates of their models in the style subspace, then recon-
stituting a style-specificHMM from the resulting parameter vector.
Of course, it is more interesting to extrapolate, by going outside the
convex hull of the training styles, a theme that is explored below in
§5.

4.4 Analyzing New Data

To obtain the style coordinates of a novel motion sequencey, we
begin with a copy of the generic model (or of a style-specific model
which assignsy high likelihood), then retrain that model ony, us-
ing cross-entropy constraints with respect to the original generic
model. Projection of the resulting parameters onto the style mani-
fold gives the style coordinates. We also obtain the sample’s state
occupancy matrixγ. As mentioned before, this summarizes the
content of the motion sequencey and is the key to synthesis, de-
scribed below.

4.5 Synthesizing Virtual Motion Data

Given a new value of the style variablev and a state sequence
S(y) ∈ γ(y) encoding the content ofy, one may resynthesizey
in the new styley′ by calculating the maximum-likelihood path
arg maxy′ p(y

′|v, S(y)). Brand [4] describes a method for calcu-
lating the maximum-likelihood sample inO(T ) time for T time-
steps. §F generalizes and improves on this result, so that all the
information inγ is used.

This resulting path is an inherently smooth curve that varies even
if the system dwells in the same hidden state for several frames,
because of the velocity constraints on each frame. Motion discon-
tinuities in the synthesized samples are possible if the difference in
velocities between successive states is large relative to the frame
(sampling) rate. The preprocessing steps are then reversed to pro-
duce virtual motion-capture data as the final output.

Some actions take longer in different styles; as we move from
style to style, this is accommodated by scaling dwell times of the
state sequence to match those of the new style. This is one of many
ways of making time flexible; another is to incorporate dwell times
directly into the emission distributions and then synthesize a list of
varying-sized time-steps by which to clock the synthsized motion-
capture frames.

In addition to resynthesizing existing motion-capture in new
styles, it is possible to generate entirely new motion data directly
from the model itself. Learning automatically extracts motion prim-
itives and motion cycles from the data (see figure 4), which take the
form of state sub-sequences. By cutting and pasting these state se-
quences, we can sequence new choreography. If a model’s state
machine has an arc between states in two consecutively scheduled
motion primitives, the model will automatically modify the end and
beginning of the two primitives to transition smoothly. Otherwise,
we must find a path through the state machine between the two
primitives and insert all the states on that path. An interesting effect
can also be achieved by doing a random walk on the state machine,
which generates random but plausible choreography.

5 Examples
We collected a set ofbipedal locomotion time-seriesfrom a va-
riety of sources. These motion-capture sequences feature a vari-
ety of different kinds of motion, body types, postures, and marker
placements. We converted all motion data to use a common set of
markers on a prototypical body. (If we do not normalize the body,
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Figure 4:TOP: State machine learned from four dance sequences totalling 6000+ frames. Very low-probability arcs have been removed for
clarity. Motion cycles have been labeled; other primitives are contained in linear sequences.BOTTOM: Occupancy matrices (constructed while
learning) indicate how each sequence was segmented and labeled. Note the variations in timing, ordering, and cycles between sequences.
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Figure 5: Completion of the analogy walking:running::strutting:X via synthesis of stylistic motion. Stick figures show every 5 frames;
streamers show the trajectories of the extremities. X extrapolates both the energetic arm swing of strutting and the power stride of running.

Figure 6: Five motion sequences synthesized from the same choreography, but in different styles (one per row). The actions, aligned vertically,
are tiptoeing, turning, kicking, and spinning. The odd body geometry reflects marker placements in the training motion-capture.
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the algorithm typically identifies variations in body geometry as the
principal stylisticDOFs.)

As a hint to the algorithm, we first trained anHMM on a very low-
dimensional representation of the data. Entropic estimation yielded
a model which was essentially a phase-diagram of the locomotive
cycle. This was used as an initialization for the fullSHMM training.
TheSHMM was lightly annealed, so it was not constrained to use this
hint, but the final generic model did retain some of the information
in the initialization.

The PCA of the resulting style-specific models revealed that 3
stylistic degrees of freedom explained 93% of the variation between
the 10 models. The most significant stylisticDOF appears to be
global pose, e.g., one tilts forward for running, back for funny-
walking. It also contains information about the speed of motion.
Style DOF #2 controls balance and gender; varying it modifies the
hips, the distance of the footfall to the midline, and the compensat-
ing swing of the arms. Finally, styleDOF #3 can be characterized
as the amount of swagger and energy in the motion; increasing it
yields sequences that look more and more high-spirited. Extrapo-
lating beyond the hull of specific models yields well-behaved mo-
tion with the expected properties. E.g., we can double the amount
of swagger, or tilt a walk forward into a slouch. We demonstrate
with analogies.

Analogies are a particularly interesting form of extrapola-
tion. Given the analogicial problem walking:running::strutting:X,
we can solve for X in terms of the style coordinates
X=strutting+(running-walking), which is equivalent to com-
pleting the parallelogram having the style coordinates for
walking, running, and strutting as three of its corners.

run

walk strut

?

The resulting synthesized sequence (figure 5) looks like a fast-
advancing form of skanking (a rather high-energy pop dance style).
Similarly, the analogy walking:running::cat-walking:X gives some-
thing that looks like how a model might skip/run down a catwalk in
a fashion show.

Now we turn to examples that cannot be handled by existing
time-warping and signal processing methods.

In a more complicated example, the system was trained on
four performances by classically trained dancers(man, woman-
ballet, woman-modern-dance, woman-lazy-ballet) of 50-70 sec-
onds duration each, with roughly 20 different moves. The per-
formances all have similar choreographies but vary in the timing,
ordering, and style of moves. A 75-state model took roughly 20
minutes to train on 6000+ frames, using interpreted Matlab code on
a single CPU of a 400MHz AlphaServer. Parameter extinction left
a 69-stateSHMM with roughly 3500 parameters. Figure 4 shows that
the system has discovered roughly equivalent qualitative structure
in all the dances. The figure also shows a flowchart of the “chore-
ography” discovered in learning.

We then took a 1600-frame sequence of a novice dancer attempt-
ing similar choreography, but with little success, getting moves
wrong and wrongly ordered, losing the beat, and occasionally stum-
bling. We resynthesized this in a masculine-modern style, obtaining
notable improvements in the grace and recognizability of the dance.
This is shown in the accompanying video.

We thengenerated new choreographyby doing a random walk
on the state machine. We used the resulting state sequence to
synthesize new motion-capture in a variety of styles:3

2 ballet-12
languid; modern+male, etc. These are shown in the video. Fig-
ure 6 illustrates how different the results are by showing poses from
aligned time-slices in the different synthesized performances.

Finally, we demonstratedriving style machines from video.
The essence of our technique is the generation of stylistically var-

ied motion capture fromHMM state sequences (or distributions over
states). In the examples above, we obtained state sequences from
existing motion capture or random walks on theHMM state machine.
In fact, such state sequences can be calculated from arbitrary sig-
nals: We can use Brand’s shadow puppetry technique [5] to infer
state sequences and/or 3D body pose and velocity from video image
sequences. This means that one can create animations by acting out
a motion in front of a camera, then use style machines to map some-
one else’s (e.g. an expert’s) style onto one’s choreography. In the
accompanying video we show some vision-driven motion-capture
and stylistic variations thereon.

6 Discussion

Our unsupervised framework automates many of the dreariest tasks
in motion-capture editing and analysis: The data needn’t be seg-
mented, annotated, or aligned, nor must it contain any explicit state-
ment of the theme or the stylistic degrees of freedom (DOFs). All
these things are discovered in learning. In addition, the algorithms
automatically segment the data, identify primitive motion cycles,
learn transitions between primitives, and identify the stylisticDOFs
that make primitives look quite different in different motion-capture
sequences.

This approach treats animation as a pure data-modeling and in-
ference task: There is no prior kinematic or dynamic model; no rep-
resentation of bones, masses, or gravity; no prior annotation or seg-
mentation of the motion-capture data into primitives or styles. Ev-
erything needed for generating animation is learned directly from
the data.

However, the user isn’t forced to stay “data-pure.” We expect
that our methods can be easily coupled with other constraints;
the quadratic synthesis objective function and/or its linear gradi-
ent (eqn. 21) can be used as penalty terms in larger optimizations
that incorporate user-specified constraints on kinematics, dynam-
ics, foot placement, etc. That we havenotdone so in this paper and
video should make clear the potential of raw inference.

Our method generalizes reasonably well off of its small training
set, but like all data-driven approaches, it will fail (gracefully) if
given problems that look like nothing in the training set. We are
currently exploring a variety of strategies for incrementally learning
new motions as more data comes in.

An important open question is the choice of temperature sched-
ules, in which we see a trade-off between learning time and quality
of the model. The results can be sensitive to the time-courses of
T andT ′ and we have no theoretical results about how to choose
optimal schedules.

Although we have concentrated on motion-capture time-series,
the style machine framework is quite general and could be applied
to a variety of data types and underlying models. For example, one
could model a variety of textures with mixture models, learn the
stylisticDOFs, then synthesize extrapolated textures.

7 Summary

Style machines are generative probabilistic models that can synthe-
size data in a broad variety of styles, interpolating and extrapolating
stylistic variations learned from a training set. We have introduced
a cross-entropy optimization framework that makes it possible learn
style machines from a sparse sampling of unlabeled style examples.
We then showed how to apply style machines to full-body motion-
capture data, and demonstrated three kinds of applications: resyn-
thesizing existing motion-capture in new styles; synthesizing new
choreographies and stylized motion data therefrom; and synthesiz-
ing stylized motion from video. Finally, we showed style machines
doing something that every dance student has wished for: Superim-
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posing the motor skills of an expert dancer on the choreography of
a novice.
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Figure 7: Graphical models of anHMM (top), SHMM (middle), and
path map (bottom). The observed signalxt is explained by a
discrete-valuedhidden statevariables(t) which changes over time,
and in the case ofSHMMs, a vector-valuedstylevariablev. Bothv
ands(t) are hidden and must be inferred probabilistically. Arcs in-
dicate conditional dependencies between the variables, which take
the form of parameterized compatibility functions. In this paper we
give rules for learning (inferring all the parameters associated with
the arcs), analysis (inferringv ands(t)), and synthesis of novel but
consistent behaviors (inferring a most likelyyt for arbitrary settings
of v ands(t)).

A Hidden Markov models

An HMM is a probability distribution over time-series. Its de-
pendency structure is diagrammed in figure 7. It is specified by
θ = {S, Pi, Pj→i, pi(x)} where

• S = {s1, ..., sN} is the set of discrete states;

• stochastic matrixPj→i gives the probability of transitioning
from statej to statei;

• stochastic vectorPi is the probability of a sequence beginning
in statei;

• emission probabilitypi(x) is the probability of observ-
ing x while in state i, typically a Gaussianpi(x) =

N (x;µi,Ki) = e−(x−µi)
>K−1

i
(x−µi)/2

/√
(2π)d|Ki|

with meanµi and covarianceKi.

We coverHMM essentials here; see [17] for a more detailed tutorial.
It is useful to think of a (continuous-valued) time-seriesX

as a path through configuration space. AnHMM is a state-space
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model, meaning that it divides this configuration space into re-
gions, each of which is more or less “owned” by a particular hid-
den state, according to its emission probability distribution. The
likelihood of a pathX = {x1,x2, . . . ,xT } with respect to par-
ticular sequence of hidden statesS = {s(1), s(2), . . . , s(T )} is
the probability of each point on the path with respect to the cur-
rent hidden state (

∏T

t=1
ps(t)(xt)), times the probability of the

state sequence itself, which is the product of all its state transitions
(Ps(1)

∏T

t=2
Ps(t−1)→s(t) ). When this is summed over all possible

hidden state sequences, one obtains the likelihood of the path with
respect to the entireHMM:

p(X|θ) =
∑
S∈ST

[
Ps(1)

ps(1)
(x1)

T∏
t=2

Ps(t−1)→s(t)ps(t)(xt)

]
(2)

A maximum-likelihoodHMM may be estimated from dataX via
alternating steps of Expectation—computing a distribution over the
hidden states—and maximization—computing locally optimal pa-
rameter values with respect to that distribution. The E-step contains
a dynamic programming recursion for eqn. 2 that saves the trouble
of summing over the exponential number of state sequences inST :

p(X|θ) =
∑
i

αT,i (3)

αt,i = pi(xt)
∑
j

αt−1,jPj→i; α1,i = Pi Pi(x1) (4)

α is called the forward variable; a similar recursion gives the back-
ward variableβ:

βt,i =
∑
j

βt+1,jpj(xt+1)Pi→j ; βT,i = 1 (5)

In the E-step the variablesα,β are used to calculate the expected
sufficient statisticsω = {C,γ} that form the basis of new param-
eter estimates. These statistics tally theexpectednumber of times
theHMM transitioned from one state to another

Cj→i =

T∑
t=2

αt−1,jPj→ipi(xt)βt,i /P (X|θ) , (6)

and the probability that theHMM was in hidden statesi when ob-
serving datapointxt

γt,i = αt,iβt,i

/∑
i

αt,iβt,i . (7)

These statistics are optimal with respect to all the information in
the entire sequence and in the model, due to the forward and back-
ward recursions. In the M-step, one calculates maximum likelihood
parameter estimates which are are simply normalizations ofω:

P̂i→j = Ci→j/
∑
i

Ci→j (8)

µ̂i =
∑
t

γt,ixt

/∑
t

γt,i (9)

K̂i =
∑
t

γt,i(xt − µ̂i)(xt − µ̂i)
>

/∑
t

γt,i (10)

After training, eqns. 9 and 10 can be used to remap the model to
any synchronized time-series.

In §D we replace these with more powerful entropy-optimizing
estimates.

B Stylistic hidden Markov models

A stylistic hidden Markov model (SHMM) is an HMM whose pa-
rameters are functionally dependent on a style variablev (see fig-
ure 7). For simplicity of exposition, here we will only develop
the case where the emission probability functionspi(xt) are Gaus-
sians whose means and covariances are varied byv. In that case
the SHMM is specified byθ = {S, Pi, Pj→i,µi,Ki,U i,W i,v}
where

• mean vectorµi, covariance matrixKi, variation matrices
U i,W i and style vectorv parameterize the multivariate
Gaussian probabilitypi(xt) of observing a datapointxt while
in statei:

p(xt|si) = N (xt;µi +U iv,Ki +W iv).

where the stylized covariance matrixKi +W iv is kept pos-
itive definite by mapping its eigenvalues to their absolute val-
ues (if necesary).

The parameters{Pi, Pj→i,µi,Ki} are obtained from data via en-
tropic estimation;{U i,W i} are the dominant eigenvectors ob-
tained in the post-trainingPCA of the style-specific models; andv
can be estimated from data and/or varied by the user. If we fix
the value ofv, then the model becomes a standard discrete-state,
Gaussian-outputHMM. We call thev = 0 case thegenericHMM.

A simpler version of this model has been treated before in a
supervised context by [21]; in their work, only the means vary,
and one must specify by hand the structure of the model’s transi-
tion functionPj→i, the number of dimensions of stylistic variation
dim(v), and the value ofv for every training sequence. Our frame-
work learns all of this automatically without supervision, and gen-
eralizes to a wide variety of graphical models.

C Entropies and cross-entropies

The first two terms of our objective function (eqn. 1) are essentially
the likelihood function, which measures the fit of the model to the
data:

H(ω) +D(ω‖θ) = −L(X|θ) = − logP (X|θ) (11)

The remaining terms measure the fit of the model to our beliefs.
Their precise forms are derived from the likelihood function. For
multinomials with parametersθ = {θ1, · · · , θd},

H(θ) = −
∑

i
θi log θi, (12)

D(θ•‖θ) =
∑

i
θ•i log (θ•i /θi). (13)

Ford-dimensional Gaussians of meanµ, and covarianceK,

H(θ) =
1

2
[ d log 2πe+ log |K| ] , (14)

D(θ•‖θ) =
1

2
[ log |K| − log |K•| +

∑
ij

(K−1)ij((K
•)−1)ij

+(µ− µ•)>K−1(µ− µ•)− d
]
. (15)

The SHMM likelihood function is composed of multinomials and
Gaussians by multiplication (for any particular setting of the hid-
den states). When working with such composite distributions, we
optimize the sum of the components’ entropies, which gives us a
measure of model coding length, and typically bounds the (usually
uncalculable) entropy of the composite model. As entropy declines
the bounds become tight.
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Figure 8: TOP: Expectation maximization finds a local optimum by
repeatedly constructing a convex bound that touches the objective
function at the current parameter estimate (E-step; blue), then cal-
culating optimal parameter settings in the bound (M-step; red). In
this figure the objective function is shown as energy = -log poste-
rior probability; the optimum is the lowest point on the curve. BOT-
TOM: Annealing adds a probabilistic guarantee of finding a global
optimum, by defining a smooth blend between model-fitting—the
hard optimization problem symbolized by the foremost curve—and
maximizing entropy—an easy problem represented by the hindmost
curve—then tracking the optimum across the blend.

D Estimators
The optimal Gaussian parameter settings for minimizing cross-
entropyvis-à-vis datapointsxi and a reference Gaussian parame-
terized by meanµ• and covarianceK• are

µ̂ =

∑N

i
xi + Z′µ•

N + Z′
, (16)

K̂ =

∑N

i
(xi−µ̂)(xi−µ̂)>+Z′((µ̂−µ•)(µ̂−µ•)>+K̂

•
)

N + Z + Z′
.(17)

The optimal multinomial parameter settingsvis-à-visevent counts
ω and reference multinomial distribution parameterized by proba-
bilitiesκ• are given by the fixpoint

P̂j→i = exp

[
W

(
−(ωj→i + Z′κ•j→i)

Zeλ/Z−1

)
+ λ/Z − 1

]
, (18)

λ̂ =
1

M

M∑
i

(
(ωj→i + Z′κ•j→i)

Pj→i
+ Z logPj→i + Z

)
,(19)

where W is definedW (x)eW (x) = x [9]. The factorsZ,Z′ vary
the strength of the entropy and cross-entropy priors in anneal-
ing. Derivations will appear in a technical report available from
http://www.merl.com.

These estimators comprise the maximization step illustrated in
figure 8.

E Path maps
A path map is a statistical model that supports predictions about the
time-series behavior of a target system from observations of a cue
system. A path map is essentially twoHMMs that share a backbone
of hidden states whose transition function is derived from the target
system (see figure 7). The outputHMM is characterized by per-state
Gaussian emission distributions over both target configurations and
velocities. Given a path through cue configuration space, one calcu-
lates a distributionγ over the hidden states as in§A, eqn. 7. From
this distribution one calculates an optimal path through target con-
figuration space using the equations in§F.

F Synthesis
Here we reprise and improve on Brand’s [4] solution for likeliest
motion sequence given a matrix of state occupancy probabilities
γ. As the entropy ofγ declines, the distribution over all possible
motion sequences becomes

lim
H(γ)↓0

pθ(Y |γ) = e
− 1

2

∑
t

∑
i
γt,iỹ

>
t,iK

−1
i
ỹt,i+c, (20)

where the vector̃yi,t
.
= [yt−µi, (yt−yt−1)−µ̇i]> is the target

position and velocity at timet minus the mean of statei, and
c is a constant. The meansµi and covariancesKi are from
the synthesizing model’s set of Gaussian emission probabilities
ps(t)(yt, ẏt)

.
= N ([yt,yt − yt−1]; [µs(t) , µ̇s(t) ],Ks(t)). Break-

ing each inverse covariance into four submatricesK−1
j

.
=
[
Aj Bj
CjDj

]
,

we can obtain the maximum likelihood trajectoryY ∗ (most likely
motion sequence) by solving the weighted system of linear equa-
tions

∀T−1
t=2 ∀j,i

[
−γt−1,j(Bj +Dj)

γt−1,j(Aj+Bj+Cj+Dj)+γt,iDi
−γt,i(Ci +Di)

]>[
yt−1

yt
yt+1

]
= γt−1,jFj−γt,iEi, (21)

whereEj
.
= [Cj Dj ] [µj µ̇j ]

>, Fj
.
= [Aj Bj ] [µj µ̇j ]

> + Ej and
the endpoints are obtained by dropping the appropriate terms from
equation 21:

∀j γj,1
[

Dj
−Cj −Dj

]> [
y0

y1

]
= −γj,1Ej (22)

∀j γj,T
[

−Bj −Dj
Aj +Bj + Cj +Dj

]> [
yT−1

yT

]
= γj,TFj (23)

This generalizes Brand’s geodesic [4] to use all the information in
the occupancy matrixγ, rather than just a state sequence.

The least-squares solution of thisLY = R system can be cal-
culated inO(T ) time becauseL is block-tridiagonal.

We introduce a further improvement in synthesis: If we setY to
the training data in eqn. 21, then we can solve for the set of Gaussian
meansM = {µ1,µ2, . . .} that minimizes the weighted squared-
error in reconstructing that data from its state sequence. To do so,
we factor the r.h.s. of eqn. 21 intoLY = R = GM whereG is
an indicator matrix built from the sequence of most probable states.
The solution forM via the calculationM = LY G−1 tends to be
of enormous dimension and ill-conditioned, so we precondition to
make the problem well-behaved:M = (Q>Y )(Q>Q)−1, where
Q = LG−1. One caution: There is a tension between perfectly fit-
ting the training data and generalizing well to new problems; unless
we have a very large amount of data, the minimum-entropy setting
of the means will do better than the minimum squared error setting.


