Non-Photorealistic Rendering

Pen-and-Ink Illustrations Painterly Rendering Cartoon Shading Technical Illustrations

Goals of Computer Graphics

- Traditional: Photorealism
- Sometimes, we want more
 - Cartoons
 - Artistic expression in paint, pen-and-ink
 - Technical illustrations
 - Scientific visualization

Non-Photorealistic Rendering

"A means of creating imagery that does not aspire to realism" - Stuart Green

Cassidy Curtis 1998

David Gainey

Some NPR Categories

- Pen-and-Ink illustration
 - Techniques: cross-hatching, outlines, line art,etc.
- Painterly rendering
 - Styles: impressionist, expressionist, pointilist, etc.
- Cartoons
 - Effects: cartoon shading, distortion, etc.
- Technical illustrations
 - Characteristics: Matte shading, edge lines, etc.
- Scientific visualization
 - Methods: splatting, line drawing etc.

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Pen-and-Ink Illustrations

- Strokes
 - Curved lines of varying thickness and density
- Texture
 - Character conveyed by collection of strokes
- Tone
 - Perceived gray level across image or segment
- Outline
 - Boundary lines that disambiguate structure

Drawing Strokes

- Stroke generated by moving along straight path
- Stroke perturbed by
 - Waviness function (straightness)
 - Pressure function (thickness)

Tone vs. Texture? Winkenbach and Salesin 1994

Answer: Prioritized Stroke Textures

- Technique for limiting human intervention
- · Collection of strokes with associated priority
- When rendering
 - First draw highest priority only
 - If too light, draw next highest priority, etc.
 - Stop if proper tone is achieved
- Procedural stroke textures
- Support scaling

Indication

- Selective addition of detail
- Difficult to automate
- User places detail segments interactively

Outlines

- Boundary or interior outlines
- · Accented outlines for shadowing and relief
- Dependence on viewing direction
- Suggest shadow direction

Rendering Parametric Surfaces

- Stroke orientation and density
 - Place strokes along isoparameter lines
 - Choose density for desired tone
 - tone = width / spacing

Winkenbach and Salesin 1996

Orientable Textures

- What if we don't have a 3D model of the scene?
- Inputs
 - Grayscale image to specify desired tone
 - Direction field
 - Stroke character
- Output
 - Stroke shaded image

Note that strokes are now b-splines

Salisbury et al. 1997

Orientable Stroke Texture Example

Salisbury et al. 1997

Rendering Strokes in Real-time

Back to 3D models, with a focus on real-time results

Markosian et al. 1997 (video)

WYSIWYG NPR .. Kalnins et al. 2002 (dvd)

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Painterly Rendering

- From strokes to brush strokes ...
- Automatic painting
 - User provides input image or 3D model
 - User specifies painting parameters
 - Computer generates all strokes
- Physical simulation
 - Computer simulates media
- Subject to controversy

Automatic Painting Example

Hertzmann 1998

Automatic Painting from Images

- Start from color image: no 3D information
- Paint in resolution-based layers
 - Blur to current resolution
 - Select brush based on current resolution
 - Find area of largest error compared to real image
 - Place stroke
 - Increase resolution and repeat
- Layers are painted coarse-to-fine
- Styles controled by parameters

Brush Strokes

- Start at point of maximal error
 - Calculate difference between original image and image painted so far
- Direction perpendicular to gradient
 - Stroke tends to follow equally shaded area
 - Create stroke as a b-spline with a given color and thickness
- Stopping criteria
 - Difference between brush color and original image color exceeds threshold
 - Maximal stroke length reached

Longer, Curved Brush Strokes

Painting Styles

- Style determined by parameters
 - Approximation threshold (resemblance to source)
 - Brush sizes
 - Curvature filter (limit or exaggerate curvature)
 - Blur factor (more blur for "impressionistic" image)
 - Minimum and maximum stroke lengths (very short strokes for "pointillist")
 - Opacity (low opacity for a wash like effect)
 - Grid size
 - Color jitter
- Encapsulate parameter settings as style

Some Styles

- "Impressionist"
 - No random color, 4 · stroke length · 16
 - Brush sizes 8, 4, 2; approximation threshold 100
- "Expressionist"
 - Random factor 0.5, 10 · stroke length · 16
 - Brush sizes 8, 4, 2; approximation threshold 50
- "Pointilist"
 - Random factor ~0.75, 0 · stroke length · 0
 - Brush sizes 4, 2; approximation threshold 100
- Not convincing to artists

Physical Simulation Example

Curtis et al. 1997, Computer Generated Watercolor

Computer-Generated Watercolor

- Complex physical phenomena for artistic effect
- Build simple approximations
- Paper generation as random height field

Simulated effects

Fluid Simulation

- Use water velocity, viscosity, drag, pressure, pigment concentration, paper gradient
- Paper saturation and capacity

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Cartoon Shading

- Shading model in 2D cartoon
 - Use material color and shadow color
 - Present lighting cues, shape, and context
- Stylistic
- Used in many animated movies
- Developing real-time techniques for games

Outline

- Pen-and-Ink Illustrations
- Painterly Rendering
- Cartoon Shading
- Technical Illustrations

Technical Illustrations

- Level of abstraction
 - Accent important 3D properties
 - Dimish or eliminate extraneous details
 Ruppel 1995
- Do not represent reality

Photo

Conventions in Technical Illustrations

- Black edge lines
- Cool to warm shading colors
- Single light source; shadows rarely used

Scientific Visualization

Effective visualization of large, multidimensional datasets

Turk & Banks, "Image-Guided Streamline Placement," SIGGRAPH 96

The future

- How to evaluate/define?
- Smart graphics
 - design from user's perspective
 - with data?
 - HCI, AI, Perceptual studies
- Artistic graphics
 - beyond imitating
 - a way to create art work
 - how to assess?

Summary

What is NPR?

"A means of creating a work of art that appeals to human perception"

— Carl Marshall

