Animation

Overview
Traditional Animation
Keyframe Animation
Interpolating Rotation

1999 Star Wars: Phantom Menace

2002 LOTR Two Towers

2001 Final Fantasy

1
Computer Animation

• Models have parameters
 – Polygon positions, normals, spline control points, joint angles, camera parameters, lights, color
 – n parameters define an n-dimensional state space
 – Values of n parameters = point in state space

• Animation defined by path through state space
 – To produce animation:
 » 1. start at beginning of state space path
 » 2. set the parameters of your model
 » 3. render the image
 » 4. move to next point along state space path, repeat 2
 – Path usually defined by a set of motion curves
 » one for each parameter

• Every animation technique reduces to specifying the state space trajectory—the state space will change with the technique

Animation vs. Modeling

• Modeling and animation are tightly coupled
 – Modeling: what are the control knobs and what do they do?
 – Animation: how to vary them to generate desired motions?
Overview

- Animation techniques
 - Traditional animation (frame-by-frame)
 - Keyframing
 - Procedural
 - Behavioral
 - Performance-based (motion capture)
 - Physically based (dynamics)

- Modeling issues
 - Rotations
 - Inverse kinematics

Traditional Cel Animation

- Film runs at 24 frames per second (fps)
 - That’s 1440 pictures to draw per minute
 - 1800 fpm for video (30fps)

- Productions issues:
 - Need to stay organized for efficiency and cost reasons
 - Need to render the frames systematically (render farms)

- Artistic issues:
 - How to create the desired look and mood while conveying story?
 - Artistic vision has to be converted into a sequence of still frames
 - Not enough to get the stills right—must look right at full speed
 - Hard to “see” the motion given the stills
 - Hard to “see” the motion at the wrong frame rate
Traditional Animation: The Process

- **Story board**
 - Sequence of drawings with descriptions
 - Story-based description
- **Key Frames**
 - Draw a few important frames as line drawings
 > For example, beginning of stride, end of stride
- **Inbetweens**
 - Draw the rest of the frames
- **Painting**
 - Redraw onto acetate *Cels*, color them in
- **Hierarchy of jobs (and salary)**

Layered Motion

- It’s often useful to have multiple layers of animation
 - How to make an object move in front of a background?
 - Use one layer for background, one for object
 - Can have multiple animators working simultaneously on different layers, avoid re-drawing and flickering
- **Transparent acetate allows multiple layers**
 - Draw each separately
 - Stack them together on a copy stand
 - Transfer onto film by taking a photograph of the stack
Story Boarding (from "A Bug’s Life")

Principles of Traditional Animation
[Lasseter, SIGGRAPH 1987]

- Stylistic conventions followed by Disney’s animators and others *(but this is not the only interesting style, of course)*
- From experience built up over many years
 - Squash and stretch -- use distortions to convey flexibility
 - Timing -- speed conveys mass, personality
 - Anticipation -- prepare the audience for an action
 - Followthrough and overlapping action -- continuity with next action
 - Slow in and out -- speed of transitions conveys subtleties
 - Arches -- motion is usually curved
 - Exaggeration -- emphasize emotional content
 - Secondary Action -- motion occurring as a consequence
 - Appeal -- audience must enjoy watching it
Principles of Traditional Animation

Squash and Stretch

The famous half filled flour sack, guide to maintaining volume in any animatable shape, and proof that attitudes can be achieved with the simplest of shapes.
Squash and Stretch

Anticipation
Computer Assisted Animation

- Computerized Cel painting
 - Digitize the line drawing, color it using seed fill
 - Eliminates cel painters (low rung on totem pole)
 - Widely used in production (little hand painting any more)
 - e.g. Lion King

- Cartoon Inbetweening
 - Automatically interpolate between two drawings to produce inbetweens (a la morphing)
 - Hard to get right
 - inbetweens often don’t look natural
 - what are the parameters to interpolate? Not clear...
 - not used very often

3D Computer Animation

- Generate the images by rendering a 3-D model
- Vary the parameters to produce the animation
- Brute force
 - Manually set the parameters for each and every frame
 - For an n parameter model: 1440n values per minute
- Traditional keyframing
 - Lead animators draw the important frames
 - Underpaid drones draw the inbetweens
- Computer keyframing
 - Lead animators create the important frames with 3-D computer models
 - Unpaid computers draw the inbetweens
 - The dominant production method
Interpolation

- Hard to interpolate hand-drawn keyframes
 - Computers don’t help much

- The situation is different in 3D computer animation:
 - Each keyframe is defined by a bunch of parameters (state)
 - Sequence of keyframes = points in high-dimensional state space

- Computer inbetweening interpolates these points

- How? You guessed it: splines

Keyframing Basics

- Despite the name, there aren’t really keyframes, *per se*.

- For each variable, specify its value at the “important” frames. Not all variables need agree about which frames are important.

- Hence, *key values* rather than key frames

- Create path for each parameter by interpolating key values
Keyframing: Issues

- What should the key values be?
- When should the key values occur?
- How can the key values be specified?
- How are the key values interpolated?
- What kinds of BAD THINGS can occur from interpolation?
 - Invalid configurations (pass through objects)
 - Unnatural motions (painful twists/bends)
 - Jerky motion

Keyframe Animation: Production Issues

- How to learn the craft
 - apprentice to an animator
 - practice, practice, practice
 - Read Cinefex, ...
- Pixar starts with animators, teaches them computers and starts with computer folks and teaches them some art
From the Making of Toy Story

Scene from Toy Story II
How Do You Interpolate Between Keys?

- Splines: non-uniform, C^1 is pretty good
- Velocity control is needed at the keyframes
- Classic example - a ball bouncing under gravity
 - zero vertical velocity at start
 - high downward velocity just before impact
 - lower upward velocity after
 - motion produced by fitting a smooth spline looks unnatural
- What kind of spline might we want to use?
 - Hermite is good
- What kind of continuity do we want?
Problems with Interpolation

• Splines don’t always do the right thing
• Classic problems
 – Important constraints may break between keyframes
 » feet sink through the floor
 » hands pass through walls
 – 3D rotations
 » Euler angles don’t always interpolate in a natural way
• Classic solutions:
 – More keyframes!
 – Quaternions help fix rotation problems

Keyframing Examples

• From SIGGRAPH “2002 Electronic Theatre Program”
 – Carl & Ray: 3D Character Animation Work for Blockbuster Entertainment
 – “It’s not the end of the world,” Super Furry Animals
 – Polygon Family: Episode 2
• Keyframing is an important element, but not everything.
Interpolating Rotations

Q: What kind of compound rotation do you get by successively turning about each of the 3 axes at a constant rate?
A: Not the one you want

Euler Angles
- Good for single-axis rotations
- Awkward for other rotations

Gimbal Lock

A Gimbal is a hardware implementation of Euler angles (used for mounting gyroscopes, expensive globes)

Gimbal lock is a basic problem with representing 3-D rotations using Euler angles
Quaternion Rotation

- We can think of rotations as lying on an n-D unit sphere

- Interpolating rotations means moving on n-D sphere
 - Can encode position on sphere by unit vector
 - SLERP: *Spherical Linear Interpolation*
 - take shortest path between two points on unit sphere
 - How about 3-angle rotations?

Quaternion Rotation

- A quaternion is a 4-D unit vector $q = [x \ y \ z \ w]$
 - It lies on the unit hypersphere $x^2+y^2+z^2+w^2=1$

- For rotation about (unit) axis ν by angle θ
 - vector part $(\sin \theta/2) \nu = [x \ y \ z]$
 - scalar part $\cos \theta/2 = w$

- The rotation matrix corresponding to a quaternion is

\[
\begin{bmatrix}
1-2y^2-2z^2 & 2xy+2wz & 2xz-2wy \\
2xy-2wz & 1-2x^2-2z^2 & 2yz+2wx \\
2xz+2wy & 2yz-2wx & 1-2x^2-2y^2
\end{bmatrix}
\]

- Quaternion Interpolation
 - represent rotation as quaternion
 - SLERP: linearly interpolate quaternions q_1 and q_2 and normalize
 - convert to rotation matrix to apply the rotation

- Only a unit quaternion encodes a rotation - normalize by dividing by $\sqrt{x^2+y^2+z^2+w^2}$
Where did this come from?

\[q = W + X\hat{i} + Y\hat{j} + Z\hat{k} \]
\[i^2 = j^2 = k^2 = -1 \]
\[ij = k = -ji \]

- \(W, X, Y, \) and \(Z \) are real.
- Consider a normalized quaternion \(q \) and a non-normalized quaternion \(v \)

\[v = a\hat{i} + b\hat{j} + c\hat{k} \]
\[q^{-1} = W - X\hat{i} - Y\hat{j} - Z\hat{k} \]

Where did this come from? (2)

- Write out \(v' = qvq^{-1} \) and expand it like a matrix equation for the \(i, j, \) and \(k \) terms.

\[
\begin{pmatrix}
a' \\
b' \\
c'
\end{pmatrix} =
\begin{pmatrix}
1 - 2(Y^2 + Z^2) & 2(XY - ZW) & 2(XZ + YW) \\
2(XY + ZW) & 1 - 2(X^2 + Z^2) & 2(YZ - XW) \\
2(XZ - YW) & 2(YZ + XW) & 1 - 2(X^2 + Y^2)
\end{pmatrix}
\begin{pmatrix}
a \\
b \\
c
\end{pmatrix}
\]
Where did this come from??? (3)

• This is the same rotation matrix we saw earlier
• It’s orthogonal and has determinant 1, so it must be a pure rotation.
• It leaves the vector \((X,Y,Z)^T\) invariant, so it must be around that axis.
• To find the angle, consider a rotation purely about \(X\) and use the half-angle formulas from trig.
• Note that it’s double-valued: two quaternions give the same rotation.
• The final result: a rotation about \((X,Y,Z)^T\) by an angle \(q\) can be represented as the quaternion:

\[
q = \cos \frac{\theta}{2} + (X\hat{i} + Y\hat{j} + Z\hat{k})\sin \frac{\theta}{2}
\]

Quaternion Interpolation

• Interpolating quaternions produces better results than Euler angles
• A quaternion is a point on the 4-D unit sphere
 – interpolating rotations requires a unit quaternion at each step - another point on the 4-D sphere
 – move with constant angular velocity along the great circle between the two points
 – Spherical Linear Interpolation (SLERPing)
• Any rotation is given by 2 quaternions, so pick the shortest SLERP
• To interpolate more than two points:
 – Use higher-order quaternion interpolation, e.g., cubic
 – Solve a non-linear variational constrained optimization (numerically)
• Further information, see papers by Ken Shoemake
 » SIGGRAPH ’85 Proc. (Computer Graphics, V. 19, No. 3, P.245)
“SLERP: Spherical Linear Interpolation”

• Algebraic form:

\[\text{Slerp}(q_0, q_1; t) = (q_1 q_0^{-1})^t q_0 \]

 » Useful form for analysis.
 » NOTE: \(q_t = [\cos(t\theta), \nu \sin(t\theta)] \) for \(q = [\cos(\theta), \nu \sin(\theta)] \)

• Implementation form:

\[\text{Slerp}(q_0, q_1; t) = q_0 \frac{\sin \Omega(1-t)}{\sin \Omega} + q_1 \frac{\sin \Omega t}{\sin \Omega} \]

where \(\cos \Omega = q_0 \cdot q_1 \)

• Problem: Slerp may not be smooth enough

Kinematics & Inverse Kinematics

• We need help in positioning joints

• Kinematics
 – gives motions in terms of joint angles, velocities, and positions
 – used by most keyframing and procedural animation systems

• *Inverse* kinematics
 – determine joint angles from positions
 – e.g. “calculate the shoulder, elbow, and wrist rotation parameters in order to put the hand here”
 – better for interaction
 – sometimes underdetermined (i.e. many combinations of joint angles to achieve a given end result)
 – used a lot in robotics
Procedural Animation

• Define the motion using formulas
 – Hand-crafted
 – Physically based

• The animator must be a programmer

• Keyframing starts to become procedural as expressions are added

• At some level of complexity it becomes easier/more efficient than keyframing.

Battle of Helm’s Deep, LOTR
Dynamics

- Generate motion by specifying mass and force, apply physical laws (e.g., Newton’s laws)
- Simulates physical phenomena
 - gravity
 - momentum (inertia)
 - collisions
 - friction
 - fluid flow (drag, turbulence, ...)
 - deformation
 - fracture

Active Simulations
Passive Simulations

Performance-based Animation (Motion Capture)

- Record the animation from live action
 - simplest method - rotoscope (trace) over video of real motions
- Real time input devices
 - electronic puppeteering
- Motion capture
 - track motion of reference points
 - body or face or hands
 - magnetic
 - optical
 - exoskeletons
 - convert to joint angles (not always straightforward)
 - use these angles to drive an articulated 3-D model
 - These motion paths can be warped
Motion Capture