

Computer Animation

Models have parameters

- Polygon positions, normals, spline control points, joint angles, camera parameters, lights, color
- n parameters define an n-dimensional state space
- Values of *n* parameters = point in *state space*
- Animation defined by path through state space

- To produce animation:

- » 1. start at beginning of state space path
- » 2. set the parameters of your model
- » 3. render the image
- » 4. move to next point along state space path, repeat 2
- Path usually defined by a set of motion curves
 - » one for each parameter
- Every animation technique reduces to specifying the state space trajectory—the state space will change with the technique

Animation vs. Modeling

- Modeling and animation are tightly coupled
 - Modeling: what are the control knobs and what do they do?
 - Animation: how to vary them to generate desired motions?

Overview

- Animation techniques
 - -Traditional animation (frame-by-frame)
 - -Keyframing
 - -Procedural
 - -Behavioral
 - -Performance-based (motion capture)
 - -Physically based (dynamics)
- Modeling issues
 - -Rotations
 - -Inverse kinematics

Traditional Cel Animation

- Film runs at 24 frames per second (fps)
 - That's 1440 pictures to draw per minute
 - 1800 fpm for video (30fps)
- Productions issues:
 - Need to stay organized for efficiency and cost reasons
 - Need to render the frames systematically (render farms)
- Artistic issues:
 - How to create the desired look and mood while conveying story?
 - Artistic vision has to be converted into a sequence of still frames
 - Not enough to get the stills right-must look right at full speed
 - » Hard to "see" the motion given the stills
 - » Hard to "see" the motion at the wrong frame rate

Traditional Animation: The Process

- Story board
 - -Sequence of drawings with descriptions
 - -Story-based description
- Key Frames
 - Draw a few important frames as line drawings
 » For example, beginning of stride, end of stride
- Inbetweens
 - -Draw the rest of the frames
- Painting
 - -Redraw onto acetate Cels, color them in
- Hierarchy of jobs (and salary)

Layered Motion

- It's often useful to have multiple layers of animation
 - How to make an object move in front of a background?
 - Use one layer for background, one for object
 - Can have multiple animators working simultaneously on different layers, avoid re-drawing and flickering
- Transparent acetate allows multiple layers
 - Draw each separately
 - Stack them together on a copy stand
 - Transfer onto film by taking a photograph of the stack

Principles of Traditional Animation [Lasseter, SIGGRAPH 1987]

- Stylistic conventions followed by Disney's animators and others (but this is not the only interesting style, of course)
- · From experience built up over many years
 - Squash and stretch -- use distortions to convey flexibility
 - Timing -- speed conveys mass, personality
 - Anticipation -- prepare the audience for an action
 - Followthrough and overlapping action -- continuity with next action
 - Slow in and out -- speed of transitions conveys subtleties
 - Arcs -- motion is usually curved
 - Exaggeration -- emphasize emotional content
 - Secondary Action -- motion occurring as a consequence
 - Appeal -- audience must enjoy watching it

Computer Assisted Animation

- Computerized Cel painting
 - Digitize the line drawing, color it using seed fill
 - Eliminates cel painters (low rung on totem pole)
 - Widely used in production (little hand painting any more)
 - -e.g. Lion King

Cartoon Inbetweening

- Automatically interpolate between two drawings to produce inbetweens (a la morphing)
- Hard to get right
 - » inbetweens often don't look natural
 - » what are the parameters to interpolate? Not clear...
 - » not used very often

3D Computer Animation

- Generate the images by rendering a 3-D model
- Vary the parameters to produce the animation
- Brute force
 - Manually set the parameters for each and every frame
 - For an *n* parameter model: 1440n values per minute
- Traditional keyframing
 - Lead animators draw the important frames
 - Underpaid drones draw the inbetweens
- Computer keyframing
 - Lead animators create the important frames with 3-D computer models
 - Unpaid computers draw the inbetweens
 - The dominant production method

Interpolation

- Hard to interpolate hand-drawn keyframes

 Computers don't help much
- The situation is different in 3D computer animation:
 - Each keyframe is a defined by a bunch of parameters (state)
 - Sequence of keyframes = points in high-dimensional state space
- · Computer inbetweening interpolates these points
- How? You guessed it: splines

Keyframing: Issues

- What should the key values be?
- When should the key values occur?
- How can the key values be specified?
- How are the key values interpolated?
- What kinds of BAD THINGS can occur from interpolation?
 - Invalid configurations (pass through objects)
 - Unnatural motions (painful twists/bends)
 - Jerky motion

Problems with InterpolationSplines don't always do the right thing

- Classic problems
 - Important constraints may break between keyframes
 - »feet sink through the floor
 - »hands pass through walls
 - -3D rotations
 - »Euler angles don't always interpolate in a natural way
- Classic solutions:
 - -More keyframes!
 - -Quaternions help fix rotation problems

Keyframing Examples

- From SIGGRAPH "2002 Electronic Theatre Program"
 - Carl & Ray: 3D Character Animation Work for Blockbuster Entertainment
 - -"It's not the end of the world," Super Furry Animals
 - -Polygon Family: Episode 2
- Keyframing is an important element, but not everything.

 Quaternion Rotation A quaternion is a 4-D unit vector q = [x y z w] It lies on the unit hypersphere x²+y²+z²+w²=1
 For rotation about (unit) axis v by angle θ vector part (sin θ/2) v = [x y z] scalar part cos θ/2 = w
 The rotation matrix corresponding to a quaternion is

Where did this come from? $q = W + X\hat{i} + Y\hat{j} + Z\hat{k}$ $\hat{i}^{2} = \hat{j}^{2} = \hat{k}^{2} = -1$ $\hat{i}\hat{j} = \hat{k} = -\hat{j}\hat{i}$ • *W*, *X*, *Y*, and *Z* are real. • Consider a normalized quaternion *q* and a non-normalized quaternion *v* $v = a\hat{i} + b\hat{j} + c\hat{k}$ $q^{-1} = W - X\hat{i} - Y\hat{j} - Z\hat{k}$

$$q = \cos\frac{\sigma}{2} + (X\hat{i} + Y\hat{j} + Z\hat{k})\sin\frac{\sigma}{2}$$

 Interpolating quaternions produces better results than Euler angles A quaternion is a point on the 4-D unit sphere interpolating rotations requires a unit quaternion at each step - another point on the 4-D sphere 	 Interpolating quaternions produces better results than Euler angles A quaternion is a point on the 4-D unit sphere interpolating rotations requires a unit quaternion at each step - another point on the 4-D sphere move with constant angular velocity along the great circle between the two points Spherical Linear intERPolation (SLERPing) Any rotation is given by 2 quaternions, so pick the shortest SLERP To interpolate more than two points: Use higher-order quaternion interpolation, e.g., cubic Solve a non-linear variational constrained optimization (numerically) 		Quaternion Interpolation
 A quaternion is a point on the 4-D unit sphere interpolating rotations requires a unit quaternion at each step - another point on the 4-D sphere move with constant angular velocity along the great circle between the tw points Spherical Linear intERPolation (SLERPing) Any rotation is given by 2 quaternions, so pick the shortest SLERP To interpolate more than two points: Use higher-order quaternion interpolation, e.g., cubic Solve a non-linear variational constrained optimization (numerically) Further information, see papers by Ken Shoemake 	 A quaternion is a point on the 4-D unit sphere interpolating rotations requires a unit quaternion at each step - another point on the 4-D sphere move with constant angular velocity along the great circle between the two points Spherical Linear intERPolation (SLERPing) Any rotation is given by 2 quaternions, so pick the shortest SLERP To interpolate more than two points: Use higher-order quaternion interpolation, e.g., cubic Solve a non-linear variational constrained optimization (numerically) Further information, see papers by Ken Shoemake » SIGGRAPH '85 Proc. (Computer Graphics, V. 19, No. 3, P.245) » Quaternions tutorial, http://www.cs.wisc.edu/graphics/Courses/cs-838- 	•	
 point on the 4-D sphere move with constant angular velocity along the great circle between the tw points Spherical Linear intERPolation (SLERPing) Any rotation is given by 2 quaternions, so pick the shortest SLERP To interpolate more than two points: Use higher-order quaternion interpolation, e.g., cubic Solve a non-linear variational constrained optimization (numerically) Further information, see papers by Ken Shoemake 	 point on the 4-D sphere move with constant angular velocity along the great circle between the two points Spherical Linear intERPolation (SLERPing) Any rotation is given by 2 quaternions, so pick the shortest SLERP To interpolate more than two points: Use higher-order quaternion interpolation, e.g., cubic Solve a non-linear variational constrained optimization (numerically) Further information, see papers by Ken Shoemake SIGGRAPH '85 Proc. (Computer Graphics, V. 19, No. 3, P.245) Quaternions tutorial, http://www.cs.wisc.edu/graphics/Courses/cs-838- 		
 points Spherical Linear intERPolation (SLERPing) Any rotation is given by 2 quaternions, so pick the shortest SLERP To interpolate more than two points: Use higher-order quaternion interpolation, e.g., cubic Solve a non-linear variational constrained optimization (numerically) Further information, see papers by Ken Shoemake 	 points Spherical Linear intERPolation (SLERPing) Any rotation is given by 2 quaternions, so pick the shortest SLERP To interpolate more than two points: Use higher-order quaternion interpolation, e.g., cubic Solve a non-linear variational constrained optimization (numerically) Further information, see papers by Ken Shoemake SIGGRAPH '85 Proc. (Computer Graphics, V. 19, No. 3, P.245) Quaternions tutorial, http://www.cs.wisc.edu/graphics/Courses/cs-838- 		
 Any rotation is given by 2 quaternions, so pick the shortest SLERP To interpolate more than two points: Use higher-order quaternion interpolation, e.g., cubic Solve a non-linear variational constrained optimization (numerically) Further information, see papers by Ken Shoemake 	 Any rotation is given by 2 quaternions, so pick the shortest SLERP To interpolate more than two points: Use higher-order quaternion interpolation, e.g., cubic Solve a non-linear variational constrained optimization (numerically) Further information, see papers by Ken Shoemake » SIGGRAPH '85 Proc. (Computer Graphics, V. 19, No. 3, P.245) » Quaternions tutorial, http://www.cs.wisc.edu/graphics/Courses/cs-838- 		
 To interpolate more than two points: Use higher-order quaternion interpolation, e.g., cubic Solve a non-linear variational constrained optimization (numerically) Further information, see papers by Ken Shoemake 	 To interpolate more than two points: Use higher-order quaternion interpolation, e.g., cubic Solve a non-linear variational constrained optimization (numerically) Further information, see papers by Ken Shoemake » SIGGRAPH '85 Proc. (<i>Computer Graphics</i>, V. 19, No. 3, P.245) » Quaternions tutorial, http://www.cs.wisc.edu/graphics/Courses/cs-838- 		 Spherical Linear intERPolation (SLERPing)
 Use higher-order quaternion interpolation, e.g., cubic Solve a non-linear variational constrained optimization (numerically) Further information, see papers by Ken Shoemake 	 Use higher-order quaternion interpolation, e.g., cubic Solve a non-linear variational constrained optimization (numerically) Further information, see papers by Ken Shoemake » SIGGRAPH '85 Proc. (<i>Computer Graphics</i>, V. 19, No. 3, P.245) » Quaternions tutorial, http://www.cs.wisc.edu/graphics/Courses/cs-838- 	• /	Any rotation is given by 2 quaternions, so pick the shortest SLERP
Solve a non-linear variational constrained optimization (numerically)Further information, see papers by Ken Shoemake	 Solve a non-linear variational constrained optimization (numerically) Further information, see papers by Ken Shoemake » SIGGRAPH '85 Proc. (Computer Graphics, V. 19, No. 3, P.245) » Quaternions tutorial, http://www.cs.wisc.edu/graphics/Courses/cs-838- 	• -	To interpolate more than two points:
Further information, see papers by Ken Shoemake	 Further information, see papers by Ken Shoemake » SIGGRAPH '85 Proc. (<i>Computer Graphics</i>, V. 19, No. 3, P.245) » Quaternions tutorial, http://www.cs.wisc.edu/graphics/Courses/cs-838- 		– Use higher-order quaternion interpolation, e.g., cubic
	 » SIGGRAPH '85 Proc. (Computer Graphics, V. 19, No. 3, P.245) » Quaternions tutorial, http://www.cs.wisc.edu/graphics/Courses/cs-838- 		- Solve a non-linear variational constrained optimization (numerically)
» SIGGRAPH '85 Proc. (Computer Graphics, V. 19, No. 3, P.245)	» Quaternions tutorial, http://www.cs.wisc.edu/graphics/Courses/cs-838-	•	Further information, see papers by Ken Shoemake
			» SIGGRAPH '85 Proc. (Computer Graphics, V. 19, No. 3, P.245)

"SLERP: Spherical Linear Interpolation"

• Algebraic form:

Slerp(
$$q_0, q_1; t$$
) = $(q_1 q_0^{-1})^t q_0$

- » Useful form for analysis.
- » NOTE: $q^t = [\cos(t\theta), v \sin(t\theta)]$ for $q = [\cos(\theta), v \sin(\theta)]$
- Implementation form:

Slerp(q_0, q_1; t) = $q_0 \frac{\sin \Omega(1-t)}{\sin \Omega} + q_1 \frac{\sin \Omega t}{\sin \Omega}$

where

 $\cos \Omega = q_0 \cdot q_1$

Problem: Slerp may not be smooth enough

Procedural Animation

- Define the motion using formulas
 - -Hand-crafted
 - -Physically based
- The animator must be a programmer
- Keyframing starts to become procedural as expressions are added
- At some level of complexity it becomes easier/more efficient than keyframing.

Dynamics

- Generate motion by specifying mass and force, apply physical laws (e.g., Newton's laws)
- Simulates physical phenomena
 - -gravity
 - -momentum (inertia)
 - -collisions
 - -friction
 - -fluid flow (drag, turbulence, ...)
 - -deformation
 - -fracture

Performance-based Animation (Motion Capture) • Record the animation from live action - simplest method - rotoscope (trace) over video of real motions • Real time input devices - electronic puppeteering • Motion capture - track motion of reference points » body or face or hands - magnetic - optical - exoskeletons - convert to joint angles (not always straightforward) - use these angles to drive an articulated 3-D model

- These motion paths can be warped

